/usr/share/octave/packages/tsa-4.3.3/rmle.m is in octave-tsa 4.3.3-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 | function [a,VAR,S,a_aux,b_aux,e_aux,MLE,pos] = rmle(arg1,arg2);
% RMLE estimates AR Parameters using the Recursive Maximum Likelihood
% Estimator according to [1]
%
% Use: [a,VAR]=rmle(x,p)
% Input:
% x is a column vector of data
% p is the model order
% Output:
% a is a vector with the AR parameters of the recursive MLE
% VAR is the excitation white noise variance estimate
%
% Reference(s):
% [1] Kay S.M., Modern Spectral Analysis - Theory and Applications.
% Prentice Hall, p. 232-233, 1988.
%
% $Id: rmle.m 11693 2013-03-04 06:40:14Z schloegl $
% Copyright (C) 2004 by Jose Luis Gutierrez <jlg@gmx.at>
% Grupo GENESIS - UTN - Argentina
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
x=arg1*1e-6;
p=arg2;
N=length(x);
S=zeros(p+1,p+1);
a_aux=zeros(p+1,p);, a_aux(1,:)=1;
b_aux=ones(p+1,p);
e_aux=zeros(p,1);, p_aux=zeros(p,1);
MLE=zeros(3,1);
pos=1;
for i=0:p
for j=0:p
for n=0:N-1-i-j
S(i+1,j+1)=S(i+1,j+1)+x(n+1+i)*x(n+1+j);
end
end
end
e0=S(1,1);
c1=S(1,2);
d1=S(2,2);
coef3=1;
coef2=((N-2)*c1)/((N-1)*d1);
coef1=-(e0+N*d1)/((N-1)*d1);
ti=-(N*c1)/((N-1)*d1);
raices=roots([coef3 coef2 coef1 ti]);
for o=1:3
if raices(o)>-1 && raices(o)<1
a_aux(2,1)=raices(o);
b_aux(p+1,1)=raices(o);
end
end
e_aux(1,1)=S(1,1)+2*a_aux(2,1)*S(1,2)+(a_aux(2,1)^2)*S(2,2);
p_aux(1,1)=e_aux(1,1)/N;
for k=2:p
Ck=S(1:k,2:k+1);
Dk=S(2:k+1,2:k+1);
ck=a_aux(1:k,k-1)'*Ck*b_aux(p+1:-1:p+2-k,k-1);
dk=b_aux(p+1:-1:p+2-k,k-1)'*Dk*b_aux(p+1:-1:p+2-k,k-1);
coef3re=1;
coef2re=((N-2*k)*ck)/((N-k)*dk);
coef1re=-(k*e_aux(k-1,1)+N*dk)/((N-k)*dk);
tire=-(N*ck)/((N-k)*dk);
raices=roots([coef3re coef2re coef1re tire]);
for o=1:3
if raices(o,1)>-1 && raices(o,1)<1
MLE(o,1)=((1-raices(o)^2)^(k/2))/(((e_aux(k-1)+2*ck*raices(o)+dk*(raices(o)^2))/N)^(N/2));
end
end
[C,I]=max(MLE);
k_max=raices(I);
for i=1:k-1
a_aux(i+1,k)=a_aux(i+1,k-1)+k_max*a_aux(k-i+1,k-1);
end
a_aux(k+1,k)=k_max;
b_aux(p+1-k:p+1,k)=a_aux(1:k+1,k);
e_aux(k,1)=e_aux(k-1,1)+2*ck*k_max+dk*k_max^2;
p_aux(k,1)=e_aux(k,1)/N;
end
a=a_aux(:,p)';
VAR=p_aux(p)*1e12;
|