/usr/lib/pike8.0/modules/GLU.pmod is in pike8.0-gl 8.0.164-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 | /*
* GL Utilities module.
*/
#pike __REAL_VERSION__
#require constant(GL.glOrtho)
//! The GL Utilities module is a partial implementation of the
//! GLU library. This module only contains functions that someone
//! at some point actually needed to get his work done. If you
//! need a GLU function that isn't in here, copy the C code from
//! the GLU library (Mesa was used last time), tweak it so that
//! it compiles as Pike code and then check it in into the CVS.
import GL;
#ifndef M_PI
#define M_PI 3.1415926536
#endif
//! @decl void gluLookAt(float eyex, float eyey, float eyez,@
//! float centerx, float centery, float centerz,@
//! float upx, float upy, float upz)
//! @decl void gluLookAt(Math.Matrix eye, Math.Matrix center, Math.Matrix up)
//!
//! gluLookAt creates a viewing matrix derived from an @[eye] point,
//! a reference point indicating the @[center] of the scene, and an
//! @[up] vector. The matrix maps the reference point to the negative
//! z axis and the eye point to the origin, so that, when a typical
//! projection matrix is used, the center of the scene maps to the
//! center of the viewport. Similarly, the direction described by the
//! up vector projected onto the viewing plane is mapped to the positive
//! y axis so that it points upward in the viewport. The up vector must
//! not be parallel to the line of sight from the eye to the reference
//! point.
//!
//! The matrix generated by gluLookAt postmultiplies the current matrix.
//!
//! The relation between the matrix objects and the float values are
//! @code
//! Math.Matrix eye = Math.Matrix( ({ eyex, eyey, eyez }) );
//! @endcode
//!
//! @seealso
//! @[GL.glFrustum], @[gluPerspective]
void gluLookAt(float|object eye,float|object center,float|object up,
float ... old_api)
{
Math.Matrix x,y,z;
if (!objectp(eye))
{
eye=Math.Matrix( ({eye,center,up }) );
center=Math.Matrix( old_api[..2] );
up=Math.Matrix( old_api[3..5] );
}
/* Make rotation matrix */
z=(eye-center)->normv(); /* Z vector */
y=up; /* Y vector */
x=y->cross(z); /* X vector = Y cross Z */
y=z->cross(x); /* Recompute Y = Z cross X */
/* mpichler, 19950515 */
/* cross product gives area of parallelogram, which is < 1.0 for
* non-perpendicular unit-length vectors; so normalize x, y here
*/
x=x->normv(); // normalize
y=y->normv(); // normalize
array m=Array.transpose(({ @(x->vect()), 0.0,
@(y->vect()), 0.0,
@(z->vect()), 0.0,
0.0, 0.0, 0.0, 1.0 })/4)*({});
glMultMatrix( m );
/* Translate Eye to Origin */
glTranslate( ((array)(-1*eye))[0] );
}
//! gluOrtho2D sets up a two-dimensional orthographic viewing region.
//! This is equivalent to calling
//! @code
//! glOrtho(left, right, bottom, top, -1.0, 1.0);
//! @endcode
//! @fixme
//! The GLU manual says @expr{glOrtho(a,b,c,d, 0, 1)@}.
//! @seealso
//! @[GL.glOrtho], @[gluPerspective]
void gluOrtho2D(float left, float right,
float bottom, float top)
{
glOrtho( left, right, bottom, top, -1.0, 1.0 );
}
//! gluPerspective specifies a viewing frustum into the world coordinate
//! system. In general, the aspect ratio in gluPerspective should match
//! the aspect ratio of the associated viewport. For example, aspect =
//! 2.0 means the viewer's angle of view is twice as wide in x as it is
//! in y. If the viewport is twice as wide as it is tall, it displays the
//! image without distortion.
//!
//! The matrix generated by gluPerspective is multipled by the current
//! matrix, just as if @[GL.glMultMatrix] were called with the generated
//! matrix. To load the perspective matrix onto the current matrix stack
//! instead, precede the call to gluPerspective with a call to
//! @[GL.glLoadIdentity].
void gluPerspective(float fovy, float aspect,
float zNear, float zFar)
{
float xmin, xmax, ymin, ymax;
ymax = zNear * tan( fovy * M_PI / 360.0 );
ymin = -ymax;
xmin = ymin * aspect;
xmax = ymax * aspect;
glFrustum( xmin, xmax, ymin, ymax, zNear, zFar );
}
//! gluPickMatrix creates a projection matrix that can be used to
//! restrict drawing to a small region of the viewport. This is
//! typically useful to determine what objects are being drawn
//! near the cursor. Use gluPickMatrix to restrict drawing to a
//! small region around the cursor. Then, enter selection mode
//! (with @[GL.glRenderMode] and rerender the scene. All primitives
//! that would have been drawn near the cursor are identified and
//! stored in the selection buffer.
