This file is indexed.

/usr/include/polymake/internal/sparse2d.h is in polymake 3.0r1-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
/* Copyright (c) 1997-2015
   Ewgenij Gawrilow, Michael Joswig (Technische Universitaet Berlin, Germany)
   http://www.polymake.org

   This program is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by the
   Free Software Foundation; either version 2, or (at your option) any
   later version: http://www.gnu.org/licenses/gpl.txt.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
--------------------------------------------------------------------------------
*/

#ifndef POLYMAKE_INTERNAL_SPARSE2D_H
#define POLYMAKE_INTERNAL_SPARSE2D_H

#include "polymake/internal/AVL.h"
#include "polymake/internal/tree_containers.h"
#include "polymake/internal/sparse2d_ruler.h"
#include "polymake/SelectedSubset.h"
#include "polymake/vector"

#include <stdexcept>
#if POLYMAKE_DEBUG
#  include <sstream>
#endif

namespace pm {

template <typename Matrix> class Rows;
template <typename Matrix> class Cols;

namespace sparse2d {

using pm::relocate;

template <typename E>
struct cell {
   typedef E mapped_type;

   int key;             /// sum of row and column indices
   AVL::Ptr<cell> links[6];
   E data;

   explicit cell(int i) : key(i), data() {}
   template <typename Data>
   cell(int i_arg, const Data& data_arg) : key(i_arg), data(data_arg) {}

   /// don't copy the tree links
   cell(const cell& o) : key(o.key), data(o.data) {}

   mapped_type& get_data() { return data; }
   const mapped_type& get_data() const { return data; }
};

template <>
struct cell<nothing> {
   typedef nothing mapped_type;

   int key;                     /// sum of row and column indices
   AVL::Ptr<cell> links[6];

   explicit cell(int i) : key(i) {}
   cell(int i, const nothing&) : key(i) {}

   /// don't copy the tree links
   cell(const cell& o) : key(o.key) {}

   const nothing& get_data() const
   {
      return pair<int,nothing>::second;
   }
};

enum restriction_kind { full, dying, only_rows, only_cols };

template <typename E, bool symmetric=false, restriction_kind restriction=full> class Table;
template <typename Base, bool symmetric, restriction_kind restriction=full> class traits;
template <typename,typename,bool> struct asym_permute_entries;
template <typename Traits> struct sym_permute_entries;

template <typename E, bool _row_oriented, bool _symmetric>
class it_traits {
protected:
   int line_index;
public:
   static const bool row_oriented=_row_oriented, symmetric=_symmetric;
   typedef cell<E> Node;
   typedef it_traits<E,(!symmetric && !row_oriented),symmetric> cross_traits;

   AVL::Ptr<Node>& link(Node *n, AVL::link_index X) const
   {
      const int in_row= symmetric ? n->key > 2*line_index : row_oriented;
      return n->links[X-AVL::L + in_row*3];
   }

   it_traits(int index_arg=0) : line_index(index_arg) {}

   int get_line_index() const { return line_index; }
   const it_traits& get_it_traits() const { return *this; }
};

template <typename E, bool _row_oriented, bool _symmetric, restriction_kind restriction=full>
class traits_base : public it_traits<E, _row_oriented, _symmetric> {
public:
   typedef it_traits<E,_row_oriented,_symmetric> traits_for_iterator;
   typedef typename traits_for_iterator::Node Node;
protected:
   mutable AVL::Ptr<Node> root_links[3];

public:
   static const bool
      symmetric=_symmetric,
      row_oriented=_row_oriented,
      allow_multiple=false,
      cross_oriented= restriction!=only_rows && restriction!=only_cols ? !symmetric && !row_oriented : row_oriented,
      fixed_dim= _symmetric || restriction==(_row_oriented ? only_cols : only_rows);

   typedef E mapped_type;
   typedef AVL::tree< traits<traits_base, symmetric, restriction> > own_tree;
   typedef AVL::tree< traits<traits_base<E,cross_oriented,symmetric,restriction>, symmetric, restriction> > cross_tree;
   typedef ruler<own_tree, typename if_else<symmetric,nothing,void*>::type> own_ruler;
   typedef ruler<cross_tree, typename if_else<symmetric,nothing,void*>::type> cross_ruler;
protected:
   Node* head_node() const
   {
      return reinterpret_cast<Node*>(reinterpret_cast<char*>(const_cast<traits_base*>(this))
                                     - (!symmetric && row_oriented)*sizeof(root_links));
   }

