This file is indexed.

/usr/share/octave/packages/nurbs-1.3.10/nrbcrvderiveval.m is in octave-nurbs 1.3.10-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
% NRBCRVDERIVEVAL: Evaluate n-th order derivatives of a NURBS curve.
%
% usage: skl = nrbcrvderiveval (crv, u, d) 
%
%   INPUT:
%
%   crv : NURBS curve structure, see nrbmak
%
%   u   : parametric coordinate of the points where we compute the derivatives
%
%   d   : number of partial derivatives to compute
%
%
%   OUTPUT: 
%
%   ck (i, j, l) = i-th component derived j-1 times at the l-th point.
%
% Adaptation of algorithm A4.2 from the NURBS book, pg127
%
%    Copyright (C) 2010 Carlo de Falco, Rafael Vazquez
%
%    This program is free software: you can redistribute it and/or modify
%    it under the terms of the GNU General Public License as published by
%    the Free Software Foundation, either version 3 of the License, or
%    (at your option) any later version.

%    This program is distributed in the hope that it will be useful,
%    but WITHOUT ANY WARRANTY; without even the implied warranty of
%    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
%    GNU General Public License for more details.
%
%    You should have received a copy of the GNU General Public License
%    along with this program.  If not, see <http://www.gnu.org/licenses/>.

function ck = nrbcrvderiveval (crv, u, d) 
  ck = arrayfun (@(x) nrbcrvderiveval__ (crv, x, d), u, 'UniformOutput', false);
  ck = cat (3, ck{:});
end

function ck = nrbcrvderiveval__ (crv, u, d)

  persistent nc;
  if isempty (nc)
    nc = [0 0 0 0 0; 
          1 0 0 0 0;
          2 1 0 0 0; 
          3 3 1 0 0; 
          4 6 4 1 0];
  end

  ck = zeros (3, d+1);
  wders = curvederiveval (crv.number-1, crv.order-1, crv.knots, squeeze (crv.coefs(4, :)), u, d);

  for idim = 1:3
  
    Aders = curvederiveval (crv.number-1, crv.order-1, crv.knots, squeeze (crv.coefs(idim, :)), u, d);
       
    ck(idim, 1) = Aders(1) / wders(1);
    for k = 1:d
      ck(idim, k+1) = (Aders(k+1) - sum (nc(k+1, 1:k) .* wders(2:k+1).' .* squeeze (ck(idim, k:-1:1))))  / wders(1);
    end
      
  end

end


%!test
%! knots = [0 0 0 1 1 1];
%! coefs(:,1) = [0; 0; 0; 1];
%! coefs(:,2) = [1; 0; 1; 1];
%! coefs(:,3) = [1; 1; 1; 2];
%! crv = nrbmak (coefs, knots);
%! u = linspace (0, 1, 100);
%! ck = nrbcrvderiveval (crv, u, 2); 
%! w  = @(x) 1 + x.^2;
%! dw = @(x) 2*x;
%! F1 = @(x) (2*x - x.^2)./w(x);
%! F2 = @(x) x.^2./w(x);
%! F3 = @(x) (2*x - x.^2)./w(x);
%! dF1 = @(x) (2 - 2*x)./w(x) - 2*(2*x - x.^2).*x./w(x).^2;
%! dF2 = @(x) 2*x./w(x) - 2*x.^3./w(x).^2;
%! dF3 = @(x) (2 - 2*x)./w(x) - 2*(2*x - x.^2).*x./w(x).^2;
%! d2F1 = @(x) -2./w(x) - 2*x.*(2-2*x)./w(x).^2 - (8*x-6*x.^2)./w(x).^2 + 8*x.^2.*(2*x-x.^2)./w(x).^3;
%! d2F2 = @(x) 2./w(x) - 4*x.^2./w(x).^2 - 6*x.^2./w(x).^2 + 8*x.^4./w(x).^3;
%! d2F3 = @(x) -2./w(x) - 2*x.*(2-2*x)./w(x).^2 - (8*x-6*x.^2)./w(x).^2 + 8*x.^2.*(2*x-x.^2)./w(x).^3;
%! assert ([F1(u); F2(u); F3(u)], squeeze(ck(:, 1, :)), 1e2*eps);
%! assert ([dF1(u); dF2(u); dF3(u)], squeeze(ck(:, 2, :)), 1e2*eps);
%! assert ([d2F1(u); d2F2(u); d2F3(u)], squeeze(ck(:, 3, :)), 1e2*eps);