/usr/include/polymake/graph/hungarian_method.h is in polymake 3.0r1-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 | /* Copyright (c) 1997-2015
Ewgenij Gawrilow, Michael Joswig (Technische Universitaet Berlin, Germany)
http://www.polymake.org
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version: http://www.gnu.org/licenses/gpl.txt.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
--------------------------------------------------------------------------------
*/
#ifndef POLYMAKE_HUNGARIAN_METHOD_H
#define POLYMAKE_HUNGARIAN_METHOD_H
#undef DOMAIN
#include "polymake/client.h"
#include "polymake/Graph.h"
#include "polymake/Set.h"
#include "polymake/Vector.h"
#include "polymake/Matrix.h"
#include "polymake/graph/BFSiterator.h"
namespace polymake { namespace graph {
//The implementation is adapted to Figure 11-2 in
//Papadimitriou, Christos H.; Steiglitz, Kenneth
//Combinatorial optimization: algorithms and complexity. Prentice-Hall, Inc., Englewood Cliffs, N.J., 1982. xvi+496 pp. ISBN: 0-13-152462-3
//
//Corrections of the algorithms in this book can be found at
//www.cs.princeton.edu/~ken/latest.pdf
//
//We fixed the algorithm independently of those errata.
template <typename E>
class HungarianMethod;
template <typename E>
class HungarianMethod {
protected:
const Matrix<E> weights;
const int dim;
class TreeGrowVisitor;
friend class TreeGrowVisitor;
Vector<E> a, b, slack, labeledColMin;
Graph<Directed> equality_subgraph;
Set<int> exposed_points;
Entire<Set<int> >::const_iterator r; /* an iterator over the exposed points */
int start_node;
BFSiterator< Graph<Directed>, Visitor< TreeGrowVisitor > > it; /* helps growing the hungarian trees from a start node */
Graph<Directed> test_graph;
Matrix<E> wmatrix;
Set<int> labeled_points;
public:
HungarianMethod() {}
HungarianMethod(const Matrix<E>& weights)
: weights(weights), dim(weights.cols()),
a(dim,0), b(dim),
slack(dim,-1), labeledColMin(dim,-1), equality_subgraph(2*dim),
exposed_points(sequence(0,dim)), r(entire(exposed_points)),
start_node(*r), it(equality_subgraph, start_node)
{
// Initialisation of vectors for rows and columns
for ( int j = 0; j < dim; ++j) {
b[j] = accumulate(weights.col(j), operations::min());
}
// Build equality subgraph; it is a bipartite graph with vertex sets {0, ..., n-1} and {n, ..., 2n-1}
for ( int j = 0; j < dim; ++j) {
for ( int i = 0; i < dim; ++i) {
if ((a[i] + b[j]) == weights[i][j]) {
equality_subgraph.add_edge(i, dim + j);
}
}
}
}
// This nested class provides the appropriate methods for the required BFS to grow hungarian trees
protected:
class TreeGrowVisitor {
friend class HungarianMethod;
protected:
// label encodes the path in the hungarian trees from an exposed point to the selected node
std::vector<int> label;
std::vector<bool> visited;
int leaf;
const int dim;
const Graph<Directed>* H;
Set<int > start_nodes;
public:
TreeGrowVisitor() {}
TreeGrowVisitor(const Graph<Directed>& G, int start_node)
: label(G.top().dim(), -1), visited(G.top().dim(), false),
dim((G.top().dim() + 1)/2), H(&G), start_nodes()
{
leaf = -1;
start_nodes += start_node;
if (!label.empty()){
label[start_node] = start_node;
visited[start_node] = true;
}
}
// This method provides two functionalities: If the search had found a augmenting path and hence the equality subgraph was modified, it initializes a new search. Otherwise only another starting node for the growing of an hungarian tree is set.
void reset(const Graph<Directed>&, int start_node) {
if( (start_nodes.collect(start_node)) || (leaf > -1) ) reset_values();
leaf = -1;
label[start_node] = start_node;
visited[start_node] = true;
start_nodes +=start_node;
}
void reset_values() {
start_nodes.clear();
fill(pm::entire(label),-1);
fill(pm::entire(visited),false);
}
bool seen(int n) const { return visited[n]; }
void add(int n, int n_from) {
visited[n] = true;
// here the label is set during a BFS step in the equality subgraph
if(H->edge_exists(n_from, n)) {
label[n] = n_from;
}
// checking, if n is a leaf and is on the right side and so the path to n is augmenting
if ((n >= dim) && (H->out_degree(n) == 0)) leaf = n;
}
static const bool check_edges=false;
void check(int,int) {}
const int& operator[] (int n) const { return label[n]; }
};
public:
// removes in the directed graph G the directed edge with starting point 'start' and end point 'end' and adds the reverse edge
void reverse_edge (int start, int end) {
assert(start >= 0 && end >= 0);
equality_subgraph.delete_edge(start,end);
equality_subgraph.add_edge(end,start);
}
/* searches in the equality subgraph for an augmenting path starting with the exposed point 'start_node'
returns true, if such a path is found, and augments the matching by reversing edges in the equality subgraph. */
bool augment() {
int node = it.node_visitor().leaf;
int predecessor;
// Going backwards in the hungarian tree from the leaf which was just found.
