/usr/share/octave/packages/nurbs-1.3.10/nrbplot.m is in octave-nurbs 1.3.10-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 | function nrbplot (nurbs, subd, varargin)
%
% NRBPLOT: Plot a NURBS curve or surface, or the boundary of a NURBS volume.
%
% Calling Sequence:
%
% nrbplot (nrb, subd)
% nrbplot (nrb, subd, p, v)
%
% INPUT:
%
% nrb : NURBS curve, surface or volume, see nrbmak.
%
% npnts : Number of evaluation points, for a surface or volume, a row
% vector with the number of points along each direction.
%
% [p,v] : property/value options
%
% Valid property/value pairs include:
%
% Property Value/{Default}
% -----------------------------------
% light {off} | on
% colormap {'copper'}
%
% Example:
%
% Plot the test surface with 20 points along the U direction
% and 30 along the V direction
%
% nrbplot(nrbtestsrf, [20 30])
%
% Copyright (C) 2000 Mark Spink
% Copyright (C) 2010 Carlo de Falco, Rafael Vazquez
% Copyright (C) 2012 Rafael Vazquez
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
nargs = nargin;
if nargs < 2
error ('Need a NURBS to plot and the number of subdivisions!');
elseif rem(nargs+2,2)
error ('Param value pairs expected')
end
% Default values
light='off';
cmap='summer';
% Recover Param/Value pairs from argument list
for i=1:2:nargs-2
Param = varargin{i};
Value = varargin{i+1};
if (~ischar (Param))
error ('Parameter must be a string')
elseif size(Param,1)~=1
error ('Parameter must be a non-empty single row string.')
end
switch lower (Param)
case 'light'
light = lower (Value);
if (~ischar (light))
error ('light must be a string.')
elseif ~(strcmp(light,'off') | strcmp(light,'on'))
error ('light must be off | on')
end
case 'colormap'
if ischar (Value)
cmap = lower(Value);
elseif size (Value, 2) ~= 3
error ('colormap must be a string or have exactly three columns.')
else
cmap=Value;
end
otherwise
error ('Unknown parameter: %s', Param)
end
end
colormap (cmap);
% convert the number of subdivisions in number of points
subd = subd+1;
% plot the curve or surface
if (iscell (nurbs.knots))
if (size (nurbs.knots,2) == 2) % plot a NURBS surface
knt = nurbs.knots;
order = nurbs.order;
p = nrbeval (nurbs, {linspace(knt{1}(order(1)),knt{1}(end-order(1)+1),subd(1)) ...
linspace(knt{2}(order(2)),knt{2}(end-order(2)+1),subd(2))});
if (strcmp (light,'on'))
% light surface
surfl (squeeze(p(1,:,:)), squeeze(p(2,:,:)), squeeze(p(3,:,:)));
shading interp;
else
surf (squeeze (p(1,:,:)), squeeze (p(2,:,:)), squeeze (p(3,:,:)));
shading faceted;
end
elseif (size (nurbs.knots,2) == 3) % plot the boundaries of a NURBS volume
bnd = nrbextract (nurbs);
hold_flag = ishold;
nrbplot (bnd(1), subd(2:3), varargin{:});
hold on
nrbplot (bnd(2), subd(2:3), varargin{:});
nrbplot (bnd(3), subd([1 3]), varargin{:});
nrbplot (bnd(4), subd([1 3]), varargin{:});
nrbplot (bnd(5), subd(1:2), varargin{:});
nrbplot (bnd(6), subd(1:2), varargin{:});
if (~hold_flag)
hold off
end
else
error ('nrbplot: some argument is not correct')
end
else
% plot a NURBS curve
order = nurbs.order;
p = nrbeval (nurbs, linspace (nurbs.knots(order), nurbs.knots(end-order+1), subd));
if (any (nurbs.coefs(3,:)))
% 3D curve
plot3 (p(1,:), p(2,:), p(3,:));
grid on;
else
% 2D curve
plot (p(1,:), p(2,:));
end
end
axis equal;
end
% plot the control surface
% hold on;
% mesh(squeeze(pnts(1,:,:)),squeeze(pnts(2,:,:)),squeeze(pnts(3,:,:)));
% hold off;
%!demo
%! crv = nrbtestcrv;
%! nrbplot(crv,100)
%! title('Test curve')
%! hold off
%!demo
%! coefs = [0.0 7.5 15.0 25.0 35.0 30.0 27.5 30.0;
%! 0.0 2.5 0.0 -5.0 5.0 15.0 22.5 30.0];
%! knots = [0.0 0.0 0.0 1/6 1/3 1/2 2/3 5/6 1.0 1.0 1.0];
%!
