/usr/share/octave/packages/signal-1.3.2/zplane.m is in octave-signal 1.3.2-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 | ## Copyright (C) 1999, 2001 Paul Kienzle <pkienzle@users.sf.net>
## Copyright (C) 2004 Stefan van der Walt <stefan@sun.ac.za>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {} zplane (@var{z}, @var{p})
## @deftypefnx {Function File} {} zplane (@var{b}, @var{a})
##
## Plot the poles and zeros. If the arguments are row vectors then they
## represent filter coefficients (numerator polynomial b and denominator
## polynomial a), but if they are column vectors or matrices then they
## represent poles and zeros.
##
## This is a horrid interface, but I didn't choose it; better would be
## to accept b,a or z,p,g like other functions. The saving grace is
## that poly(x) always returns a row vector and roots(x) always returns
## a column vector, so it is usually right. You must only be careful
## when you are creating filters by hand.
##
## Note that due to the nature of the roots() function, poles and zeros
## may be displayed as occurring around a circle rather than at a single
## point.
##
## The transfer function is
##
## @example
## @group
## B(z) b0 + b1 z^(-1) + b2 z^(-2) + ... + bM z^(-M)
## H(z) = ---- = --------------------------------------------
## A(z) a0 + a1 z^(-1) + a2 z^(-2) + ... + aN z^(-N)
##
## b0 (z - z1) (z - z2) ... (z - zM)
## = -- z^(-M+N) ------------------------------
## a0 (z - p1) (z - p2) ... (z - pN)
## @end group
## @end example
##
## The denominator a defaults to 1, and the poles p defaults to [].
## @end deftypefn
## FIXME: Consider a plot-like interface:
## zplane(x1,y1,fmt1,x2,y2,fmt2,...)
## with y_i or fmt_i optional as usual. This would allow
## legends and control over point color and filters of
## different orders.
function zplane(z, p = [])
if (nargin < 1 || nargin > 2)
print_usage;
endif
if columns(z)>1 || columns(p)>1
if rows(z)>1 || rows(p)>1
## matrix form: columns are already zeros/poles
else
## z -> b
## p -> a
if isempty(z), z=1; endif
if isempty(p), p=1; endif
M = length(z) - 1;
N = length(p) - 1;
z = [ roots(z); zeros(N - M, 1) ];
p = [ roots(p); zeros(M - N, 1) ];
endif
endif
xmin = min([-1; real(z(:)); real(p(:))]);
xmax = max([ 1; real(z(:)); real(p(:))]);
ymin = min([-1; imag(z(:)); imag(p(:))]);
ymax = max([ 1; imag(z(:)); imag(p(:))]);
xfluff = max([0.05*(xmax-xmin), (1.05*(ymax-ymin)-(xmax-xmin))/10]);
yfluff = max([0.05*(ymax-ymin), (1.05*(xmax-xmin)-(ymax-ymin))/10]);
xmin = xmin - xfluff;
xmax = xmax + xfluff;
ymin = ymin - yfluff;
ymax = ymax + yfluff;
text();
plot_with_labels(z, "o");
plot_with_labels(p, "x");
refresh;
r = exp(2i*pi*[0:100]/100);
plot(real(r), imag(r),'k'); hold on;
axis equal;
grid on;
axis(1.05*[xmin, xmax, ymin, ymax]);
if (!isempty(p))
h = plot(real(p), imag(p), "bx");
set (h, 'MarkerSize', 7);
endif
if (!isempty(z))
h = plot(real(z), imag(z), "bo");
set (h, 'MarkerSize', 7);
endif
hold off;
endfunction
function plot_with_labels(x, symbol)
if ( !isempty(x) )
x_u = unique(x(:));
for i = 1:length(x_u)
n = sum(x_u(i) == x(:));
if (n > 1)
text(real(x_u(i)), imag(x_u(i)), [" " num2str(n)]);
endif
endfor
col = "rgbcmy";
for c = 1:columns(x)
plot(real( x(:,c) ), imag( x(:,c) ), [col(mod(c,6)),symbol ";;"]);
endfor
endif
endfunction
%!demo
%! ## construct target system:
%! ## symmetric zero-pole pairs at r*exp(iw),r*exp(-iw)
%! ## zero-pole singletons at s
%! pw=[0.2, 0.4, 0.45, 0.95]; #pw = [0.4];
%! pr=[0.98, 0.98, 0.98, 0.96]; #pr = [0.85];
%! ps=[];
%! zw=[0.3]; # zw=[];
%! zr=[0.95]; # zr=[];
%! zs=[];
%!
%! ## system function for target system
%! p=[[pr, pr].*exp(1i*pi*[pw, -pw]), ps]';
%! z=[[zr, zr].*exp(1i*pi*[zw, -zw]), zs]';
%! M = length(z); N = length(p);
%! sys_a = [ zeros(1, M-N), real(poly(p)) ];
%! sys_b = [ zeros(1, N-M), real(poly(z)) ];
%! disp("The first two graphs should be identical, with poles at (r,w)=");
%! disp(sprintf(" (%.2f,%.2f)", [pr ; pw]));
%! disp("and zeros at (r,w)=");
%! disp(sprintf(" (%.2f,%.2f)", [zr ; zw]));
%! disp("with reflection across the horizontal plane");
%! subplot(231);
%! zplane(sys_b, sys_a);
%! title("transfer function form");
%! subplot(232);
%! zplane(z,p);
%! title("pole-zero form");
%! subplot(233);
%! zplane(z);
%! title("empty p");
%! subplot(234);
%! zplane(sys_b);
%! title("empty a");
%! disp("The matrix plot has 2 sets of points, one inside the other");
%! subplot(235);
%! zplane([z, 0.7*z], [p, 0.7*p]);
%! title("matrix");
|