/usr/share/octave/packages/signal-1.3.2/arburg.m is in octave-signal 1.3.2-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 | ## Copyright (C) 2006 Peter V. Lanspeary <pvl@mecheng.adelaide.edu.au>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {[@var{a}, @var{v}, @var{k}] =} arburg (@var{x}, @var{poles})
## @deftypefnx {Function File} {[@var{a}, @var{v}, @var{k}] =} arburg (@var{x}, @var{poles}, @var{criterion})
##
## Calculate coefficients of an autoregressive (AR) model of complex data
## @var{x} using the whitening lattice-filter method of Burg (1968). The
## inverse of the model is a moving-average filter which reduces @var{x} to
## white noise. The power spectrum of the AR model is an estimate of the
## maximum entropy power spectrum of the data. The function @code{ar_psd}
## calculates the power spectrum of the AR model.
##
## ARGUMENTS:
## @itemize
## @item
## @var{x}
## sampled data
## @item
## @var{poles}
## number of poles in the AR model or limit to the number of poles if a
## valid @var{criterion} is provided.
## @item
## @var{criterion}
## model-selection criterion. Limits the number of poles so that spurious
## poles are not added when the whitened data has no more information
## in it (see Kay & Marple, 1981). Recognized values are
## 'AKICc' -- approximate corrected Kullback information criterion (recommended),
## 'KIC' -- Kullback information criterion
## 'AICc' -- corrected Akaike information criterion
## 'AIC' -- Akaike information criterion
## 'FPE' -- final prediction error" criterion
## The default is to NOT use a model-selection criterion
## @end itemize
##
## RETURNED VALUES:
## @itemize
## @item
## @var{a}
## list of (P+1) autoregression coefficients; for data input @math{x(n)} and
## white noise @math{e(n)}, the model is
##
## @example
## @group
## P+1
## x(n) = sqrt(v).e(n) + SUM a(k).x(n-k)
## k=1
## @end group
## @end example
##
## @var{v}
## mean square of residual noise from the whitening operation of the Burg
## lattice filter.
## @item
## @var{k}
## reflection coefficients defining the lattice-filter embodiment of the model
## @end itemize
##
## HINTS:
##
## (1) arburg does not remove the mean from the data. You should remove
## the mean from the data if you want a power spectrum. A non-zero mean
## can produce large errors in a power-spectrum estimate. See
## "help detrend".
## (2) If you don't know what the value of "poles" should be, choose the
## largest (reasonable) value you could want and use the recommended
## value, criterion='AKICc', so that arburg can find it.
## E.g. arburg(x,64,'AKICc')
## The AKICc has the least bias and best resolution of the available
## model-selection criteria.
## (3) Autoregressive and moving-average filters are stored as polynomials
## which, in matlab, are row vectors.
##
## NOTE ON SELECTION CRITERION:
##
## AIC, AICc, KIC and AKICc are based on information theory. They attempt
## to balance the complexity (or length) of the model against how well the
## model fits the data. AIC and KIC are biased estimates of the asymmetric
## and the symmetric Kullback-Leibler divergence respectively. AICc and
## AKICc attempt to correct the bias. See reference [4].
##
##
## REFERENCES:
##
## [1] John Parker Burg (1968)
## "A new analysis technique for time series data",
## NATO advanced study Institute on Signal Processing with Emphasis on
## Underwater Acoustics, Enschede, Netherlands, Aug. 12-23, 1968.
##
## [2] Steven M. Kay and Stanley Lawrence Marple Jr.:
## "Spectrum analysis -- a modern perspective",
## Proceedings of the IEEE, Vol 69, pp 1380-1419, Nov., 1981
##
## [3] William H. Press and Saul A. Teukolsky and William T. Vetterling and
## Brian P. Flannery
## "Numerical recipes in C, The art of scientific computing", 2nd edition,
## Cambridge University Press, 2002 --- Section 13.7.
##
## [4] Abd-Krim Seghouane and Maiza Bekara
## "A small sample model selection criterion based on Kullback's symmetric
## divergence", IEEE Transactions on Signal Processing,
## Vol. 52(12), pp 3314-3323, Dec. 2004
##
## @seealso{ar_psd}
## @end deftypefn
function varargout = arburg( x, poles, criterion )
##
## Check arguments
if ( nargin < 2 )
error( 'arburg(x,poles): Need at least 2 args.' );
elseif ( ~isvector(x) || length(x) < 3 )
error( 'arburg: arg 1 (x) must be vector of length >2.' );
elseif ( ~isscalar(poles) || ~isreal(poles) || fix(poles)~=poles || poles<=0.5)
error( 'arburg: arg 2 (poles) must be positive integer.' );
elseif ( poles >= length(x)-2 )
## lattice-filter algorithm requires "poles<length(x)"
## AKICc and AICc require "length(x)-poles-2">0
error( 'arburg: arg 2 (poles) must be less than length(x)-2.' );
elseif ( nargin>2 && ~isempty(criterion) && ...