%! geom = [
%! nrbmak(coefs,knots)
%! nrbline([30.0 30.0],[20.0 30.0])
%! nrbline([20.0 30.0],[20.0 20.0])
%! nrbcirc(10.0,[10.0 20.0],1.5*pi,0.0)
%! nrbline([10.0 10.0],[0.0 10.0])
%! nrbline([0.0 10.0],[0.0 0.0])
%! nrbcirc(5.0,[22.5 7.5])
%! ];
%!
%! ng = length(geom);
%! for i = 1:ng
%! nrbplot(geom(i),500);
%! hold on;
%! end
%! hold off;
%! axis equal;
%! title('2D Geometry formed by a series of NURBS curves');
%!demo
%! sphere = nrbrevolve(nrbcirc(1,[],0.0,pi),[0.0 0.0 0.0],[1.0 0.0 0.0]);
%! nrbplot(sphere,[40 40],'light','on');
%! title('Ball and torus - surface construction by revolution');
%! hold on;
%! torus = nrbrevolve(nrbcirc(0.2,[0.9 1.0]),[0.0 0.0 0.0],[1.0 0.0 0.0]);
%! nrbplot(torus,[40 40],'light','on');
%! hold off
%!demo
%! knots = {[0 0 0 1/2 1 1 1] [0 0 0 1 1 1]...
%! [0 0 0 1/6 2/6 1/2 1/2 4/6 5/6 1 1 1]};
%!
%! coefs = [-1.0000 -0.9734 -0.7071 1.4290 1.0000 3.4172
%! 0 2.4172 0 0.0148 -2.0000 -1.9734
%! 0 2.0000 4.9623 9.4508 4.0000 2.0000
%! 1.0000 1.0000 0.7071 1.0000 1.0000 1.0000
%! -0.8536 0 -0.6036 1.9571 1.2071 3.5000
%! 0.3536 2.5000 0.2500 0.5429 -1.7071 -1.0000
%! 0 2.0000 4.4900 8.5444 3.4142 2.0000
%! 0.8536 1.0000 0.6036 1.0000 0.8536 1.0000
%! -0.3536 -4.0000 -0.2500 -1.2929 1.7071 1.0000
%! 0.8536 0 0.6036 -2.7071 -1.2071 -5.0000
%! 0 2.0000 4.4900 10.0711 3.4142 2.0000
%! 0.8536 1.0000 0.6036 1.0000 0.8536 1.0000
%! 0 -4.0000 0 0.7071 2.0000 5.0000
%! 1.0000 4.0000 0.7071 -0.7071 -1.0000 -5.0000
%! 0 2.0000 4.9623 14.4142 4.0000 2.0000
%! 1.0000 1.0000 0.7071 1.0000 1.0000 1.0000
%! -2.5000 -4.0000 -1.7678 0.7071 1.0000 5.0000
%! 0 4.0000 0 -0.7071 -3.5000 -5.0000
%! 0 2.0000 6.0418 14.4142 4.0000 2.0000
%! 1.0000 1.0000 0.7071 1.0000 1.0000 1.0000
%! -2.4379 0 -1.7238 2.7071 1.9527 5.0000
%! 0.9527 4.0000 0.6737 1.2929 -3.4379 -1.0000
%! 0 2.0000 6.6827 10.0711 4.0000 2.0000
%! 1.0000 1.0000 0.7071 1.0000 1.0000 1.0000
%! -0.9734 -1.0000 -0.6883 0.7071 3.4172 1.0000
%! 2.4172 0 1.7092 -1.4142 -1.9734 -2.0000
%! 0 4.0000 6.6827 4.9623 4.0000 0
%! 1.0000 1.0000 0.7071 0.7071 1.0000 1.0000