while (node != start_node) {
predecessor = it.node_visitor()[node];
// modifies the equality_subgraph, so that a new matching is encoded.
reverse_edge(predecessor, node);
node = predecessor;
}
// remove the start_node from exposed_points since it is matched now.
exposed_points -= start_node;
// reset iterator over exposed_points
r = entire(exposed_points);
// reset slack to -1 since the equality subgraph has changed
fill(pm::entire(slack),-1);
fill(pm::entire(labeledColMin),-1);
// initialize the growing of hungarian trees if there are still exposed points left
if (!r.at_end()) {
it.reset(*r);
return false;
}
else { return true; }
}
// checks for every right node (dual variable b) if the corresponding slack should be adjusted with the left node 'index' (dual variable a); the lowest value is chosen for it.
void compare_slack(int index) {
E sl;
for (int k = 0; k < b.dim(); k++) {
sl = weights[index][k] - a[index] - b[k];
if((sl < slack[k] || slack[k] == -1 || slack[k] == 0)) {
if(sl > 0) {
slack[k] = sl;
if (labeledColMin[k] != 0) {
labeledColMin[k] = sl;
}
}
}
if(sl == 0) labeledColMin[k] = 0;
}
}
// auxiliary method for compare_slack
void change_slack(int n) {
if (n == start_node) compare_slack(n);
if (n >= dim) {
for (Entire<Graph<Directed>::out_edge_list>::const_iterator e=entire(equality_subgraph.out_edges(n)); !e.at_end(); ++e)
compare_slack(e.to_node());
}
}
// here the dual variables a and b are changed in case that the equality subgraph does not contain enough edges and so a maximal matching is not perfect
void modify() {
E theta = -1;
// theta is the lowest positive value of the weights[i][j], where i corresponds to labeled left nodes and j runs from 0 to dim-1
for (int k = 0; k < dim; k++) {
if ((slack[k] > 0) && ((slack[k] < theta) || (theta == -1) ) ) theta = slack[k];
}
for ( int k = 0; k < dim; k++)
if (it.node_visitor()[k] != -1) a[k] = a[k] + theta;
for ( int k = 0; k < dim; k++) {
if (labeledColMin[k] == 0 )
b[k] = b[k] - theta;
for (int j = 0; j < dim; j++) {
if ( (a[j] + b[k] != weights[j][k]) ) {
equality_subgraph.delete_edge(j, k + dim);
equality_subgraph.delete_edge(k + dim,j);
}
}
}
for ( int k = 0; k < dim; k++) {
if( (labeledColMin[k] > 0) ) { // slack could also be -1 -- this is a symbolic infty
slack[k] = slack[k] - theta;
if (slack[k] == 0) { // at least one new edge has been created at this point
for (int j = 0; j < dim; j++) {
if (a[j] + b[k] == weights[j][k]) {
equality_subgraph.delete_edge(j,dim+k); //ensures that there are no multiple edges
equality_subgraph.add_edge(j,dim+k);
}
}
}
if (labeledColMin[k] > 0) labeledColMin[k] = slack[k];
}
}
fill(pm::entire(slack),-1);
fill(pm::entire(labeledColMin),-1);
r = entire(exposed_points);
}
// initializes a bfs with start node start_node
int growTree () {
it.reset(start_node);
// search stops, if there is no further edge to go or a leaf of the hungarian tree is found, so that one can augment
while (!it.at_end() && (it.node_visitor().leaf == -1) ) {
// the vector slack is adjusted, so that it contains the lowest values in the labeled rows when it is needed in the modification step
change_slack(*it);
++it;
};
return it.node_visitor().leaf;
}
// repeats the process of growing trees from exposed nodes until a perfect matching is found
Array<int> stage () {
if (dim != 0) {
bool finished = false;
while (!finished) {
while(!r.at_end()) {
start_node = *r;
if (!(growTree() == -1)) finished = augment();
else ++r;
}
if (!finished) {
modify();
it.reset(start_node);
it.reset(*r);
}
}
}
Array<int > matching(dim) ;
for (int k = 0; k < dim; k++) {
matching[k] = equality_subgraph.in_adjacent_nodes(k).front() - dim;
}
return matching;
}
};
} //end graph namespace
} //end polymake namespace
#endif // POLYMAKE_HUNGARIAN_METHOD_H
// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End:
|