/usr/share/octave/packages/nurbs-1.3.10/nrbmak.m is in octave-nurbs 1.3.10-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 | function nurbs = nrbmak(coefs,knots)
%
% NRBMAK: Construct the NURBS structure given the control points
% and the knots.
%
% Calling Sequence:
%
% nurbs = nrbmak(cntrl,knots);
%
% INPUT:
%
% cntrl : Control points, these can be either Cartesian or
% homogeneous coordinates.
%
% For a curve the control points are represented by a
% matrix of size (dim,nu), for a surface a multidimensional
% array of size (dim,nu,nv), for a volume a multidimensional array
% of size (dim,nu,nv,nw). Where nu is number of points along
% the parametric U direction, nv the number of points along
% the V direction and nw the number of points along the W direction.
% dim is the dimension. Valid options
% are
% 2 .... (x,y) 2D Cartesian coordinates
% 3 .... (x,y,z) 3D Cartesian coordinates
% 4 .... (wx,wy,wz,w) 4D homogeneous coordinates
%
% knots : Non-decreasing knot sequence spanning the interval
% [0.0,1.0]. It's assumed that the geometric entities
% are clamped to the start and end control points by knot
% multiplicities equal to the spline order (open knot vector).
% For curve knots form a vector and for surfaces (volumes)
% the knots are stored by two (three) vectors for U and V (and W)
% in a cell structure {uknots vknots} ({uknots vknots wknots}).
%
% OUTPUT:
%
% nurbs : Data structure for representing a NURBS entity
%
% NURBS Structure:
%
% Both curves and surfaces are represented by a structure that is
% compatible with the Spline Toolbox from Mathworks
%
% nurbs.form .... Type name 'B-NURBS'
% nurbs.dim .... Dimension of the control points
% nurbs.number .... Number of Control points
% nurbs.coefs .... Control Points
% nurbs.order .... Order of the spline
% nurbs.knots .... Knot sequence
%
% Note: the control points are always converted and stored within the
% NURBS structure as 4D homogeneous coordinates. A curve is always stored
% along the U direction, and the vknots element is an empty matrix. For
% a surface the spline order is a vector [du,dv] containing the order
% along the U and V directions respectively. For a volume the order is
% a vector [du dv dw]. Recall that order = degree + 1.
%
% Description:
%
% This function is used as a convenient means of constructing the NURBS
% data structure. Many of the other functions in the toolbox rely on the
% NURBS structure been correctly defined as shown above. The nrbmak not
% only constructs the proper structure, but also checks for consistency.
% The user is still free to build his own structure, in fact a few
% functions in the toolbox do this for convenience.
%
% Examples:
%
% Construct a 2D line from (0.0,0.0) to (1.5,3.0).
% For a straight line a spline of order 2 is required.
% Note that the knot sequence has a multiplicity of 2 at the
% start (0.0,0.0) and end (1.0 1.0) in order to clamp the ends.
%
% line = nrbmak([0.0 1.5; 0.0 3.0],[0.0 0.0 1.0 1.0]);
% nrbplot(line, 2);
%
% Construct a surface in the x-y plane i.e
%
% ^ (0.0,1.0) ------------ (1.0,1.0)
% | | |
% | V | |
% | | Surface |
% | | |
% | | |
% | (0.0,0.0) ------------ (1.0,0.0)
% |
% |------------------------------------>
% U
%
% coefs = cat(3,[0 0; 0 1],[1 1; 0 1]);
% knots = {[0 0 1 1] [0 0 1 1]}
% plane = nrbmak(coefs,knots);
% nrbplot(plane, [2 2]);
%
% Copyright (C) 2000 Mark Spink, 2010 Rafael Vazquez
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
nurbs = struct ('form', 'B-NURBS', 'dim', 4, 'number', [], 'coefs', [], ...
