This file is indexed.

/usr/share/octave/packages/nurbs-1.3.10/kntrefine.m is in octave-nurbs 1.3.10-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
% KNTREFINE: Refine a given knot vector by dividing each interval uniformly,
%             maintaining the continuity in previously existing knots.
%
%   [rknots]                  = kntrefine (knots, n_sub, degree, regularity)
%   [rknots, zeta]            = kntrefine (knots, n_sub, degree, regularity)
%   [rknots, zeta, new_knots] = kntrefine (knots, n_sub, degree, regularity)
%
% INPUT:
%
%     knots:      initial knot vector.
%     n_sub:      number of new knots to be added in each interval.
%     degree:     polynomial degree of the refined knot vector
%     regularity: maximum global regularity 
%
% OUTPUT:
%
%     rknots:    refined knot vector
%     zeta:      refined knot vector without repetitions
%     new_knots: new knots, to apply the knot insertion
%
% The regularity at the new inserted knots is the one given by the user.
% At previously existing knots, the regularity is the minimum
%  between the previous regularity, and the one given by the user.
%  This ensures optimal convergence rates in the context of IGA.
%
% Copyright (C) 2010 Carlo de Falco, Rafael Vazquez
%
%    This program is free software: you can redistribute it and/or modify
%    it under the terms of the GNU General Public License as published by
%    the Free Software Foundation, either version 3 of the License, or
%    (at your option) any later version.

%    This program is distributed in the hope that it will be useful,
%    but WITHOUT ANY WARRANTY; without even the implied warranty of
%    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
%    GNU General Public License for more details.
%
%    You should have received a copy of the GNU General Public License
%    along with this program.  If not, see <http://www.gnu.org/licenses/>.

function varargout = kntrefine (knots, n_sub, degree, regularity)

  if (iscell(knots))
    if (numel(n_sub)~=numel(degree) || numel(n_sub)~=numel(regularity) || ...
        numel(n_sub)~=numel(knots))
      error('kntrefine: n_sub, degree and regularity must have the same length as the number of knot vectors')
    end
    aux_knots = knots;
  else
    if (numel(n_sub)~=numel(degree) || numel(n_sub)~=numel(regularity) || ...
        numel(n_sub)~=1)
      error('kntrefine: n_sub, degree and regularity must have the same length as the number of knot vectors')
    end
    aux_knots = {knots};
  end

  if (nargout == 3)
    for idim = 1:numel(n_sub)
      if (degree(idim)+1 ~= sum (aux_knots{idim}==aux_knots{idim}(1)))
        error ('kntrefine: new_knots is only computed when the degree is maintained');
      end
    end
    for idim = 1:numel(n_sub)
      min_mult     = degree(idim) - regularity(idim);
      z            = unique (aux_knots{idim});
      nz           = numel (z);
      deg          = sum (aux_knots{idim} == z(1)) - 1;
      rknots{idim} = z(ones(1, degree(idim)+1));
      new_knots{idim} = [];
 
      for ik = 2:nz
        insk = linspace (z(ik-1), z(ik), n_sub(idim) + 2);
        insk = vec (repmat (insk(2:end-1), min_mult, 1))';
        old_mult = sum (aux_knots{idim} == z(ik));
        mult = max (min_mult, degree(idim) - deg + old_mult);
        rknots{idim} = [rknots{idim}, insk, z(ik*ones(1, mult))];
        new_knots{idim} = [new_knots{idim}, insk, z(ik*ones(1, mult-old_mult))];
      end
      zeta{idim} = unique (rknots{idim});
    end
    if (~iscell(knots))
      rknots = rknots{1};
      zeta = zeta{1};
      new_knots = new_knots{1};
    end
    varargout{1} = rknots;
    varargout{2} = zeta;
    varargout{3} = new_knots;
  else
    for idim = 1:numel(n_sub)
      min_mult     = degree(idim) - regularity(idim);
      z            = unique (aux_knots{idim});
      nz           = numel (z);
      deg          = sum (aux_knots{idim} == z(1)) - 1;
      rknots{idim} = z(ones(1, degree(idim)+1));
 
