This file is indexed.

/usr/share/octave/packages/signal-1.3.2/pulstran.m is in octave-signal 1.3.2-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
## Copyright (C) 2000 Paul Kienzle <pkienzle@users.sf.net>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {Function File} {@var{y} =} pulstran (@var{t}, @var{d}, @var{func}, @dots{})
## @deftypefnx {Function File} {@var{y} =} pulstran (@var{t}, @var{d}, @var{p})
## @deftypefnx {Function File} {@var{y} =} pulstran (@var{t}, @var{d}, @var{p}, @var{Fs})
## @deftypefnx {Function File} {@var{y} =} pulstran (@var{t}, @var{d}, @var{p}, @var{Fs}, @var{method})
##
## Generate the signal y=sum(func(t+d,...)) for each d.  If d is a
## matrix of two columns, the first column is the delay d and the second
## column is the amplitude a, and y=sum(a*func(t+d)) for each d,a.
## Clearly, func must be a function which accepts a vector of times.
## Any extra arguments needed for the function must be tagged on the end.
##
## Example:
## @example
## fs = 11025;  # arbitrary sample rate
## f0 = 100;    # pulse train sample rate
## w = 0.001;   # pulse width of 1 millisecond
## auplot (pulstran (0:1/fs:0.1, 0:1/f0:0.1, "rectpuls", w), fs);
## @end example
##
## If instead of a function name you supply a pulse shape sampled at
## frequency Fs (default 1 Hz),  an interpolated version of the pulse
## is added at each delay d.  The interpolation stays within the the
## time range of the delayed pulse.  The interpolation method defaults
## to linear, but it can be any interpolation method accepted by the
## function interp1.
##
## Example:
## @example
## fs = 11025;      # arbitrary sample rate
## f0 = 100;        # pulse train sample rate
## w = boxcar(10);  # pulse width of 1 millisecond at 10 kHz
## auplot (pulstran (0:1/fs:0.1, 0:1/f0:0.1, w, 10000), fs);
## @end example
## @end deftypefn

## FIXME: Make it faster.  It is currently unusable for anything real.
##        It may not be possible to speed it up with the present interface.
##        See speech/voice.m for a better way.

## Note that pulstran can be used for some pretty strange things such
## as simple band-limited interpolation:
##     xf = 0:0.05:10; yf = sin(2*pi*xf/5);
##     xp = 0:10; yp = sin(2*pi*xp/5); # .2 Hz sine sampled every second
##     s = pulstran(xf, [xp, yp],'sinc');
##     plot(f, yf, ";original;", xf, s, ";sinc;",xp,yp,"*;;");
## You wouldn't want to do this in practice since it is expensive, and
## since it works much better with a windowed sinc function, at least
## for short samples.

function y = pulstran(t, d, pulse, varargin)

  if nargin<3 || (!ischar(pulse) && nargin>5)
    print_usage;
  endif
  y = zeros(size(t));
  if isempty(y), return; endif
  if rows(d) == 1, d=d'; endif
  if columns(d) == 2,
    a=d(:,2);
  else
    a=ones(rows(d),1);
  endif
  if ischar(pulse)
    ## apply function t+d for all d
    for i=1:rows(d)
      y = y+a(i)*feval(pulse,t-d(i,1),varargin{:});
    endfor
  else
    ## interpolate each pulse at the specified times
    Fs = 1; method = 'linear';
    if nargin==4
      arg=varargin{1};
      if ischar(arg),
        method=arg;
      else
        Fs = arg;
      endif
    elseif nargin==5
      Fs = varargin{1};
      method = varargin{2};
    endif
    span = (length(pulse)-1)/Fs;
    t_pulse = (0:length(pulse)-1)/Fs;
    for i=1:rows(d)
      dt = t-d(i,1);
      idx = find(dt>=0 & dt<=span);
      y(idx) = y(idx) + a(i)*interp1(t_pulse, pulse, dt(idx), method);
    endfor
  endif

endfunction

%!error pulstran
%!error pulstran(1,2,3,4,5,6)

%!## parameter size and shape checking
%!shared t,d
%! t = 0:0.01:1; d=0:0.1:1;
%!assert (isempty(pulstran([], d, 'sin')));
%!assert (pulstran(t, [], 'sin'), zeros(size(t)));
%!assert (isempty(pulstran([], d, boxcar(5))));
%!assert (pulstran(t, [], boxcar(5)), zeros(size(t)));
%!assert (size(pulstran(t,d,'sin')), size(t));
%!assert (size(pulstran(t,d','sin')), size(t));
%!assert (size(pulstran(t',d,'sin')), size(t'));
%!assert (size(pulstran(t,d','sin')), size(t));

%!demo
%! fs = 11025;                   # arbitrary sample rate
%! f0 = 100;                     # pulse train sample rate
%! w = 0.003;                    # pulse width of 3 milliseconds
%! t = 0:1/fs:0.1; d=0:1/f0:0.1; # define sample times and pulse times
%! a = hanning(length(d));       # define pulse amplitudes
%!
%! subplot(221);
%! x = pulstran(t', d', 'rectpuls', w);
%! plot([0:length(x)-1]*1000/fs, x);
%! hold on; plot(d*1000,ones(size(d)),'g*;pulse;'); hold off;
%! ylabel("amplitude"); xlabel("time (ms)");
%! title("rectpuls");
%!
%! subplot(223);
%! x = pulstran(f0*t, [f0*d', a], 'sinc');
%! plot([0:length(x)-1]*1000/fs, x);
%! hold on; plot(d*1000,a,'g*;pulse;'); hold off;
%! ylabel("amplitude"); xlabel("time (ms)");
%! title("sinc => band limited interpolation");
%!
%! subplot(222);
%! pulse = boxcar(30);  # pulse width of 3 ms at 10 kHz
%! x = pulstran(t, d', pulse, 10000);
%! plot([0:length(x)-1]*1000/fs, x);
%! hold on; plot(d*1000,ones(size(d)),'g*;pulse;'); hold off;
%! ylabel("amplitude"); xlabel("time (ms)");
%! title("interpolated boxcar");
%!
%! subplot(224);
%! pulse = sin(2*pi*[0:0.0001:w]/w).*[w:-0.0001:0];
%! x = pulstran(t', [d', a], pulse', 10000);
%! plot([0:length(x)-1]*1000/fs, x);
%! hold on; plot(d*1000,a*w,'g*;pulse;'); hold off; title("");
%! ylabel("amplitude"); xlabel("time (ms)");
%! title("interpolated asymmetric sin");
%!
%! %----------------------------------------------------------
%! % Should see (1) rectangular pulses centered on *,
%! %            (2) rectangular pulses to the right of *,
%! %            (3) smooth interpolation between the *'s, and
%! %            (4) asymmetric sines to the right of *