This file is indexed.

/usr/share/octave/packages/symbolic-2.2.4/bernoulli.m is in octave-symbolic 2.2.4-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
%% Copyright (C) 2014, 2015 Colin B. Macdonald
%%
%% This file is part of OctSymPy.
%%
%% OctSymPy is free software; you can redistribute it and/or modify
%% it under the terms of the GNU General Public License as published
%% by the Free Software Foundation; either version 3 of the License,
%% or (at your option) any later version.
%%
%% This software is distributed in the hope that it will be useful,
%% but WITHOUT ANY WARRANTY; without even the implied warranty
%% of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See
%% the GNU General Public License for more details.
%%
%% You should have received a copy of the GNU General Public
%% License along with this software; see the file COPYING.
%% If not, see <http://www.gnu.org/licenses/>.

%% -*- texinfo -*-
%% @documentencoding UTF-8
%% @deftypefn  {Function File} {@var{b} =} bernoulli (@var{n})
%% @deftypefnx {Function File} {@var{p} =} bernoulli (@var{n}, @var{x})
%% Return Bernoulli numbers and polynomials.
%%
%% Examples:
%% @example
%% @group
%% >> bernoulli(6)
%%    @result{} (sym) 1/42
%% >> bernoulli(7)
%%    @result{} (sym) 0
%% @end group
%% @end example
%%
%% Polynomial example:
%% @example
%% @group
%% >> syms x
%% >> bernoulli(2, x)
%%    @result{} (sym)
%%        2       1
%%       x  - x + ─
%%                6
%% @end group
%% @end example
%% @seealso{euler}
%% @end deftypefn

%% Author: Colin B. Macdonald
%% Keywords: symbolic

function r = bernoulli(n, x)

  if (nargin == 1)
    r = python_cmd ('return sp.bernoulli(*_ins),', sym(n));
  else
    r = python_cmd ('return sp.bernoulli(*_ins),', sym(n), sym(x));
  end

end


%!assert (isequal (bernoulli (8), -sym(1)/30))
%!assert (isequal (bernoulli (9), 0))
%!test syms x
%! assert (isequal (bernoulli(3,x), x^3 - 3*x^2/2 + x/2))