This file is indexed.

/usr/share/octave/packages/tsa-4.3.3/acovf.m is in octave-tsa 4.3.3-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
function [ACF,NN] = acovf(Z,KMAX,Mode,Mode2);
% ACOVF estimates autocovariance function (not normalized)
% NaN's are interpreted as missing values. 
%
% [ACF,NN] = acovf(Z,MAXLAG,Mode);
%
% Input:
%  Z    Signal (one channel per row);
%  MAXLAG  maximum lag
%  Mode	'biased'  : normalizes with N [default]
%	'unbiased': normalizes with N-lag
%	'coeff'	  : normalizes such that lag 0 is 1	
%        others	  : no normalization
%
% Output:
%  ACF autocovariance function
%  NN  number of valid elements 
%
% REFERENCES:
%  A.V. Oppenheim and R.W. Schafer, Digital Signal Processing, Prentice-Hall, 1975.
%  S. Haykin "Adaptive Filter Theory" 3ed. Prentice Hall, 1996.
%  M.B. Priestley "Spectral Analysis and Time Series" Academic Press, 1981. 
%  W.S. Wei "Time Series Analysis" Addison Wesley, 1990.
%  J.S. Bendat and A.G.Persol "Random Data: Analysis and Measurement procedures", Wiley, 1986.

%	$Id: acovf.m 12766 2015-04-02 10:00:34Z schloegl $
%	Copyright (C) 1998-2003,2008,2010 by Alois Schloegl <alois.schloegl@gmail.com>	
%       This is part of the TSA-toolbox. See also 
%       http://biosig-consulting.com/matlab/tsa/
%
%    This program is free software: you can redistribute it and/or modify
%    it under the terms of the GNU General Public License as published by
%    the Free Software Foundation, either version 3 of the License, or
%    (at your option) any later version.
%
%    This program is distributed in the hope that it will be useful,
%    but WITHOUT ANY WARRANTY; without even the implied warranty of
%    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
%    GNU General Public License for more details.
%
%    You should have received a copy of the GNU General Public License
%    along with this program.  If not, see <http://www.gnu.org/licenses/>.



if nargin<3, Mode='biased'; end;

[lr,lc] = size(Z);

MISSES = sum(isnan(Z)')';
if any(MISSES); % missing values
	M = real(~isnan(Z));
	Z(isnan(Z))=0;
end;

if (nargin == 1) 
	KMAX = lc-1; 
elseif (KMAX >= lc-1) 
	KMAX = lc-1;
end;

ACF = zeros(lr,KMAX+1);

if nargin>3,		% for testing, use arg4 for comparing the methods,

elseif 	(KMAX*KMAX > lc*log2(lc)) % & isempty(MISSES);	
	Mode2 = 1;
elseif 	(10*KMAX > lc);
	Mode2 = 3;
else
	Mode2 = 4;
end;


%%%%% ESTIMATION of non-normalized ACF %%%%%

% the following algorithms gve equivalent results, however, the computational effort is different,
% depending on lr,lc and KMAX, a different algorithm is most efficient.
if Mode2==1; % KMAX*KMAX > lc*log(lc);        % O(n.logn)+O(K²)
        tmp = fft(Z',2^nextpow2(size(Z,2))*2);
        tmp = ifft(tmp.*conj(tmp));
        ACF = tmp(1:KMAX+1,:)'; 
        if ~any(any(imag(Z))), ACF=real(ACF); end; % should not be neccessary, unfortunately it is.
elseif Mode2==3; % (10*KMAX > lc)   % O(n*K)     % use fast Built-in filter function
        for L = 1:lr,
                acf = filter(Z(L,lc:-1:1),1,Z(L,:));
                ACF(L,:)= acf(lc:-1:lc-KMAX);
        end;    
else Mode2==4; % O(n*K)
        for L = 1:lr,
                for K = 0:KMAX, 
                        ACF(L,K+1) = Z(L,1:lc-K) * Z(L,1+K:lc)';
                end;
        end;    
end;


%%%%% GET number of elements used for estimating ACF - is needed for normalizing ACF %%%%%

if any(MISSES),
    % the following algorithms gve equivalent results, however, the computational effort is different,
    % depending on lr,lc and KMAX, a different algorithm is most efficient.
    if Mode2==1; % KMAX*KMAX > lc*log(lc);        % O(n.logn)+O(K²)
        tmp = fft(M',2^nextpow2(size(M,2))*2);
        tmp = ifft(tmp.*conj(tmp));
        NN = tmp(1:KMAX+1,:)'; 
        if ~any(any(imag(M))), NN=real(NN); end; % should not be neccessary, unfortunately it is.
    elseif Mode2==3; % (10*KMAX > lc)   % O(n*K)     % use fast Built-in filter function
        for L = 1:lr,
                acf = filter(M(L,lc:-1:1),1,M(L,:));
                NN(L,:)= acf(lc:-1:lc-KMAX);
        end;    
    else Mode2==4; % O(n*K)
        for L = 1:lr,
                for K = 0:KMAX, 
                        NN(L,K+1) = M(L,1:lc-K) * M(L,1+K:lc)';
                end;
        end;    
    end;
else
    NN = (ones(lr,1)*(lc:-1:lc-KMAX));
end;


if strcmp(Mode,'biased')
	if ~any(MISSES),
	        ACF=ACF/lc;
	else
	        %ACF=ACF./((lc-MISSES)*ones(1,KMAX+1));
	        ACF=ACF./max(NN + ones(lr,1)*(0:KMAX),0);
	end;

elseif strcmp(Mode,'unbiased')
        ACF=ACF./NN; 
	%if ~any(MISSES),
	%       ACF=ACF./(ones(lr,1)*(lc:-1:lc-KMAX));
	%else
	%	ACF=ACF./((lc-MISSES)*ones(1,KMAX+1) - ones(lr,1)*(0:KMAX));
	%end;

elseif strcmp(Mode,'coeff')
        %ACF = ACF ./ ACF(:,ones(1,KMAX+1)) .* ((lc-MISSES)*ones(1,KMAX+1));
        ACF = ACF./NN; 
	ACF = ACF./(ACF(:,1)*ones(1,size(ACF,2)));
else 

end;