This file is indexed.

/usr/share/octave/packages/nurbs-1.3.10/nrb2iges.m is in octave-nurbs 1.3.10-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
function nrb2iges (nurbs, filename)
% NRB2IGES : Write a NURBS curve or surface to an IGES file.
%
% Calling Sequence:
% 
%   nrb2iges (nurbs, filename);
% 
% INPUT:
% 
%   nurbs    : NURBS curve or surface, see nrbmak.
%   filename : name of the output file.
%  
% Description:
% 
%   The data of the nurbs structure is written in a file following the IGES
%   format. For a more in-depth explanation see, for example:
%   <http://engineeronadisk.com/V2/notes_design/engineeronadisk-76.html>.
%
%    Copyright (C) 2014 Jacopo Corno
%
%    This program is free software: you can redistribute it and/or modify
%    it under the terms of the GNU General Public License as published by
%    the Free Software Foundation, either version 3 of the License, or
%    (at your option) any later version.

%    This program is distributed in the hope that it will be useful,
%    but WITHOUT ANY WARRANTY; without even the implied warranty of
%    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
%    GNU General Public License for more details.
%
%    You should have received a copy of the GNU General Public License
%    along with this program.  If not, see <http://www.gnu.org/licenses/>.
%
%    This file is based on nurbs2iges.m, (C) 2006 Fu Qiang, originally 
%    released under the MIT license.

  dt = datestr (now, 'yyyy.mm.dd');
  
  dim = numel (nurbs(1).order);
  
  % START SECTION
  S{1} = '';
  S{2} = 'IGES obtained from Nurbs toolbox.';
  S{3} = 'See <http://octave.sourceforge.net/nurbs/>.';
  S{4} = '';
    
  % GLOBAL SECTION
  G{1} = '1H,';                           % Parameter Deliminator Character
  G{2} = '1H;';                           % Record Delimiter Character
  G{3} = HString ('Nurbs toolbox');       % Product ID from Sender
  G{4} = HString (filename);              % File Name
  G{5} = HString ('Octave Nurbs');        % System ID
  G{6} = HString ('nrb2iges');            % Pre-processor Version
  G{7} = '32';                            % Number of Bits for Integers (No. of bits present in the integer representation of the sending system)
  G{8} = '75';                            % Single Precision Magnitude (Maximum power of 10 which may be represented as a single precision floating point number from the sending system)
  G{9} = '6';                             % Single Precision Significance (No. of significant digits of a single precision floating point number on the sending system)
  G{10}= '75';                            % Double Precision Magnitude (Maximum power of 10 which may be represented as a double precision floating point number from the sending system)
  G{11}= '15';                            % Double Precision Significance (No. of significant digits of a double precision floating point number on the sending system)
  G{12}= HString('Nurbs from Octave');    % Product ID for Receiver
  G{13}= '1.0';                           % Model Space Scale
  G{14}= '6';                             % Unit Flag (6 = metres)
  G{15}= HString('M');                    % Units  (metres = "M")
  G{16}= '1000';                          % Maximum Number of Line Weights
  G{17}= '1.0';                           % Size of Maximum Line Width
  G{18}= HString(dt);                     % Date and Time of file generation
  G{19}= '0.000001';                      % Minimum User-intended Resolution
  G{20}= '10000.0';                       % Approximate Maximum Coordinate
  G{21}= HString('Jacopo Corno');         % Name of Author
  G{22}= HString('GSCE - TU Darmstadt');  % Author's Organization
  G{23}= '3';                             % IGES Version Number (3 = IGES version 2.0)
  G{24}= '0';                             % Drafting Standard Code (0 = no standard)
  
  % Convert section array to lines (maximum lenght 72)
  SectionG = make_section (G, 72);
  
  % DIRECTORY ENTRY SECTION
  % Each directory entry consists of two, 80 character, fixed formatted lines
  D = [];
  for ii = 1:length (nurbs)
    switch (dim)
      case 1 % NURBS curve
        D(ii).type = 126;
      case 2 % NURBS surface
        D(ii).type = 128;
      otherwise
        error ('Only curves and surfaces can be saved in IGES format.')
    end
    D(ii).id = 2*ii - 1; % odd counter (see Parameter data section)
    D(ii).p_start = 0;
    D(ii).p_count = 0;
  end
  
  % PARAMETER DATA SECTION
  % The structure is a free formatted data entry from columns 1 to 64.
  % Each line of free formatted data consists of the entity type number
  % followed by the parameter data describing the entity.
  % Columns 65 to 72 are reserved for a parameter data index which is an
  % odd number counter, right justified in the field, which begins at the
  % number 1 and progresses in odd increments for each entity entered.
  % Column 73 is reserved for the letter �P� to indicate the data element
  % belongs to the parameter data section. 
  % Columns 74 to 80 are reserved for the sequence number. Each line of 
  % data corresponds to the entity type as specified in the global section.
  SectionP = {};
  for ii = 1:length (nurbs)
    P = make_section_array (nurbs(ii)); % finish one entity
    % Convert section array to lines
    SP = make_section (P, 64);
    D(ii).p_count = length (SP);
    if (ii == 1)
        D(ii).p_start = 1;
    else
        D(ii).p_start = D(ii-1).p_start + D(ii-1).p_count;
    end
    SectionP{ii} = SP;
  end

  % SAVE
  fid = fopen (filename, 'w');
  
  % Save Start Section
  for ii = 1:length (S)
    fprintf (fid, '%-72sS%7d\n', S{ii}, ii);
  end
  
  % Save Global Section
  for ii = 1:length (SectionG)
    fprintf (fid, '%-72sG%7d\n', SectionG{ii}, ii);
  end
  
