This file is indexed.

/usr/lib/pike8.0/modules/GLU.pmod is in pike8.0-gl 8.0.164-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
/*
 * GL Utilities module.
 */

#pike __REAL_VERSION__
#require constant(GL.glOrtho)

//! The GL Utilities module is a partial implementation of the
//! GLU library. This module only contains functions that someone
//! at some point actually needed to get his work done. If you
//! need a GLU function that isn't in here, copy the C code from
//! the GLU library (Mesa was used last time), tweak it so that
//! it compiles as Pike code and then check it in into the CVS.

import GL;

#ifndef M_PI
#define M_PI 3.1415926536
#endif

//! @decl void gluLookAt(float eyex, float eyey, float eyez,@
//!                      float centerx, float centery, float centerz,@
//!                      float upx, float upy, float upz)
//! @decl void gluLookAt(Math.Matrix eye, Math.Matrix center, Math.Matrix up)
//!
//! gluLookAt creates a viewing matrix derived from an @[eye] point,
//! a reference point indicating the @[center] of the scene, and an
//! @[up] vector. The matrix maps the reference point to the negative
//! z axis and the eye point to the origin, so that, when a typical
//! projection matrix is used, the center of the scene maps to the
//! center of the viewport. Similarly, the direction described by the
//! up vector projected onto the viewing plane is mapped to the positive
//! y axis so that it points upward in the viewport. The up vector must
//! not be parallel to the line of sight from the eye to the reference
//! point.
//!
//! The matrix generated by gluLookAt postmultiplies the current matrix.
//!
//! The relation between the matrix objects and the float values are
//! @code
//! Math.Matrix eye = Math.Matrix( ({ eyex, eyey, eyez }) );
//! @endcode
//!
//! @seealso
//!   @[GL.glFrustum], @[gluPerspective]
void gluLookAt(float|object eye,float|object center,float|object up,
	       float ... old_api)
{
  Math.Matrix x,y,z;

  if (!objectp(eye))
  {
     eye=Math.Matrix( ({eye,center,up }) );
     center=Math.Matrix( old_api[..2] );
     up=Math.Matrix( old_api[3..5] );
  }
  
  /* Make rotation matrix */
  
  z=(eye-center)->normv();   /* Z vector */
  y=up;                      /* Y vector */
  x=y->cross(z);             /* X vector = Y cross Z */
  y=z->cross(x);             /* Recompute Y = Z cross X */
  
  /* mpichler, 19950515 */
  /* cross product gives area of parallelogram, which is < 1.0 for
   * non-perpendicular unit-length vectors; so normalize x, y here
   */
  
  x=x->normv(); // normalize
  y=y->normv(); // normalize

  array m=Array.transpose(({ @(x->vect()), 0.0,
			     @(y->vect()), 0.0,
			     @(z->vect()), 0.0,
			     0.0, 0.0, 0.0, 1.0 })/4)*({}); 
  
  glMultMatrix( m );
  
  /* Translate Eye to Origin */
  glTranslate( ((array)(-1*eye))[0] );
}  

//! gluOrtho2D sets up a two-dimensional orthographic viewing region.
//! This is equivalent to calling
//! @code
//! glOrtho(left, right, bottom, top, -1.0, 1.0);
//! @endcode
//! @fixme
//!   The GLU manual says @expr{glOrtho(a,b,c,d, 0, 1)@}.
//! @seealso
//!   @[GL.glOrtho], @[gluPerspective]
void gluOrtho2D(float left, float right,
		float bottom, float top)
{
  glOrtho( left, right, bottom, top, -1.0, 1.0 );
}

//! gluPerspective specifies a viewing frustum into the world coordinate
//! system. In general, the aspect ratio in gluPerspective should match
//! the aspect ratio of the associated viewport. For example, aspect =
//! 2.0 means the viewer's angle of view is twice as wide in x as it is
//! in y. If the viewport is twice as wide as it is tall, it displays the
//! image without distortion.
//!
//! The matrix generated by gluPerspective is multipled by the current
//! matrix, just as if @[GL.glMultMatrix] were called with the generated
//! matrix. To load the perspective matrix onto the current matrix stack
//! instead, precede the call to gluPerspective with a call to
//! @[GL.glLoadIdentity].
void gluPerspective(float fovy, float aspect,
		    float zNear, float zFar)
{
  float xmin, xmax, ymin, ymax;
  
  ymax = zNear * tan( fovy * M_PI / 360.0 );
  ymin = -ymax;
  
  xmin = ymin * aspect;
  xmax = ymax * aspect;
  
