/usr/share/octave/packages/tsa-4.3.3/histo3.m is in octave-tsa 4.3.3-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 | function [R, tix] = histo3(Y, W)
% HISTO3 calculates histogram for multiple columns with common bin values
% among all data columns, and can be useful for data compression.
%
% R = HISTO3(Y)
% R = HISTO3(Y, W)
% Y data
% W weight vector containing weights of each sample,
% number of rows of Y and W must match.
% default W=[] indicates that each sample is weighted with 1.
% R struct with these fields
% R.X the bin-values, bin-values are equal for each channel
% thus R.X is a column vector. If bin values should
% be computed separately for each data column, use HISTO2
% R.H is the frequency of occurence of value X
% R.N are the number of valid (not NaN) samples
%
% Data compression can be performed in this way
% [R,tix] = histo3(Y)
% is the compression step
%
% R.tix provides a compressed data representation.
% R.compressionratio estimates the compression ratio
%
% R.X(tix) and R.X(R.tix)
% reconstruct the orginal signal (decompression)
%
% The effort (in memory and speed) for compression is O(n*log(n)).
% The effort (in memory and speed) for decompression is O(n) only.
%
% see also: HISTO, HISTO2, HISTO3, HISTO4
%
% REFERENCE(S):
% C.E. Shannon and W. Weaver "The mathematical theory of communication" University of Illinois Press, Urbana 1949 (reprint 1963).
% $Id: histo3.m 12737 2015-01-17 23:20:37Z schloegl $
% Copyright (C) 1996-2002,2008,2011,2014 by Alois Schloegl <alois.schloegl@ist.ac.at>
% This is part of the TSA-toolbox. See also
% http://pub.ist.ac.at/~schloegl/matlab/tsa/
% http://octave.sourceforge.net/
% http://biosig.sourceforge.net/
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
%%%%% check input arguments %%%%%
[yr,yc] = size(Y);
if nargin < 2,
W = [];
end;
if ~isempty(W) && (yr ~= numel(W)),
error('number of rows of Y does not match number of elements in W');
end;
%%%%% identify all possible X's and generate overall Histogram %%%%%
[sY, idx] = sort(Y(:),1);
ix = diff(sY, [], 1) > 0;
tmp = [find(ix); sum(~isnan(sY))];
R.datatype = 'HISTOGRAM';
R.N = sum(~isnan(Y), 1);
if all(R.N==0)
R.X=[];
R.H=[];
return;
end;
R.X = sY(tmp);
% generate inverse index
if nargout>1,
tix = cumsum([1; ix]); % rank
[tmp,idx1] = sort(idx); % generate inverse index
tix = reshape(tix(idx1), yr, yc); % inverse sort rank
cc = 1;
tmp = sum(ix) + 1;
if exist('OCTAVE_VERSION') >= 5,
; % NOP; no support for integer datatyp
elseif tmp <= 2^8;
tix = uint8(tix);
cc = 8/1;
elseif tmp <= 2^16;
tix = uint16(tix);
cc = 8/2;
elseif tmp <= 2^32;
tix = uint32(tix);
cc = 8/4;
end;
R.compressionratio = (prod(size(R.X)) + (yr*yc)/cc) / (yr*yc);
R.tix = tix;
end;
if yc==1,
if isempty(W)
R.H = [tmp(1); diff(tmp)];
else
C = cumsum(W(idx)); % cumulative weights
R.H = [C(tmp(1)); diff(C(tmp))];
end;
return;
elseif yc>1,
% allocate memory
H = zeros(size(R.X,1),yc);
% scan each channel
for k = 1:yc,
if isempty(W)
sY = sort(Y(:,k));
else
[sY,ix] = sort(Y(:,k));
C = cumsum(W(ix));
end
ix = find(diff(sY,[],1) > 0);
if size(ix,1) > 0,
tmp = [ix; R.N(k)];
else
tmp = R.N(k);
end;
t = 0;
j = 1;
if isempty(W)
for x = tmp',
acc = sY(x);
while R.X(j)~=acc, j=j+1; end;
%j = find(sY(x)==R.X); % identify position on X
H(j,k) = H(j,k) + (x-t); % add diff(tmp)
t = x;
end;
else
for x = tmp',
acc = sY(x);
while R.X(j)~=acc, j=j+1; end;
%j = find(sY(x)==R.X); % identify position on X
H(j,k) = H(j,k) + C(x)-t; % add diff(tmp)
t = C(x);
end;
end;
end;
R.H = H;
end;
%!assert(getfield(histo3([]),'N'), 0)
%!assert(getfield(histo3(1),'N'), 1)
%!assert(getfield(histo3([1;1]),'H'), 2)
|