(~ischar(criterion) || size(criterion,1)~=1 ) )
error( 'arburg: arg 3 (criterion) must be string.' );
else
##
## Set the model-selection-criterion flags.
## is_AKICc, isa_KIC and is_corrected are short-circuit flags
if ( nargin > 2 && ~isempty(criterion) )
is_AKICc = strcmp(criterion,'AKICc'); # AKICc
isa_KIC = is_AKICc || strcmp(criterion,'KIC'); # KIC or AKICc
is_corrected = is_AKICc || strcmp(criterion,'AICc'); # AKICc or AICc
use_inf_crit = is_corrected || isa_KIC || strcmp(criterion,'AIC');
use_FPE = strcmp(criterion,'FPE');
if ( ~use_inf_crit && ~use_FPE )
error( 'arburg: value of arg 3 (criterion) not recognized' );
endif
else
use_inf_crit = 0;
use_FPE = 0;
endif
##
## f(n) = forward prediction error
## b(n) = backward prediction error
## Storage of f(n) and b(n) is a little tricky. Because f(n) is always
## combined with b(n-1), f(1) and b(N) are never used, and therefore are
## not stored. Not storing unused data makes the calculation of the
## reflection coefficient look much cleaner :)
## N.B. {initial v} = {error for zero-order model} =
## {zero-lag autocorrelation} = E(x*conj(x)) = x*x'/N
## E = expectation operator
N = length(x);
k = [];
if ( size(x,1) > 1 ) # if x is column vector
f = x(2:N);
b = x(1:N-1);
v = real(x'*x) / N;
else # if x is row vector
f = x(2:N).';
b = x(1:N-1).';
v = real(x*x') / N;
endif
## new_crit/old_crit is the mode-selection criterion
new_crit = abs(v);
old_crit = 2 * new_crit;
for p = 1:poles
##
## new reflection coeff = -2* E(f.conj(b)) / ( E(f^2)+E(b(^2) )
last_k= -2 * (b' * f) / ( f' * f + b' * b);
## Levinson-Durbin recursion for residual
new_v = v * ( 1.0 - real(last_k * conj(last_k)) );
if ( p > 1 )
##
## Apply the model-selection criterion and break out of loop if it
## increases (rather than decreases).
## Do it before we update the old model "a" and "v".
##
## * Information Criterion (AKICc, KIC, AICc, AIC)
if ( use_inf_crit )
old_crit = new_crit;
## AKICc = log(new_v)+p/N/(N-p)+(3-(p+2)/N)*(p+1)/(N-p-2);
## KIC = log(new_v)+ 3 *(p+1)/N;
## AICc = log(new_v)+ 2 *(p+1)/(N-p-2);
## AIC = log(new_v)+ 2 *(p+1)/N;
## -- Calculate KIC, AICc & AIC by using is_AKICc, is_KIC and
## is_corrected to "short circuit" the AKICc calculation.
## The extra 4--12 scalar arithmetic ops should be quicker than
## doing if...elseif...elseif...elseif...elseif.
new_crit = log(new_v) + is_AKICc*p/N/(N-p) + ...
(2+isa_KIC-is_AKICc*(p+2)/N) * (p+1) / (N-is_corrected*(p+2));
if ( new_crit > old_crit )
break;
endif
##
## (FPE) Final prediction error
elseif ( use_FPE )
old_crit = new_crit;
new_crit = new_v * (N+p+1)/(N-p-1);
if ( new_crit > old_crit )
break;
endif
endif
## Update model "a" and "v".
## Use Levinson-Durbin recursion formula (for complex data).
a = [ prev_a + last_k .* conj(prev_a(p-1:-1:1)) last_k ];
else # if( p==1 )
a = last_k;
endif
k = [ k; last_k ];
v = new_v;
if ( p < poles )
prev_a = a;
## calculate new prediction errors (by recursion):
## f(p,n) = f(p-1,n) + k * b(p-1,n-1) n=2,3,...n
## b(p,n) = b(p-1,n-1) + conj(k) * f(p-1,n) n=2,3,...n
## remember f(p,1) is not stored, so don't calculate it; make f(p,2)
## the first element in f. b(p,n) isn't calculated either.
nn = N-p;
new_f = f(2:nn) + last_k * b(2:nn);
b = b(1:nn-1) + conj(last_k) * f(1:nn-1);
f = new_f;
endif
endfor
varargout{1} = [1 a];
varargout{2} = v;
if ( nargout>=3 )
varargout{3} = k;
endif
endif
endfunction
|