/usr/share/octave/packages/symbolic-2.2.4/bernoulli.m is in octave-symbolic 2.2.4-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 | %% Copyright (C) 2014, 2015 Colin B. Macdonald
%%
%% This file is part of OctSymPy.
%%
%% OctSymPy is free software; you can redistribute it and/or modify
%% it under the terms of the GNU General Public License as published
%% by the Free Software Foundation; either version 3 of the License,
%% or (at your option) any later version.
%%
%% This software is distributed in the hope that it will be useful,
%% but WITHOUT ANY WARRANTY; without even the implied warranty
%% of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
%% the GNU General Public License for more details.
%%
%% You should have received a copy of the GNU General Public
%% License along with this software; see the file COPYING.
%% If not, see <http://www.gnu.org/licenses/>.
%% -*- texinfo -*-
%% @documentencoding UTF-8
%% @deftypefn {Function File} {@var{b} =} bernoulli (@var{n})
%% @deftypefnx {Function File} {@var{p} =} bernoulli (@var{n}, @var{x})
%% Return Bernoulli numbers and polynomials.
%%
%% Examples:
%% @example
%% @group
%% >> bernoulli(6)
%% @result{} (sym) 1/42
%% >> bernoulli(7)
%% @result{} (sym) 0
%% @end group
%% @end example
%%
%% Polynomial example:
%% @example
%% @group
%% >> syms x
%% >> bernoulli(2, x)
%% @result{} (sym)
%% 2 1
%% x - x + ─
%% 6
%% @end group
%% @end example
%% @seealso{euler}
%% @end deftypefn
%% Author: Colin B. Macdonald
%% Keywords: symbolic
function r = bernoulli(n, x)
if (nargin == 1)
r = python_cmd ('return sp.bernoulli(*_ins),', sym(n));
else
r = python_cmd ('return sp.bernoulli(*_ins),', sym(n), sym(x));
end
end
%!assert (isequal (bernoulli (8), -sym(1)/30))
%!assert (isequal (bernoulli (9), 0))
%!test syms x
%! assert (isequal (bernoulli(3,x), x^3 - 3*x^2/2 + x/2))
|