This file is indexed.

/usr/share/octave/packages/nurbs-1.3.10/nrbdeval.m is in octave-nurbs 1.3.10-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
function varargout = nrbdeval (nurbs, dnurbs, varargin)

% NRBDEVAL: Evaluation of the derivative and second derivatives of NURBS curve, surface or volume.
%
%     [pnt, jac] = nrbdeval (crv, dcrv, tt)
%     [pnt, jac] = nrbdeval (srf, dsrf, {tu tv})
%     [pnt, jac] = nrbdeval (vol, dvol, {tu tv tw})
%     [pnt, jac, hess] = nrbdeval (crv, dcrv, dcrv2, tt)
%     [pnt, jac, hess] = nrbdeval (srf, dsrf, dsrf2, {tu tv})
%     [pnt, jac, hess] = nrbdeval (vol, dvol, {tu tv tw})
%
% INPUTS:
%
%   crv,   srf,   vol   - original NURBS curve, surface or volume.
%   dcrv,  dsrf,  dvol  - NURBS derivative representation of crv, srf 
%                          or vol (see nrbderiv2)
%   dcrv2, dsrf2, dvol2 - NURBS second derivative representation of crv,
%                          srf or vol (see nrbderiv2)
%   tt     - parametric evaluation points
%            If the nurbs is a surface or a volume then tt is a cell
%            {tu, tv} or {tu, tv, tw} are the parametric coordinates
%
% OUTPUT:
%
%   pnt  - evaluated points.
%   jac  - evaluated first derivatives (Jacobian).
%   hess - evaluated second derivatives (Hessian).
%
% Copyright (C) 2000 Mark Spink 
% Copyright (C) 2010 Carlo de Falco
% Copyright (C) 2010, 2011 Rafael Vazquez
%
%    This program is free software: you can redistribute it and/or modify
%    it under the terms of the GNU General Public License as published by
%    the Free Software Foundation, either version 3 of the License, or
%    (at your option) any later version.

%    This program is distributed in the hope that it will be useful,
%    but WITHOUT ANY WARRANTY; without even the implied warranty of
%    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
%    GNU General Public License for more details.
%
%    You should have received a copy of the GNU General Public License
%    along with this program.  If not, see <http://www.gnu.org/licenses/>.

if (nargin == 3)
  tt = varargin{1};
elseif (nargin == 4)
  dnurbs2 = varargin{1};
  tt = varargin{2};
else 
  error ('nrbrdeval: wrong number of input parameters')
end

if (~isstruct(nurbs))
  error('NURBS representation is not structure!');
end

if (~strcmp(nurbs.form,'B-NURBS'))
  error('Not a recognised NURBS representation');
end

[cp,cw] = nrbeval(nurbs, tt);

if (iscell(nurbs.knots))
  if (size(nurbs.knots,2) == 3)
  % NURBS structure represents a volume
    temp = cw(ones(3,1),:,:,:);
    pnt = cp./temp;
  
    [cup,cuw] = nrbeval (dnurbs{1}, tt);
    tempu = cuw(ones(3,1),:,:,:);
    jac{1} = (cup-tempu.*pnt)./temp;
  
    [cvp,cvw] = nrbeval (dnurbs{2}, tt);
    tempv = cvw(ones(3,1),:,:,:);
    jac{2} = (cvp-tempv.*pnt)./temp;

    [cwp,cww] = nrbeval (dnurbs{3}, tt);
    tempw = cww(ones(3,1),:,:,:);
    jac{3} = (cwp-tempw.*pnt)./temp;

% second derivatives
    if (nargout == 3)
      if (exist ('dnurbs2'))
        [cuup, cuuw] = nrbeval (dnurbs2{1,1}, tt);
        tempuu = cuuw(ones(3,1),:,:,:);
        hess{1,1} = (cuup - (2*cup.*tempu + cp.*tempuu)./temp + 2*cp.*tempu.^2./temp.^2)./temp;
        clear cuup cuuw tempuu

        [cvvp, cvvw] = nrbeval (dnurbs2{2,2}, tt);
        tempvv = cvvw(ones(3,1),:,:,:);
        hess{2,2} = (cvvp - (2*cvp.*tempv + cp.*tempvv)./temp + 2*cp.*tempv.^2./temp.^2)./temp;
        clear cvvp cvvw tempvv

