/usr/share/octave/packages/signal-1.3.2/primitive.m is in octave-signal 1.3.2-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 | ## Copyright (C) 2013 - Juan Pablo Carbajal
##
## This progrm is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program. If not, see <http://www.gnu.org/licenses/>.
## Author: Juan Pablo Carbajal <ajuanpi+dev@gmail.com>
## -*- texinfo -*-
## @deftypefn {Function File} {@var{F} =} primitive (@var{f}, @var{t}, @var{F0})
## Calculates the primitive of a function.
##
## The function approximates the primitive (indefinite integral) of the
## univariate function handle @var{f} with constant of integration @var{F0}.
## The output is the primitive evaluated at the points @var{t}. The vector
## @var{t} must be ordered and ascending.
##
## This function is a fancy way of calculating the cumulative sum,
##
## @command{F = cumsum (f(t).*diff (t)([1 1:end]))}.
##
## Example:
## @example
## f = @@(t) sin(2*pi*3*t);
## t = [0; sort(rand(100,1))];
## F = primitive (f,t,0);
## t_true = linspace(0,1,1e3).';
## F_true = (1 - cos(2*pi*3*t_true))/(2*pi*3);
## plot (t,F,'.',t_true,F_true)
## @end example
##
## @seealso{quadgk, cumsum}
## @end deftypefn
function F = primitive (f,t,C=0)
i_chunk(0,0,[]);
F = arrayfun (@(x)i_chunk(f,x,C),t);
endfunction
function F_prev = i_chunk (f,t,init)
persistent F_prev t0
if isempty (init)
F_prev = [];
t0 = 0;
elseif isempty (F_prev)
F_prev = init;
else
F_prev += quadgk(f,t0,t);
t0 = t;
endif
endfunction
%!demo
%! f = @(t) sin(2*pi*3*t);
%! t = [0; sort(rand(100,1))];
%! F = primitive (f,t,0);
%! t_true = linspace(0,1,1e3).';
%! F_true = (1 - cos(2*pi*3*t_true))/(2*pi*3);
%! h = plot (t,F,".;numerical primtive;",t_true,F_true,"-;true primitive;");
%! set (h, "linewidth",2);
%! # -------------------------------------------------
|