      for ik = 2:nz
        insk = linspace (z(ik-1), z(ik), n_sub(idim) + 2);
        insk = vec (repmat (insk(2:end-1), min_mult, 1))';
        old_mult = sum (aux_knots{idim} == z(ik));
        mult = max (min_mult, degree(idim) - deg + old_mult);
        rknots{idim} = [rknots{idim}, insk, z(ik*ones(1, mult))];
      end
      zeta{idim} = unique (rknots{idim});
    end
    if (~iscell(knots))
      rknots = rknots{1};
      zeta = zeta{1};
    end
    varargout{1} = rknots;
    if (nargout == 2)
      varargout{2} = zeta;
    end
  end
end

function v = vec (in)
  v = in(:);
end

%!shared nrbs
%!test
%! knots = {[0 0 1 1] [0 0 0 1 1 1]};
%! coefs(1,:,:) = [1 sqrt(2)/2 0; 2 sqrt(2) 0];
%! coefs(2,:,:) = [0 sqrt(2)/2 1; 0 sqrt(2) 2];
%! coefs(4,:,:) = [1 sqrt(2)/2 1; 1 sqrt(2)/2 1];
%! nrbs = nrbmak (coefs, knots);
%! nrbs = nrbkntins (nrbs, {[] [0.5 0.6 0.6]});
%! nrbs = nrbdegelev (nrbs, [0 1]);
%! nrbs = nrbkntins (nrbs, {[] [0.4]});
%! rknots = kntrefine (nrbs.knots, [1 1], [1 1], [0 0]);
%! assert (rknots{1} == [0 0 0.5 1 1]);
%! assert (rknots{2} == [0 0 0.2 0.4 0.45 0.5 0.55 0.6 0.8 1 1]);
%!
%!test
%! rknots = kntrefine (nrbs.knots, [1 1], [3 3], [0 0]);
%! assert (rknots{1}, [0 0 0 0 0.5 0.5 0.5 1 1 1 1]);
%! assert (rknots{2}, [0 0 0 0 0.2 0.2 0.2 0.4 0.4 0.4 0.45 0.45 0.45 0.5 0.5 0.5 0.55 0.55 0.55 0.6 0.6 0.6 0.8 0.8 0.8 1 1 1 1]);
%!
%!test
%! rknots = kntrefine (nrbs.knots, [1 1], [3 3], [2 2]);
%! assert (rknots{1}, [0 0 0 0 0.5 1 1 1 1]);
%! assert (rknots{2}, [0 0 0 0 0.2 0.4 0.45 0.5 0.5 0.55 0.6 0.6 0.6 0.8 1 1 1 1]);
%!
%!test
%! rknots = kntrefine (nrbs.knots, [1 1], [4 4], [0 0]);
%! assert (rknots{1}, [0 0 0 0 0 0.5 0.5 0.5 0.5 1 1 1 1 1]);
%! assert (rknots{2}, [0 0 0 0 0 0.2 0.2 0.2 0.2 0.4 0.4 0.4 0.4 0.45 0.45 0.45 0.45 0.5 0.5 0.5 0.5 0.55 0.55 0.55 0.55 0.6 0.6 0.6 0.6 0.8 0.8 0.8 0.8 1 1 1 1 1]);
%!
%!test
%! rknots = kntrefine (nrbs.knots, [1 1], [4 4], [3 3]);
%! assert (rknots{1}, [0 0 0 0 0 0.5 1 1 1 1 1]);
%! assert (rknots{2}, [0 0 0 0 0 0.2 0.4 0.4 0.45 0.5 0.5 0.5 0.55 0.6 0.6 0.6 0.6 0.8 1 1 1 1 1]);
%!
%!test
%! knots = [0 0 0 0 0.4 0.5 0.5 0.6 0.6 0.6 1 1 1 1];
%! rknots = kntrefine (knots, 1, 4, 3);
%! assert (rknots, [0 0 0 0 0 0.2 0.4 0.4 0.45 0.5 0.5 0.5 0.55 0.6 0.6 0.6 0.6 0.8 1 1 1 1 1]);