  % Save Directory Entry Section
  for i = 1:length (D)
    fprintf (fid, '%8d%8d%8d%8d%8d%8d%8d%8d%8dD%7d\n', ...
             D(i).type, D(i).p_start, 0, 0 ,0, 0, 0, 0, 0, i*2-1);
    fprintf (fid, '%8d%8d%8d%8d%8d%8s%8s%8s%8dD%7d\n', ...
             D(i).type, 0, 0, D(i).p_count, 0, ' ', ' ', ' ', 0, i*2);
  end
  
  % Save Parameter Data Section
  lines_p = 0;
  for jj = 1:length (D)
    sec = SectionP{jj};
    for ii = 1:length (sec)
      lines_p = lines_p + 1;
      fprintf (fid, '%-64s %7dP%7d\n', sec{ii}, D(jj).id, lines_p);
    end
  end
  
  % Save Terminate Section
  sec_t = sprintf ('%7dS%7dG%7dD%7dP%7d', length (S), length(SectionG), 2*length(D), lines_p);
  fprintf (fid, '%-72sT%7d\n', sec_t, 1);
  
  fclose(fid);
  
end

function P = make_section_array (nurbs)
  dim = numel (nurbs.order);
  
  % in IGES the control points are stored in the format [x, y, z, w]
  % instead of [w*x, w*y, w*z, w]
  for idim = 1:3
    nurbs.coefs(idim,:) = nurbs.coefs(idim,:) ./ nurbs.coefs(4,:);
  end
  
  P = {};
  switch dim
    case 1
      % Rational B-Spline Curve Entity
      cp = nurbs.coefs;
      deg = nurbs.order - 1;
      knots = nurbs.knots;
      uspan = [0 1];
      isplanar = ~any(cp(3,:));
      P{1} = '126';                       % NURBS curve
      P{2} = int2str (size (cp, 2) - 1);  % Number of control points
      P{3} = int2str (deg);               % Degree
      P{4} = int2str (isplanar);          % Curve on xy plane
      P{5} = '0';
      P{6} = '0';
      P{7} = '0';
      index = 8;
      for ii = 1:length (knots)
        P{index} = sprintf ('%f', knots(ii));
        index = index + 1;
      end
      for ii = 1:size (cp, 2)
        P{index} = sprintf ('%f', cp(4,ii));
        index = index + 1;
      end
      for ii = 1:size (cp, 2)
        P{index} = sprintf ('%f', cp(1,ii));
        index = index + 1;
        P{index} = sprintf ('%f', cp(2,ii));
        index = index + 1;
        P{index} = sprintf ('%f', cp(3,ii));
        index = index + 1;
      end
      P{index} = sprintf ('%f', uspan(1));
      index = index +1;
      P{index} = sprintf ('%f', uspan(2));
      index = index +1;
      P{index} = '0.0';
      index = index +1;
      P{index} = '0.0';
      index = index +1;
      if isplanar
        P{index} = '1.0';
      else
        P{index} = '0.0';
      end
      index = index + 1;
      P{index} = '0';
      index = index + 1;
      P{index} = '0';
    case 2
      % Rational B-Spline Surface Entity
      cp = nurbs.coefs;
      degU = nurbs.order(1) - 1;
      degV = nurbs.order(2) - 1;
      knotsU = nurbs.knots{1};
      knotsV = nurbs.knots{2};
      uspan = [0 1];
      vspan = [0 1];
      P{1} = '128';                       % NURBS surface
      P{2} = int2str (size (cp, 2) - 1);  % Number of control points in U
      P{3} = int2str (size (cp, 3) - 1);  % Number of control points in V
      P{4} = int2str (degU);              % Degree in U
      P{5} = int2str (degV);              % Degree in V
      P{6} = '0';
      P{7} = '0';
      P{8} = '0';
      P{9} = '0';
      P{10} = '0';
      index = 11;
      for ii = 1:length (knotsU)
        P{index} = sprintf ('%f', knotsU(ii));
        index = index + 1;
      end
      for ii = 1:length (knotsV)
        P{index} = sprintf ('%f', knotsV(ii));
        index = index + 1;
      end
      for jj = 1:size (cp, 3)
        for ii = 1:size (cp, 2)
          P{index} = sprintf ('%f', cp(4,ii,jj));
          index = index + 1;
        end
      end
      for jj = 1:size (cp, 3)
        for ii = 1:size (cp, 2)
          P{index} = sprintf ('%f',cp(1,ii,jj));
          index = index + 1;
          P{index} = sprintf ('%f',cp(2,ii,jj));
          index = index + 1;
          P{index} = sprintf ('%f',cp(3,ii,jj));
          index = index + 1;
        end
      end
      P{index} = sprintf('%f',uspan(1));
      index = index +1;
      P{index} = sprintf('%f',uspan(2));
      index = index +1;
      P{index} = sprintf('%f',vspan(1));
      index = index +1;
      P{index} = sprintf('%f',vspan(2));
      index = index +1;
      P{index} = '0';
      index = index + 1;
      P{index} = '0';
    otherwise
      
  end
end

function hs = HString (str)
% HString : Convert the string STR to the Hollerith format.

  hs = sprintf ('%dH%s', length(str), str);
end

function sec = make_section (fields, linewidth)
  sec = {};
  index = 1;
  line = '';
  num = length (fields);
  for i = 1:num
    if (i < num)
      newitem = [fields{i} ','];
    else
      newitem = [fields{i} ';'];
    end
    len = length (line) + length (newitem);
    if ( len > linewidth )
      % new line
      sec{index} = line;
      index = index + 1;
      line = '';
    end
    line = [line newitem];
  end
  sec{index} = line;
end