//!
//! The matrix created by gluPickMatrix is multiplied by the current
//! matrix just as if @[GL.glMultMatrix] is called with the generated
//! matrix. To effectively use the generated pick matrix for picking,
//! first call @[GL.glLoadIdentity] to load an identity matrix onto
//! the perspective matrix stack. Then call gluPickMatrix, and
//! finally, call a command (such as @[gluPerspective]) to multiply
//! the perspective matrix by the pick matrix.
//!
//! When using gluPickMatrix to pick NURBS, be careful to turn off the
//! NURBS property GLU_AUTO_LOAD_MATRIX. If GLU_AUTO_LOAD_MATRIX is not
//! turned off, then any NURBS surface rendered is subdivided
//! differently with the pick matrix than the way it was subdivided
//! without the pick matrix.
//!
//! @param viewport
//! The viewport is an array with four integers.
//!
//! @fixme
//! Does the NURB remark apply?
//!
//! @seealso
//! @[GL.glGet], @[gluLoadIdentity], @[gluMultMatrix], @[gluRenderMode],
//! @[gluPerspective]
void gluPickMatrix(float x, float y,
float width, float height,
array(int) viewport)
{
array(float) m=allocate(16);
float sx, sy;
float tx, ty;
sx = viewport[2] / width;
sy = viewport[3] / height;
tx = (viewport[2] + 2.0 * (viewport[0] - x)) / width;
ty = (viewport[3] + 2.0 * (viewport[1] - y)) / height;
#define M(row,col) m[col*4+row]
M(0,0) = sx; M(0,1) = 0.0; M(0,2) = 0.0; M(0,3) = tx;
M(1,0) = 0.0; M(1,1) = sy; M(1,2) = 0.0; M(1,3) = ty;
M(2,0) = 0.0; M(2,1) = 0.0; M(2,2) = 1.0; M(2,3) = 0.0;
M(3,0) = 0.0; M(3,1) = 0.0; M(3,2) = 0.0; M(3,3) = 1.0;
#undef M
glMultMatrix( m );
}
protected void transform_point(array(float) out, array(float)m,
array(float) in)
{
#define M(row,col) m[col*4+row]
out[0] = M(0,0) * in[0] + M(0,1) * in[1] + M(0,2) * in[2] + M(0,3) * in[3];
out[1] = M(1,0) * in[0] + M(1,1) * in[1] + M(1,2) * in[2] + M(1,3) * in[3];
out[2] = M(2,0) * in[0] + M(2,1) * in[1] + M(2,2) * in[2] + M(2,3) * in[3];
out[3] = M(3,0) * in[0] + M(3,1) * in[1] + M(3,2) * in[2] + M(3,3) * in[3];
#undef M
}
//! gluProject transforms the specified object coordinates into window
//! coordinates using @[model], @[proj], and @[viewport]. The result is
//! returned in a three valued array.
array(float) gluProject(float objx, float objy,
float objz, array(float) model,
array(float) proj, array(int) viewport)
{
array(float) in=allocate(4),out=allocate(4);
in[0]=objx; in[1]=objy; in[2]=objz; in[3]=1.0;
transform_point(out,model,in);
transform_point(in,proj,out);
if (in[3]==0.0)
return 0;
in[0]/=in[3]; in[1]/=in[3]; in[2]/=in[3];
return ({ viewport[0]+(1+in[0])*viewport[2]/2,
viewport[1]+(1+in[1])*viewport[3]/2,
(1+in[2])/2 });
}
// array(float) gluUnProject(float winx,float winy,float winz,
// array(float) model, array(float) proj,
// array(int) viewport)
// {
// array(float)
// m=allocate(16),
// A=allocate(16),
// in=allocate(4),
// out=allocate(4);
// in[0]=(winx-viewport[0])*2/viewport[2] - 1.0;
// in[1]=(winy-viewport[1])*2/viewport[3] - 1.0;
// in[2]=2*winz - 1.0;
// in[3]=1.0;
// matmul(A,proj,model);
// invert_matrix(A,m);
// transform_point(out,m,in);
// if (out[3]==0.0)
// return GL_FALSE;
// return ({ out[0]/out[3], out[1]/out[3], out[2]/out[3] });
// }
|