This file is indexed.

/usr/share/octave/packages/signal-1.3.2/primitive.m is in octave-signal 1.3.2-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
## Copyright (C) 2013 - Juan Pablo Carbajal
##
## This progrm is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program. If not, see <http://www.gnu.org/licenses/>.

## Author: Juan Pablo Carbajal <ajuanpi+dev@gmail.com>

## -*- texinfo -*-
## @deftypefn {Function File} {@var{F} =} primitive (@var{f}, @var{t}, @var{F0})
## Calculates the primitive of a function.
##
## The function approximates the primitive (indefinite integral) of the
## univariate function handle @var{f} with constant of integration @var{F0}.
## The output is the primitive evaluated at the points @var{t}.  The vector
## @var{t} must be ordered and ascending.
##
## This function is a fancy way of calculating the cumulative sum,
##
## @command{F = cumsum (f(t).*diff (t)([1 1:end]))}.
##
## Example:
## @example
## f = @@(t) sin(2*pi*3*t);
## t = [0; sort(rand(100,1))];
## F = primitive (f,t,0);
## t_true = linspace(0,1,1e3).';
## F_true = (1 - cos(2*pi*3*t_true))/(2*pi*3);
## plot (t,F,'.',t_true,F_true)
## @end example
##
## @seealso{quadgk, cumsum}
## @end deftypefn

function F = primitive (f,t,C=0)

  i_chunk(0,0,[]);
  F = arrayfun (@(x)i_chunk(f,x,C),t);

endfunction

function F_prev = i_chunk (f,t,init)

  persistent F_prev t0

  if isempty (init)
    F_prev = [];
    t0     = 0;
  elseif isempty (F_prev)
    F_prev = init;
  else
    F_prev += quadgk(f,t0,t);
    t0      = t;
  endif

endfunction

%!demo
%! f = @(t) sin(2*pi*3*t);
%! t = [0; sort(rand(100,1))];
%! F = primitive (f,t,0);
%! t_true = linspace(0,1,1e3).';
%! F_true = (1 - cos(2*pi*3*t_true))/(2*pi*3);
%! h = plot (t,F,".;numerical primtive;",t_true,F_true,"-;true primitive;");
%! set (h, "linewidth",2);
%! # -------------------------------------------------