/usr/share/octave/packages/symbolic-2.2.4/findsymbols.m is in octave-symbolic 2.2.4-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 | %% Copyright (C) 2014 Colin B. Macdonald
%%
%% This file is part of OctSymPy.
%%
%% OctSymPy is free software; you can redistribute it and/or modify
%% it under the terms of the GNU General Public License as published
%% by the Free Software Foundation; either version 3 of the License,
%% or (at your option) any later version.
%%
%% This software is distributed in the hope that it will be useful,
%% but WITHOUT ANY WARRANTY; without even the implied warranty
%% of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
%% the GNU General Public License for more details.
%%
%% You should have received a copy of the GNU General Public
%% License along with this software; see the file COPYING.
%% If not, see <http://www.gnu.org/licenses/>.
%% -*- texinfo -*-
%% @documentencoding UTF-8
%% @deftypefn {Function File} {@var{l} =} findsymbols (@var{x})
%% Return a list (cell array) of the symbols in an expression.
%%
%% The list is sorted alphabetically. @xref{symvar}, for details.
%%
%% If two variables have the same symbol but different assumptions,
%% they will both appear in the output. It is not well-defined
%% in what order they appear.
%%
%% @var{x} could be a sym, sym array, cell array, or struct.
%%
%% @example
%% @group
%% >> syms x y z
%% >> C = @{x, 2*x*y, [1 x; sin(z) pi]@};
%% >> findsymbols (C)
%% @result{}
%% @{
%% (sym) x
%% (sym) y
%% (sym) z
%% @}
%% @end group
%% @end example
%%
%% Note E, I, pi, etc are not counted as symbols.
%%
%% Note only returns symbols actually appearing in the RHS of a
%% @code{symfun}.
%%
%% @seealso{symvar, findsym}
%% @end deftypefn
%% Author: Colin B. Macdonald
%% Keywords: symbolic
function L = findsymbols(obj, dosort)
if nargin == 1
dosort = true;
end
if isa(obj, 'sym')
cmd = { 'x = _ins[0]'
'if sympy.__version__ == "0.7.5":' % deprecate with Issue #164
' if not x.is_Matrix:'
' s = x.free_symbols'
' else:'
' s = set()'
' for i in x.values():'
' s = s.union(i.free_symbols)'
'else:'
' s = x.free_symbols'
'l = list(s)'
'l = sorted(l, key=str)'
'return l,' };
L = python_cmd (cmd, obj);
elseif iscell(obj)
%fprintf('Recursing into a cell array of numel=%d\n', numel(obj))
L = {};
for i=1:numel(obj)
temp = findsymbols(obj{i}, false);
if ~isempty(temp)
L = {L{:} temp{:}};
end
end
elseif isstruct(obj)
%fprintf('Recursing into a struct array of numel=%d\n', numel(obj))
L = {};
fields = fieldnames(obj);
for i=1:numel(obj)
for j=1:length(fields)
thisobj = getfield(obj, {i}, fields{j});
temp = findsymbols(thisobj, false);
if ~isempty(temp)
L = {L{:} temp{:}};
end
end
end
else
L = {};
end
% sort and make unique using internal representation
if dosort
Ls = {};
for i=1:length(L)
Ls{i} = char(L{i});
end
[tilde, I] = unique(Ls);
L = L(I);
end
end
%!test
%! syms x b y n a arlo
%! z = a*x + b*pi*sin (n) + exp (y) + exp (sym (1)) + arlo;
%! s = findsymbols (z);
%! assert (isequal ([s{:}], [a,arlo,b,n,x,y]))
%!test
%! syms x
%! s = findsymbols (x);
%! assert (isequal (s{1}, x))
%!test
%! syms z x y a
%! s = findsymbols ([x y; 1 a]);
%! assert (isequal ([s{:}], [a x y]))
%!assert (isempty (findsymbols (sym (1))))
%!assert (isempty (findsymbols (sym ([1 2]))))
%!assert (isempty (findsymbols (sym (nan))))
%!assert (isempty (findsymbols (sym (inf))))
%!assert (isempty (findsymbols (exp (sym (2)))))
%!test
%! % diff. assumptions make diff. symbols
%! x1 = sym('x');
%! x2 = sym('x', 'positive');
%! f = x1*x2;
%! assert (length (findsymbols (f)) == 2)
%!test
%! % symfun or sym
%! syms x f(y)
%! a = f*x;
%! b = f(y)*x;
%! assert (isequal (findsymbols(a), {x y}))
%! assert (isequal (findsymbols(b), {x y}))
%!test
%! % findsymbols on symfun does not find the argnames (unless they
%! % are on the RHS of course, this matches SMT 2014a).
%! syms a x y
%! f(x, y) = a; % const symfun
%! assert (isequal (findsymbols(f), {a}))
%! syms a x y
%! f(x, y) = a*y;
%! assert (isequal (findsymbols(f), {a y}))
%!test
%! % sorts lexigraphically, same as symvar *with single input*
%! % (note symvar does something different with 2 inputs).
%! syms A B a b x y X Y
%! f = A*a*B*b*y*X*Y*x;
%! assert (isequal (findsymbols(f), {A B X Y a b x y}))
%! assert (isequal (symvar(f), [A B X Y a b x y]))
%!test
%! % symbols in matpow
%! syms x y
%! syms n
%! if (str2num(strrep(python_cmd ('return sp.__version__,'), '.', ''))<=75)
%! disp('skipping known failure b/c SymPy <= 0.7.5')
%! else
%! A = [sin(x) 2; y 1];
%! B = A^n;
%! L = findsymbols(B);
%! assert (isequal (L, {n x y}))
%! end
|