        [cwwp, cwww] = nrbeval (dnurbs2{3,3}, tt);
        tempww = cwww(ones(3,1),:,:,:);
        hess{3,3} = (cwwp - (2*cwp.*tempw + cp.*tempww)./temp + 2*cp.*tempw.^2./temp.^2)./temp;
        clear cwwp cwww tempww

        [cuvp, cuvw] = nrbeval (dnurbs2{1,2}, tt);
        tempuv = cuvw(ones(3,1),:,:,:);
        hess{1,2} = (cuvp - (cup.*tempv + cvp.*tempu + cp.*tempuv)./temp + 2*cp.*tempu.*tempv./temp.^2)./temp;
        hess{2,1} = hess{1,2};
        clear cuvp cuvw tempuv

        [cuwp, cuww] = nrbeval (dnurbs2{1,3}, tt);
        tempuw = cuww(ones(3,1),:,:,:);
        hess{1,3} = (cuwp - (cup.*tempw + cwp.*tempu + cp.*tempuw)./temp + 2*cp.*tempu.*tempw./temp.^2)./temp;
        hess{3,1} = hess{1,3};
        clear cuwp cuww tempuw

        [cvwp, cvww] = nrbeval (dnurbs2{2,3}, tt);
        tempvw = cvww(ones(3,1),:,:,:);
        hess{2,3} = (cvwp - (cvp.*tempw + cwp.*tempv + cp.*tempvw)./temp + 2*cp.*tempv.*tempw./temp.^2)./temp;
        hess{3,2} = hess{2,3};
        clear cvwp cvww tempvw
      else
        warning ('nrbdeval: dnurbs2 missing. The second derivative is not computed');
        hess = [];
      end
    end

  elseif (size(nurbs.knots,2) == 2)
  % NURBS structure represents a surface
    temp = cw(ones(3,1),:,:);
    pnt = cp./temp;
  
    [cup,cuw] = nrbeval (dnurbs{1}, tt);
    tempu = cuw(ones(3,1),:,:);
    jac{1} = (cup-tempu.*pnt)./temp;
  
    [cvp,cvw] = nrbeval (dnurbs{2}, tt);
    tempv = cvw(ones(3,1),:,:);
    jac{2} = (cvp-tempv.*pnt)./temp;

% second derivatives
    if (nargout == 3) 
      if (exist ('dnurbs2'))
        [cuup, cuuw] = nrbeval (dnurbs2{1,1}, tt);
        tempuu = cuuw(ones(3,1),:,:);
        hess{1,1} = (cuup - (2*cup.*tempu + cp.*tempuu)./temp + 2*cp.*tempu.^2./temp.^2)./temp;

        [cvvp, cvvw] = nrbeval (dnurbs2{2,2}, tt);
        tempvv = cvvw(ones(3,1),:,:);
        hess{2,2} = (cvvp - (2*cvp.*tempv + cp.*tempvv)./temp + 2*cp.*tempv.^2./temp.^2)./temp;

        [cuvp, cuvw] = nrbeval (dnurbs2{1,2}, tt);
        tempuv = cuvw(ones(3,1),:,:);
        hess{1,2} = (cuvp - (cup.*tempv + cvp.*tempu + cp.*tempuv)./temp + 2*cp.*tempu.*tempv./temp.^2)./temp;
        hess{2,1} = hess{1,2};
      else
        warning ('nrbdeval: dnurbs2 missing. The second derivative is not computed');
        hess = [];
      end
    end

  end
else

  % NURBS is a curve
  temp = cw(ones(3,1),:);
  pnt = cp./temp;
  
  % first derivative
  [cup,cuw] = nrbeval (dnurbs,tt);
  temp1 = cuw(ones(3,1),:);
  jac = (cup-temp1.*pnt)./temp;
  if (iscell (tt))
    jac = {jac};
  end

  % second derivative
  if (nargout == 3 && exist ('dnurbs2'))
    [cuup,cuuw] = nrbeval (dnurbs2, tt);
    temp2 = cuuw(ones(3,1),:);
    hess = (cuup - (2*cup.*temp1 + cp.*temp2)./temp + 2*cp.*temp1.^2./temp.^2)./temp;
    if (iscell (tt))
      hess = {hess};
    end
  end
  
end

varargout{1} = pnt;
varargout{2} = jac;
if (nargout == 3)
  varargout{3} = hess;
end

end

%!demo
%! crv = nrbtestcrv;
%! nrbplot(crv,48);
%! title('First derivatives along a test curve.');
%! 
%! tt = linspace(0.0,1.0,9);
%! 
%! dcrv = nrbderiv(crv);
%! 
%! [p1, dp] = nrbdeval(crv,dcrv,tt);
%! 
%! p2 = vecnorm(dp);
%! 
%! hold on;
%! plot(p1(1,:),p1(2,:),'ro');
%! h = quiver(p1(1,:),p1(2,:),p2(1,:),p2(2,:),0);
%! set(h,'Color','black');
%! hold off;

