This file is indexed.

/usr/share/octave/packages/nurbs-1.3.10/nrbbasisfun.m is in octave-nurbs 1.3.10-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
function [B, id] = nrbbasisfun (points, nrb)

% NRBBASISFUN: Basis functions for NURBS
%
% Calling Sequence:
% 
%    B     = nrbbasisfun (u, crv)
%    B     = nrbbasisfun ({u, v}, srf)
%   [B, N] = nrbbasisfun ({u, v}, srf)
%   [B, N] = nrbbasisfun (pts, srf)
%
%    INPUT:
%   
%      u   - parametric coordinates along u direction
%      v   - parametric coordinates along v direction
%      pts - array of scattered points in parametric domain, array size: (2,num_points)
%      crv - NURBS curve
%      srf - NURBS surface
%   
%    If the parametric coordinates are given in a cell-array, the values
%     are computed in a tensor product set of points
%
%    OUTPUT:
%   
%      B - Value of the basis functions at the points
%          size(B)=[numel(u),(p+1)] for curves
%          or [numel(u)*numel(v), (p+1)*(q+1)] for surfaces
%
%      N - Indices of the basis functions that are nonvanishing at each
%          point. size(N) == size(B)
%   
%
%    Copyright (C) 2009 Carlo de Falco
%
%    This program is free software: you can redistribute it and/or modify
%    it under the terms of the GNU General Public License as published by
%    the Free Software Foundation, either version 3 of the License, or
%    (at your option) any later version.

%    This program is distributed in the hope that it will be useful,
%    but WITHOUT ANY WARRANTY; without even the implied warranty of
%    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
%    GNU General Public License for more details.
%
%    You should have received a copy of the GNU General Public License
%    along with this program.  If not, see <http://www.gnu.org/licenses/>.

  if (   (nargin<2) ...
      || (nargout>2) ...
      || (~isstruct(nrb)) ...
      || (iscell(points) && ~iscell(nrb.knots)) ...
      || (~iscell(points) && iscell(nrb.knots) && (size(points,1)~=2)) ...
      )
    error('Incorrect input arguments in nrbbasisfun');
  end
                            
  if (~iscell(nrb.knots))         %% NURBS curve
    
    [B, id] = nrb_crv_basisfun__ (points, nrb);
    
  elseif size(nrb.knots,2) == 2 %% NURBS surface
    if (iscell(points))
      [v, u] = meshgrid(points{2}, points{1});
      p = [u(:), v(:)]';
    else
      p = points;
    end
    
    [B, id] = nrb_srf_basisfun__ (p, nrb); 

  else                            %% NURBS volume
    error('The function nrbbasisfun is not yet ready for volumes')
  end
end  

%!demo
%! U = [0 0 0 0 1 1 1 1];
%! x = [0 1/3 2/3 1] ;
%! y = [0 0 0 0];
%! w = [1 1 1 1];
%! nrb = nrbmak ([x;y;y;w], U);
%! u = linspace(0, 1, 30);
%! B = nrbbasisfun (u, nrb);
%! xplot = sum(bsxfun(@(x,y) x.*y, B, x),2);
%! plot(xplot, B)
%! title('Cubic Bernstein polynomials')
%! hold off

%!test
%! U = [0 0 0 0 1 1 1 1];
%! x = [0 1/3 2/3 1] ;
%! y = [0 0 0 0];
%! w = rand(1,4);
%! nrb = nrbmak ([x;y;y;w], U);
%! u = linspace(0, 1, 30);
%! B = nrbbasisfun (u, nrb);
%! xplot = sum(bsxfun(@(x,y) x.*y, B, x),2);
%!
%! yy = y; yy(1) = 1;
%! nrb2 = nrbmak ([x.*w;yy;y;w], U); 
%! aux = nrbeval(nrb2,u);
%! %figure, plot(xplot, B(:,1), aux(1,:).', w(1)*aux(2,:).')
%! assert(B(:,1), w(1)*aux(2,:).', 1e-6)
%! 
%! yy = y; yy(2) = 1;
%! nrb2 = nrbmak ([x.*w;yy;y;w], U);
%! aux = nrbeval(nrb2, u);
%! %figure, plot(xplot, B(:,2), aux(1,:).', w(2)*aux(2,:).')
%! assert(B(:,2), w(2)*aux(2,:).', 1e-6)
%!
%! yy = y; yy(3) = 1;
%! nrb2 = nrbmak ([x.*w;yy;y;w], U);
%! aux = nrbeval(nrb2,u);
%! %figure, plot(xplot, B(:,3), aux(1,:).', w(3)*aux(2,:).')
%! assert(B(:,3), w(3)*aux(2,:).', 1e-6)
%!
%! yy = y; yy(4) = 1;
%! nrb2 = nrbmak ([x.*w;yy;y;w], U);
%! aux = nrbeval(nrb2,u);
%! %figure, plot(xplot, B(:,4), aux(1,:).', w(4)*aux(2,:).')
%! assert(B(:,4), w(4)*aux(2,:).', 1e-6)

%!test
%! p = 2;   q = 3;   m = 4; n = 5;
%! Lx  = 1; Ly  = 1; 
%! nrb = nrb4surf   ([0 0], [1 0], [0 1], [1 1]);
%! nrb = nrbdegelev (nrb, [p-1, q-1]);
%! aux1 = linspace(0,1,m); aux2 = linspace(0,1,n);
%! nrb = nrbkntins  (nrb, {aux1(2:end-1), aux2(2:end-1)});
%! u = rand (1, 30); v = rand (1, 10);
%! u = u - min (u); u = u / max (u);
%! v = v - min (v); v = v / max (v);
%! [B, N] = nrbbasisfun ({u, v}, nrb);
%! assert (sum(B, 2), ones(300, 1), 1e-6)
%! assert (all (all (B<=1)), true)
%! assert (all (all (B>=0)), true)
%! assert (all (all (N>0)), true)
%! assert (all (all (N <= prod (nrb.number))), true)
%! assert (max (max (N)),prod (nrb.number))
%! assert (min (min (N)),1)