This file is indexed.

/usr/share/octave/packages/tsa-4.3.3/histo3.m is in octave-tsa 4.3.3-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
function [R, tix] = histo3(Y, W)
% HISTO3 calculates histogram for multiple columns with common bin values 
%    among all data columns, and can be useful for data compression. 
%
% R = HISTO3(Y)
% R = HISTO3(Y, W)
%	Y	data
%	W	weight vector containing weights of each sample, 
%		number of rows of Y and W must match.
%		default W=[] indicates that each sample is weighted with 1. 
% 	R 	struct with these fields 
%       R.X  	the bin-values, bin-values are equal for each channel
%		thus R.X is a column vector. If bin values should 
%		be computed separately for each data column, use HISTO2
%       R.H  	is the frequency of occurence of value X 
%  	R.N  	are the number of valid (not NaN) samples 
%
% Data compression can be performed in this way
%   	[R,tix] = histo3(Y) 
%      		is the compression step
%
%	R.tix provides a compressed data representation. 
%	R.compressionratio estimates the compression ratio
%
% 	R.X(tix) and R.X(R.tix) 
%		reconstruct the orginal signal (decompression) 
%
% The effort (in memory and speed) for compression is O(n*log(n)).
% The effort (in memory and speed) for decompression is O(n) only. 
%
% see also: HISTO, HISTO2, HISTO3, HISTO4
%
% REFERENCE(S):
%  C.E. Shannon and W. Weaver "The mathematical theory of communication" University of Illinois Press, Urbana 1949 (reprint 1963).


%	$Id: histo3.m 12737 2015-01-17 23:20:37Z schloegl $
%	Copyright (C) 1996-2002,2008,2011,2014 by Alois Schloegl <alois.schloegl@ist.ac.at>	
%       This is part of the TSA-toolbox. See also 
%       http://pub.ist.ac.at/~schloegl/matlab/tsa/
%       http://octave.sourceforge.net/
%       http://biosig.sourceforge.net/
%
%    This program is free software: you can redistribute it and/or modify
%    it under the terms of the GNU General Public License as published by
%    the Free Software Foundation, either version 3 of the License, or
%    (at your option) any later version.
%
%    This program is distributed in the hope that it will be useful,
%    but WITHOUT ANY WARRANTY; without even the implied warranty of
%    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
%    GNU General Public License for more details.
%
%    You should have received a copy of the GNU General Public License
%    along with this program.  If not, see <http://www.gnu.org/licenses/>.


%%%%% check input arguments %%%%%
[yr,yc] = size(Y);
if nargin < 2, 
	W = []; 
end; 
if ~isempty(W) && (yr ~= numel(W)),
	error('number of rows of Y does not match number of elements in W');
end;

%%%%% identify all possible X's and generate overall Histogram %%%%%
[sY, idx] = sort(Y(:),1);

ix  = diff(sY, [], 1) > 0;
tmp = [find(ix); sum(~isnan(sY))];

R.datatype = 'HISTOGRAM';
R.N = sum(~isnan(Y), 1);
if all(R.N==0)
       R.X=[];
       R.H=[];
       return; 
end;
R.X = sY(tmp);

% generate inverse index
if nargout>1,
        tix = cumsum([1; ix]);	% rank 
        [tmp,idx1] = sort(idx);        % generate inverse index
        tix = reshape(tix(idx1), yr, yc);		% inverse sort rank
        cc  = 1;
        tmp = sum(ix) + 1;
	if exist('OCTAVE_VERSION') >= 5,
		; % NOP; no support for integer datatyp 
        elseif tmp <= 2^8;
                tix = uint8(tix);
                cc = 8/1;
        elseif tmp <= 2^16;
                tix = uint16(tix);
                cc = 8/2;
        elseif tmp <= 2^32;
                tix = uint32(tix);
                cc = 8/4;
        end;
        R.compressionratio = (prod(size(R.X)) + (yr*yc)/cc) / (yr*yc);
	R.tix = tix;        
end;


if yc==1, 
	if isempty(W)
		R.H = [tmp(1); diff(tmp)];
	else
		C = cumsum(W(idx));  	% cumulative weights  
		R.H = [C(tmp(1)); diff(C(tmp))];
	end;
	return;

elseif yc>1,
        % allocate memory
        H = zeros(size(R.X,1),yc);
        
        % scan each channel
        for k = 1:yc,
		if isempty(W)
			sY = sort(Y(:,k));
		else
			[sY,ix] = sort(Y(:,k));
			C = cumsum(W(ix));
		end
		ix = find(diff(sY,[],1) > 0);
                if size(ix,1) > 0,
                        tmp = [ix; R.N(k)];
                else
                        tmp = R.N(k);
                end;

                t = 0;
                j = 1;
		if isempty(W)
                    for x = tmp',
                        acc = sY(x);
                        while R.X(j)~=acc, j=j+1; end;
                        %j = find(sY(x)==R.X);   % identify position on X 
                        H(j,k) = H(j,k) + (x-t);  % add diff(tmp)
                        t = x;
                    end;
		else
                    for x = tmp',
                        acc = sY(x);
                        while R.X(j)~=acc, j=j+1; end;
                        %j = find(sY(x)==R.X);   % identify position on X 
                        H(j,k) = H(j,k) + C(x)-t;  % add diff(tmp)
                        t = C(x);
                    end;
		end; 
        end;
        
	R.H = H;
end;

%!assert(getfield(histo3([]),'N'), 0)
%!assert(getfield(histo3(1),'N'), 1)
%!assert(getfield(histo3([1;1]),'H'), 2)