This file is indexed.

/usr/share/doc/libplplot12/examples/tcl/x27.tcl is in plplot-tcl-dev 5.10.0+dfsg2-0.1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
# $Id: x27.tcl 11859 2011-08-05 08:38:34Z andrewross $
#
#  Drawing "spirograph" curves - epitrochoids, cycolids, roulettes
#
#  Copyright (C) 2007  Arjen Markus
#  Copyright (C) 2008  Andrew Ross
#
# This file is part of PLplot.
#
# PLplot is free software; you can redistribute it and/or modify
# it under the terms of the GNU Library General Public License as published
# by the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# PLplot is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Library General Public License for more details.
#
# You should have received a copy of the GNU Library General Public License
# along with PLplot; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
#
#

# --------------------------------------------------------------------------
# main
#
# Generates two kinds of plots:
#   - construction of a cycloid (animated)
#   - series of epitrochoids and hypotrochoids
# --------------------------------------------------------------------------

proc x27 {{w loopback}} {

  #     R, r, p, N
  set params {
    { 21.0   7.0   7.0   3.0  }
    { 21.0   7.0  10.0   3.0  }
    { 21.0  -7.0  10.0   3.0  }
    { 20.0   3.0   7.0  20.0  }
    { 20.0   3.0  10.0  20.0  }
    { 20.0  -3.0  10.0  20.0  }
    { 20.0  13.0   7.0  20.0  }
    { 20.0  13.0  20.0  20.0  }
    { 20.0 -13.0  20.0  20.0  }}

  #  Illustrate the construction of a cycloid

  cycloid $w

  #  Loop over the various curves
  #  First an overview, then all curves one by one
  $w cmd pladv 0
  $w cmd plssub 3 3

  set fill 0

  for { set i 0 } { $i < 9 } { incr i } {
     $w cmd pladv 0
     $w cmd plvpor 0.0  1.0  0.0  1.0
     spiro $w [lindex $params $i] $fill
  }
  $w cmd pladv 0
  $w cmd plssub 1 1

  for { set i 0 } { $i < 9 } { incr i } {
     $w cmd pladv 0
     $w cmd plvpor 0.0  1.0  0.0  1.0
     spiro $w [lindex $params $i] $fill
  }

  #  Fill the curves
  set fill 1

  $w cmd pladv 0
  $w cmd plssub 1 1 ;# One window per curve

  for { set i 0 } { $i < 9 } { incr i } {
      $w cmd  pladv 0
      $w cmd  plvpor 0.0 1.0 0.0 1.0
      spiro $w [lindex $params $i] $fill
  }

  arcs $w
}

#--------------------------------------------------------------------------
# Calculate greatest common divisor following pseudo-code for the
# Euclidian algorithm at http://en.wikipedia.org/wiki/Euclidean_algorithm

proc gcd {a b} {

    set a [expr {int(abs($a))}]
    set b [expr {int(abs($b))}]
    while { $b != 0 } {
        set t $b
        set b [expr {$a % $b}]
        set a $t
    }
    return $a
}

#  ===============================================================

proc cycloid {w} {

  #     TODO

}

#  ===============================================================

proc spiro {w params fill} {

  foreach {param1 param2 param3 param4} $params {break}

  set NPNT 2000

  matrix xcoord f [expr {$NPNT+1}]
  matrix ycoord f [expr {$NPNT+1}]

  #     Fill the coordinates

  #     Proper termination of the angle loop very near the beginning
  #     point, see
  #     http://mathforum.org/mathimages/index.php/Hypotrochoid.
  set windings [expr {int(abs($param2)/[gcd $param1 $param2])}]
  set steps    [expr {int($NPNT/$windings)}]
  set dphi     [expr {2.0*$::PLPLOT::PL_PI/double($steps)}]
  # puts [ format "windings, steps, dphi = %d, %d, %f" $windings $steps $dphi ]

  set n [expr {int($windings*$steps)+1}]

  for { set i 0 } { $i < $n } { incr i } {
     set phi  [expr {double($i) * $dphi}]
     set phiw [expr {($param1-$param2)/$param2*$phi}]
     xcoord $i = [expr {($param1-$param2)*cos($phi)+$param3*cos($phiw)}]
     ycoord $i = [expr {($param1-$param2)*sin($phi)-$param3*sin($phiw)}]

     if { $i == 0} {
	set xmin [xcoord 0]  
	set xmax [xcoord 0]  
	set ymin [ycoord 0]  
	set ymax [ycoord 0]  
     }  
     if { $xmin > [xcoord $i] } { set xmin [xcoord $i] }
     if { $xmax < [xcoord $i] } { set xmax [xcoord $i] }
     if { $ymin > [ycoord $i] } { set ymin [ycoord $i] }
     if { $ymax < [ycoord $i] } { set ymax [ycoord $i] }
  }

  set xrange_adjust [expr {0.15 * ($xmax - $xmin) }]
  set xmin [expr {$xmin - $xrange_adjust }]
  set xmax [expr {$xmax + $xrange_adjust }]
  set yrange_adjust [expr {0.15 * ($ymax - $ymin) }]
  set ymin [expr {$ymin - $yrange_adjust }]
  set ymax [expr {$ymax + $yrange_adjust }]

  $w cmd plwind $xmin $xmax $ymin $ymax

  $w cmd plcol0 1

  if { $fill } {
      $w cmd plfill $n xcoord ycoord
  } else {
      $w cmd plline $n xcoord ycoord
  }
}

proc arcs {w} {
    set NSEG 8
    set pi $::PLPLOT::PL_PI

    set theta 0.0
    set dtheta [expr {360.0 / $NSEG}]
    $w cmd plenv -10.0 10.0 -10.0 10.0 1 0

    # Plot segments of circle in different colors
    for { set i 0 } { $i < $NSEG } {incr i} {
        $w cmd plcol0 [expr {$i%2 + 1}]
        $w cmd plarc 0.0 0.0 8.0 8.0 $theta [expr {$theta + $dtheta}] 0.0 0
        set theta [expr {$theta + $dtheta}]
    }

    # Draw several filled ellipses inside the circle at different
    # angles.
    set a 3.0
    set b [expr {$a * tan( ($dtheta/180.0*$pi)/2.0 )}]
    set theta  [expr {$dtheta/2.0}]
    for {set i 0} { $i < $NSEG } { incr i } {
        $w cmd plcol0 [expr {2 - $i%2}]
        $w cmd plarc [expr {$a*cos($theta/180.0*$pi)}] [expr {$a*sin($theta/180.0*$pi)}] $a $b 0.0 360.0 $theta 1
	set theta [expr {$theta + $dtheta}]
    }

}