This file is indexed.

/usr/share/octave/packages/signal-1.3.2/ifht.m is in octave-signal 1.3.2-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
## Copyright (C) 2008 Muthiah Annamalai <muthiah.annamalai@uta.edu>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn {Function File} {@var{m} =} ifht (@var{d}, @var{n}, @var{dim})
## Calculate the inverse Fast Hartley Transform of real input @var{d}.  If
## @var{d} is a matrix, the inverse Hartley transform is calculated along the
## columns by default.  The options @var{n} and @var{dim} are similar to the
## options of FFT function.
##
## The forward and inverse Hartley transforms are the same (except for a
## scale factor of 1/N for the inverse hartley transform), but
## implemented using different functions.
##
## The definition of the forward hartley transform for vector d,
## @math{
## m[K] = 1/N \sum_{i=0}^{N-1} d[i]*(cos[K*2*pi*i/N] + sin[K*2*pi*i/N]), for  0 <= K < N.
## m[K] = 1/N \sum_{i=0}^{N-1} d[i]*CAS[K*i], for  0 <= K < N. }
##
## @example
## ifht(1:4)
## @end example
## @seealso{fht, fft}
## @end deftypefn

function m = ifht( d, n, dim )

  if ( nargin < 1 )
    print_usage();
  endif

  if ( nargin == 3 )
    Y = ifft(d,n,dim);
  elseif ( nargin == 2 )
    Y = ifft(d,n);
  else
    Y = ifft(d);
  endif

  m = real(Y) + imag(Y);

##   -- Traditional --
##   N = length(d);
##   for K = 1:N
##     i = 0:N-1;
##     t = (2*pi*(K-1).*i/N);
##     ker = (cos(t) + sin(t));
##     val = dot(d,ker)./N;
##     m(K) = val;
##   endfor

endfunction

%!assert(ifht(fht(1:4)),[1 2 3 4])