'knots', [], 'order', []);
nurbs.form = 'B-NURBS';
nurbs.dim = 4;
np = size(coefs);
dim = np(1);
if iscell(knots)
if size(knots,2) == 3
if (numel(np) == 3)
np(4) = 1;
elseif (numel(np)==2)
np(3:4) = 1;
end
% constructing a volume
nurbs.number = np(2:4);
if (dim < 4)
nurbs.coefs = repmat([0.0 0.0 0.0 1.0]',[1 np(2:4)]);
nurbs.coefs(1:dim,:,:,:) = coefs;
else
nurbs.coefs = coefs;
end
uorder = size(knots{1},2)-np(2);
vorder = size(knots{2},2)-np(3);
worder = size(knots{3},2)-np(4);
uknots = sort(knots{1});
vknots = sort(knots{2});
wknots = sort(knots{3});
% uknots = (uknots-uknots(uorder))/(uknots(end-uorder+1)-uknots(uorder));
% vknots = (vknots-vknots(vorder))/(vknots(end-vorder+1)-vknots(vorder));
% wknots = (wknots-wknots(worder))/(wknots(end-worder+1)-wknots(worder));
nurbs.knots = {uknots vknots wknots};
nurbs.order = [uorder vorder worder];
elseif size(knots,2) == 2
if (numel(np)==2); np(3) = 1; end
% constructing a surface
nurbs.number = np(2:3);
if (dim < 4)
nurbs.coefs = repmat([0.0 0.0 0.0 1.0]',[1 np(2:3)]);
nurbs.coefs(1:dim,:,:) = coefs;
else
nurbs.coefs = coefs;
end
uorder = size(knots{1},2)-np(2);
vorder = size(knots{2},2)-np(3);
uknots = sort(knots{1});
vknots = sort(knots{2});
% uknots = (uknots-uknots(uorder))/(uknots(end-uorder+1)-uknots(uorder));
% vknots = (vknots-vknots(vorder))/(vknots(end-vorder+1)-vknots(vorder));
nurbs.knots = {uknots vknots};
nurbs.order = [uorder vorder];
end
else
% constructing a curve
nurbs.number = np(2);
if (dim < 4)
nurbs.coefs = repmat([0.0 0.0 0.0 1.0]',[1 np(2)]);
nurbs.coefs(1:dim,:) = coefs;
else
nurbs.coefs = coefs;
end
order = size (knots,2) - np(2);
nurbs.order = order;
knots = sort(knots);
% nurbs.knots = (knots-knots(order))/(knots(end-order+1)-knots(order));
nurbs.knots = knots;
end
end
%!demo
%! pnts = [0.5 1.5 4.5 3.0 7.5 6.0 8.5;
%! 3.0 5.5 5.5 1.5 1.5 4.0 4.5;
%! 0.0 0.0 0.0 0.0 0.0 0.0 0.0];
%! crv = nrbmak(pnts,[0 0 0 1/4 1/2 3/4 3/4 1 1 1]);
%! nrbplot(crv,100)
%! title('Test curve')
%! hold off
%!demo
%! pnts = [0.5 1.5 4.5 3.0 7.5 6.0 8.5;
%! 3.0 5.5 5.5 1.5 1.5 4.0 4.5;
%! 0.0 0.0 0.0 0.0 0.0 0.0 0.0];
%! crv = nrbmak(pnts,[0 0 0 0.1 1/2 3/4 3/4 1 1 1]);
%! nrbplot(crv,100)
%! title('Test curve with a slight variation of the knot vector')
%! hold off
%!demo
%! pnts = zeros(3,5,5);
%! pnts(:,:,1) = [ 0.0 3.0 5.0 8.0 10.0;
%! 0.0 0.0 0.0 0.0 0.0;
%! 2.0 2.0 7.0 7.0 8.0];
%! pnts(:,:,2) = [ 0.0 3.0 5.0 8.0 10.0;
%! 3.0 3.0 3.0 3.0 3.0;
%! 0.0 0.0 5.0 5.0 7.0];
%! pnts(:,:,3) = [ 0.0 3.0 5.0 8.0 10.0;
%! 5.0 5.0 5.0 5.0 5.0;
%! 0.0 0.0 5.0 5.0 7.0];
%! pnts(:,:,4) = [ 0.0 3.0 5.0 8.0 10.0;
%! 8.0 8.0 8.0 8.0 8.0;
%! 5.0 5.0 8.0 8.0 10.0];
%! pnts(:,:,5) = [ 0.0 3.0 5.0 8.0 10.0;
%! 10.0 10.0 10.0 10.0 10.0;
%! 5.0 5.0 8.0 8.0 10.0];
%!
%! knots{1} = [0 0 0 1/3 2/3 1 1 1];
%! knots{2} = [0 0 0 1/3 2/3 1 1 1];
%!
%! srf = nrbmak(pnts,knots);
%! nrbplot(srf,[20 20])
%! title('Test surface')
%! hold off
%!demo
%! coefs =[ 6.0 0.0 6.0 1;
%! -5.5 0.5 5.5 1;
%! -5.0 1.0 -5.0 1;
%! 4.5 1.5 -4.5 1;
%! 4.0 2.0 4.0 1;
%! -3.5 2.5 3.5 1;
%! -3.0 3.0 -3.0 1;
%! 2.5 3.5 -2.5 1;
%! 2.0 4.0 2.0 1;
%! -1.5 4.5 1.5 1;
%! -1.0 5.0 -1.0 1;
%! 0.5 5.5 -0.5 1;
%! 0.0 6.0 0.0 1]';
%! knots = [0 0 0 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1 1 1 1];
%!
%! crv = nrbmak(coefs,knots);
%! nrbplot(crv,100);
%! grid on;
%! title('3D helical curve.');
%! hold off
|