%! 0 -0.8536 0 0.8536 3.5000 1.2071
%! 2.5000 0.3536 1.7678 -1.2071 -1.0000 -1.7071
%! 0 3.4142 6.0418 4.4900 4.0000 0
%! 1.0000 0.8536 0.7071 0.6036 1.0000 0.8536
%! -4.0000 -0.3536 -2.8284 1.2071 1.0000 1.7071
%! 0 0.8536 0 -0.8536 -5.0000 -1.2071
%! 0 3.4142 7.1213 4.4900 4.0000 0
%! 1.0000 0.8536 0.7071 0.6036 1.0000 0.8536
%! -4.0000 0 -2.8284 1.4142 5.0000 2.0000
%! 4.0000 1.0000 2.8284 -0.7071 -5.0000 -1.0000
%! 0 4.0000 10.1924 4.9623 4.0000 0
%! 1.0000 1.0000 0.7071 0.7071 1.0000 1.0000
%! -4.0000 -2.5000 -2.8284 0.7071 5.0000 1.0000
%! 4.0000 0 2.8284 -2.4749 -5.0000 -3.5000
%! 0 4.0000 10.1924 6.0418 4.0000 0
%! 1.0000 1.0000 0.7071 0.7071 1.0000 1.0000
%! 0 -2.4379 0 1.3808 5.0000 1.9527
%! 4.0000 0.9527 2.8284 -2.4309 -1.0000 -3.4379
%! 0 4.0000 7.1213 6.6827 4.0000 0
%! 1.0000 1.0000 0.7071 0.7071 1.0000 1.0000
%! -1.0000 -0.9734 0.2071 2.4163 1.0000 3.4172
%! 0 2.4172 -1.2071 -1.3954 -2.0000 -1.9734
%! 2.0000 4.0000 7.0178 6.6827 2.0000 0
%! 1.0000 1.0000 1.0000 0.7071 1.0000 1.0000
%! -0.8536 0 0.3536 2.4749 1.2071 3.5000
%! 0.3536 2.5000 -0.8536 -0.7071 -1.7071 -1.0000
%! 1.7071 4.0000 6.3498 6.0418 1.7071 0
%! 0.8536 1.0000 0.8536 0.7071 0.8536 1.0000
%! -0.3536 -4.0000 0.8536 0.7071 1.7071 1.0000
%! 0.8536 0 -0.3536 -3.5355 -1.2071 -5.0000
%! 1.7071 4.0000 6.3498 7.1213 1.7071 0
%! 0.8536 1.0000 0.8536 0.7071 0.8536 1.0000
%! 0 -4.0000 1.2071 3.5355 2.0000 5.0000
%! 1.0000 4.0000 -0.2071 -3.5355 -1.0000 -5.0000
%! 2.0000 4.0000 7.0178 10.1924 2.0000 0
%! 1.0000 1.0000 1.0000 0.7071 1.0000 1.0000
%! -2.5000 -4.0000 -0.5429 3.5355 1.0000 5.0000
%! 0 4.0000 -1.9571 -3.5355 -3.5000 -5.0000
%! 2.0000 4.0000 8.5444 10.1924 2.0000 0
%! 1.0000 1.0000 1.0000 0.7071 1.0000 1.0000
%! -2.4379 0 -0.0355 3.5355 1.9527 5.0000
%! 0.9527 4.0000 -1.4497 -0.7071 -3.4379 -1.0000
%! 2.0000 4.0000 9.4508 7.1213 2.0000 0
%! 1.0000 1.0000 1.0000 0.7071 1.0000 1.0000];
%! coefs = reshape (coefs, 4, 4, 3, 9);
%! horseshoe = nrbmak (coefs, knots);
%! nrbplot (horseshoe, [6, 6, 50], 'light', 'on');
|