%!demo
%! srf = nrbtestsrf;
%! p = nrbeval(srf,{linspace(0.0,1.0,20) linspace(0.0,1.0,20)});
%! h = surf(squeeze(p(1,:,:)),squeeze(p(2,:,:)),squeeze(p(3,:,:)));
%! set(h,'FaceColor','blue','EdgeColor','blue');
%! title('First derivatives over a test surface.');
%!
%! npts = 5;
%! tt = linspace(0.0,1.0,npts);
%! dsrf = nrbderiv(srf);
%! 
%! [p1, dp] = nrbdeval(srf, dsrf, {tt, tt});
%! 
%! up2 = vecnorm(dp{1});
%! vp2 = vecnorm(dp{2});
%! 
%! hold on;
%! plot3(p1(1,:),p1(2,:),p1(3,:),'ro');
%! h1 = quiver3(p1(1,:),p1(2,:),p1(3,:),up2(1,:),up2(2,:),up2(3,:));
%! h2 = quiver3(p1(1,:),p1(2,:),p1(3,:),vp2(1,:),vp2(2,:),vp2(3,:));
%! set(h1,'Color','black');
%! set(h2,'Color','black');
%! 
%! hold off;

%!test
%! knots{1} = [0 0 0 1 1 1];
%! knots{2} = [0 0 0 .5 1 1 1];
%! knots{3} = [0 0 0 0 1 1 1 1];
%! cx = [0 0.5 1]; nx = length(cx);
%! cy = [0 0.25 0.75 1]; ny = length(cy);
%! cz = [0 1/3 2/3 1]; nz = length(cz);
%! coefs(1,:,:,:) = repmat(reshape(cx,nx,1,1),[1 ny nz]);
%! coefs(2,:,:,:) = repmat(reshape(cy,1,ny,1),[nx 1 nz]);
%! coefs(3,:,:,:) = repmat(reshape(cz,1,1,nz),[nx ny 1]);
%! coefs(4,:,:,:) = 1;
%! nurbs = nrbmak(coefs, knots);
%! x = rand(5,1); y = rand(5,1); z = rand(5,1);
%! tt = [x y z]';
%! ders = nrbderiv(nurbs);
%! [points,jac] = nrbdeval(nurbs,ders,tt);
%! assert(points,tt,1e-10)
%! assert(jac{1}(1,:,:),ones(size(jac{1}(1,:,:))),1e-12)
%! assert(jac{2}(2,:,:),ones(size(jac{2}(2,:,:))),1e-12)
%! assert(jac{3}(3,:,:),ones(size(jac{3}(3,:,:))),1e-12)
%! 
%!test
%! knots{1} = [0 0 0 1 1 1];
%! knots{2} = [0 0 0 0 1 1 1 1];
%! knots{3} = [0 0 0 1 1 1];
%! cx = [0 0 1]; nx = length(cx);
%! cy = [0 0 0 1]; ny = length(cy);
%! cz = [0 0.5 1]; nz = length(cz);
%! coefs(1,:,:,:) = repmat(reshape(cx,nx,1,1),[1 ny nz]);
%! coefs(2,:,:,:) = repmat(reshape(cy,1,ny,1),[nx 1 nz]);
%! coefs(3,:,:,:) = repmat(reshape(cz,1,1,nz),[nx ny 1]);
%! coefs(4,:,:,:) = 1;
%! coefs = coefs([2 1 3 4],:,:,:);
%! nurbs = nrbmak(coefs, knots);
%! x = rand(5,1); y = rand(5,1); z = rand(5,1);
%! tt = [x y z]';
%! dnurbs = nrbderiv(nurbs);
%! [points, jac] = nrbdeval(nurbs,dnurbs,tt);
%! assert(points,[y.^3 x.^2 z]',1e-10);
%! assert(jac{2}(1,:,:),3*y'.^2,1e-12)
%! assert(jac{1}(2,:,:),2*x',1e-12)
%! assert(jac{3}(3,:,:),ones(size(z')),1e-12)