This file is indexed.

/usr/share/octave/packages/optim-1.4.1/LinearRegression.m is in octave-optim 1.4.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
## Copyright (C) 2007-2013 Andreas Stahel <Andreas.Stahel@bfh.ch>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.


## -*- texinfo -*-
##@deftypefn {Function File} {[@var{p},@var{e_var},@var{r},@var{p_var},@var{y_var}] =} LinearRegression (@var{F},@var{y})
##@deftypefnx {Function File} {[@var{p},@var{e_var},@var{r},@var{p_var},@var{y_var}] =} LinearRegression (@var{F},@var{y},@var{w})
##
##
## general linear regression
##
## determine the parameters p_j  (j=1,2,...,m) such that the function
## f(x) = sum_(i=1,...,m) p_j*f_j(x) is the best fit to the given values y_i = f(x_i)
##
## parameters:  
## @itemize
## @item @var{F} is an n*m matrix with the values of the basis functions at
## the support points. In column j give the values of f_j at the points
## x_i  (i=1,2,...,n)
## @item @var{y} is a column vector of length n with the given values
## @item @var{w} is n column vector of of length n vector with the weights of data points
##@end itemize
##
## return values:
## @itemize
## @item @var{p} is the vector of length m with the estimated values of the parameters
## @item @var{e_var} is the estimated variance of the difference between fitted and measured values
## @item @var{r} is the weighted norm of the residual
## @item @var{p_var} is the estimated variance of the parameters p_j
## @item @var{y_var} is the estimated variance of the dependend variables
##@end itemize
##
##  Caution:  
##  do NOT request @var{y_var} for large data sets, as a n by n matrix is
##  generated
##
## @c Will be cut out in optims info file and replaced with the same
## @c refernces explicitely there, since references to core Octave
## @c functions are not automatically transformed from here to there.
## @c BEGIN_CUT_TEXINFO
## @seealso{regress,leasqr,nonlin_curvefit,polyfit,wpolyfit,expfit}
## @c END_CUT_TEXINFO
##  @end deftypefn

function [p,e_var,r,p_var,y_var] = LinearRegression (F,y,weight)

  if (nargin < 2 || nargin >= 4)
    usage ('wrong number of arguments in [p,e_var,r,p_var,y_var] = LinearRegression(F,y)');
  endif

  [rF, cF] = size (F);
  [ry, cy] = size (y);
  
  if (rF != ry || cy > 1)
    error ('LinearRegression: incorrect matrix dimensions');
  endif

  if (nargin == 2)  % set uniform weights if not provided
    weight = ones (size (y));
  endif

  wF = diag (weight) * F;  % this now efficent with the diagonal matrix
  %wF = F;
  %for j = 1:cF
  %  wF(:,j) = weight.*F(:,j);
  %end

  [Q,R] = qr (wF,0);                     % estimate the values of the parameters
  p     = R \ (Q' * (weight.*y));

  # Compute the residual vector and its weighted norm
  residual = F * p - y;
  r        = norm (weight .* residual);
  # Variance of the weighted residuals
  e_var    = sum ((residual.^2) .* (weight.^4)) / (rF-cF);  

  # Compute variance of parameters, only if requested
  if nargout > 3

    M = inv (R) * Q' * diag(weight);

    # compute variance of the dependent variable, only if requested
    if nargout > 4  
     %% WARNING the nonsparse matrix M2 is of size rF by rF, rF = number of data points
      M2    = F * M;
      M2    = M2 .* M2;   % square each entry in the matrix M2
      y_var = e_var ./ (weight.^4) + M2 * (e_var./(weight.^4));  % variance of y values
    endif
    
    M     = M .* M;                  % square each entry in the matrix M
    p_var = M * (e_var./(weight.^4));  % variance of the parameters
    
  endif

endfunction

%!demo
%! n = 100;
%! x = sort(rand(n,1)*5-1);
%! y = 1+0.05*x + 0.1*randn(size(x));
%! F = [ones(n,1),x(:)];
%! [p,e_var,r,p_var,y_var] = LinearRegression(F,y);
%! yFit = F*p;
%! figure()
%! plot(x,y,'+b',x,yFit,'-g',x,yFit+1.96*sqrt(y_var),'--r',x,yFit-1.96*sqrt(y_var),'--r')
%! title('straight line by linear regression')
%! legend('data','fit','+/-95%')
%! grid on

%!demo
%! n = 100;
%! x = sort(rand(n,1)*5-1);
%! y = 1+0.5*sin(x) + 0.1*randn(size(x));
%! F = [ones(n,1),sin(x(:))];
%! [p,e_var,r,p_var,y_var] = LinearRegression(F,y);
%! yFit = F*p;
%! figure()
%! plot(x,y,'+b',x,yFit,'-g',x,yFit+1.96*sqrt(y_var),'--r',x,yFit-1.96*sqrt(y_var),'--r')
%! title('y = p1 + p2*sin(x) by linear regression')
%! legend('data','fit','+/-95%')
%! grid on