  glFrustum( xmin, xmax, ymin, ymax, zNear, zFar );
}

//! gluPickMatrix creates a projection matrix that can be used to
//! restrict drawing to a small region of the viewport. This is
//! typically useful to determine what objects are being drawn
//! near the cursor. Use gluPickMatrix to restrict drawing to a
//! small region around the cursor. Then, enter selection mode
//! (with @[GL.glRenderMode] and rerender the scene. All primitives
//! that would have been drawn near the cursor are identified and
//! stored in the selection buffer.
//!
//! The matrix created by gluPickMatrix is multiplied by the current
//! matrix just as if @[GL.glMultMatrix] is called with the generated
//! matrix. To effectively use the generated pick matrix for picking,
//! first call @[GL.glLoadIdentity] to load an identity matrix onto
//! the perspective matrix stack. Then call gluPickMatrix, and
//! finally, call a command (such as @[gluPerspective]) to multiply
//! the perspective matrix by the pick matrix.
//!
//! When using gluPickMatrix to pick NURBS, be careful to turn off the
//! NURBS property GLU_AUTO_LOAD_MATRIX. If GLU_AUTO_LOAD_MATRIX is not
//! turned off, then any NURBS surface rendered is subdivided
//! differently with the pick matrix than the way it was subdivided
//! without the pick matrix.
//!
//! @param viewport
//!    The viewport is an array with four integers.
//!
//! @fixme
//!   Does the NURB remark apply?
//!
//! @seealso
//!   @[GL.glGet], @[gluLoadIdentity], @[gluMultMatrix], @[gluRenderMode],
//!   @[gluPerspective]
void gluPickMatrix(float x, float y,
		   float width, float height,
		   array(int) viewport)
{
  array(float) m=allocate(16);
  float sx, sy;
  float tx, ty;
  
  sx = viewport[2] / width;
  sy = viewport[3] / height;
  tx = (viewport[2] + 2.0 * (viewport[0] - x)) / width;
  ty = (viewport[3] + 2.0 * (viewport[1] - y)) / height;
  
#define M(row,col)  m[col*4+row]
  M(0,0) = sx;   M(0,1) = 0.0;  M(0,2) = 0.0;  M(0,3) = tx;
  M(1,0) = 0.0;  M(1,1) = sy;   M(1,2) = 0.0;  M(1,3) = ty;
  M(2,0) = 0.0;  M(2,1) = 0.0;  M(2,2) = 1.0;  M(2,3) = 0.0;
  M(3,0) = 0.0;  M(3,1) = 0.0;  M(3,2) = 0.0;  M(3,3) = 1.0;
#undef M
  
  glMultMatrix( m );
}

protected void transform_point(array(float) out, array(float)m,
			    array(float) in)
{
#define M(row,col)  m[col*4+row]
  out[0] = M(0,0) * in[0] + M(0,1) * in[1] + M(0,2) * in[2] + M(0,3) * in[3];
  out[1] = M(1,0) * in[0] + M(1,1) * in[1] + M(1,2) * in[2] + M(1,3) * in[3];
  out[2] = M(2,0) * in[0] + M(2,1) * in[1] + M(2,2) * in[2] + M(2,3) * in[3];
  out[3] = M(3,0) * in[0] + M(3,1) * in[1] + M(3,2) * in[2] + M(3,3) * in[3];
#undef M
}

//! gluProject transforms the specified object coordinates into window
//! coordinates using @[model], @[proj], and @[viewport]. The result is
//! returned in a three valued array.
array(float) gluProject(float objx, float objy,
			float objz, array(float) model,
			array(float) proj, array(int) viewport)

{
  array(float) in=allocate(4),out=allocate(4);

  in[0]=objx; in[1]=objy; in[2]=objz; in[3]=1.0;
  transform_point(out,model,in);
  transform_point(in,proj,out);

  if (in[3]==0.0)
    return 0;

  in[0]/=in[3]; in[1]/=in[3]; in[2]/=in[3];

  return ({ viewport[0]+(1+in[0])*viewport[2]/2,
	    viewport[1]+(1+in[1])*viewport[3]/2,
	    (1+in[2])/2 });
}


// array(float) gluUnProject(float winx,float winy,float winz,
// 			  array(float) model, array(float) proj,
// 			  array(int) viewport)
// {
//   array(float)
//     m=allocate(16),
//     A=allocate(16),
//     in=allocate(4),
//     out=allocate(4);
  
//   in[0]=(winx-viewport[0])*2/viewport[2] - 1.0;
//   in[1]=(winy-viewport[1])*2/viewport[3] - 1.0;
//   in[2]=2*winz - 1.0;
//   in[3]=1.0;
  
//   matmul(A,proj,model);
//   invert_matrix(A,m);
  
//   transform_point(out,m,in);
//   if (out[3]==0.0)
//     return GL_FALSE;
//   return ({ out[0]/out[3], out[1]/out[3], out[2]/out[3] });
// }