   const own_ruler& get_cross_ruler(True) const
   {
      return own_ruler::reverse_cast(static_cast<const own_tree*>(this), this->line_index);
   }
   own_ruler& get_cross_ruler(True)
   {
      return own_ruler::reverse_cast(static_cast<own_tree*>(this), this->line_index);
   }
   const cross_ruler& get_cross_ruler(False) const
   {
      return *reinterpret_cast<const cross_ruler*>(get_cross_ruler(True()).prefix());
   }
   cross_ruler& get_cross_ruler(False)
   {
      return *reinterpret_cast<cross_ruler*>(get_cross_ruler(True()).prefix());
   }
   const cross_ruler& get_cross_ruler() const
   {
      return get_cross_ruler(bool2type<symmetric>());
   }
   cross_ruler& get_cross_ruler()
   {
      return get_cross_ruler(bool2type<symmetric>());
   }

   /** @retval <0 first visit of two
                0 first and only visit
               >0 second visit of two */
   int visit_by_copy(Node* n) const
   {
      if (symmetric)
         return 2*this->line_index - n->key;
      else
         return row_oriented ? -1 : 1;
   }

   void notify_add(Node*) {}
   void notify_remove(Node*) {}

public:
   typedef int arg_type;
   traits_base(int index_arg) : traits_for_iterator(index_arg) {}

   const cross_tree& get_cross_tree(int i) const
   {
      return get_cross_ruler()[i];
   }
   cross_tree& get_cross_tree(int i)
   {
      return get_cross_ruler()[i];
   }
   
   template <typename,bool,restriction_kind> friend class Table;
};

template <typename Base, bool symmetric, restriction_kind restriction>
class traits : public Base {
public:
   typedef int key_type;
   typedef operations::cmp key_comparator_type;
   typedef typename Base::Node Node;
   typedef std::allocator<Node> node_allocator_type;
protected:
   key_comparator_type key_comparator;
   node_allocator_type node_allocator;

   int key(const Node& n) const { return n.key - this->get_line_index(); }

   static typename Base::mapped_type& data(Node& n) { return n.data; }

   void insert_node_cross(Node *n, int i, True)
   {
      this->get_cross_tree(i).insert_node(n);
   }
   void insert_node_cross(Node *, int i, False)
   {
      long& max_cross=reinterpret_cast<long&>(this->get_cross_ruler(True()).prefix());
      if (i>=max_cross) max_cross=i+1;
   }

   Node* create_node(int i)
   {
      Node *n=new(node_allocator.allocate(1)) Node(i + this->get_line_index());
      insert_node_cross(n, i, bool2type<restriction==full>());
      this->notify_add(n);
      return n;
   }

   template <typename Data>
   Node* create_node(int i, const Data& data)
   {
      Node *n=new(node_allocator.allocate(1)) Node(i + this->get_line_index(), data);
      insert_node_cross(n, i, bool2type<restriction==full>());
      this->notify_add(n);
      return n;
   }

   template <typename Data>
   Node* create_node(const pair<int, Data>& p)
   {
      return create_node(p.first, p.second);
   }

   Node* create_node(const pair<int, nothing>& p)
   {
      return create_node(p.first);
   }

   void remove_node_cross(Node* n, True)
   {
      this->get_cross_tree(n->key - this->get_line_index()).remove_node(n);
   }
   void remove_node_cross(Node*, False) {}

   Node* clone_node(Node* n)
   {
      const int visit=this->visit_by_copy(n);
      Node *clone= visit<=0 ? new(node_allocator.allocate(1)) Node(*n) : n->links[1];
      if (visit<0) {
         clone->links[1]=n->links[1];
         n->links[1]=clone;
      } else if (visit>0) {
         n->links[1]=clone->links[1];
      }
      return clone;
   }

   static bool own_node(Node*)
   {
      return restriction != dying || Base::row_oriented;
   }

   int max_size(True) const
   {
      return this->get_cross_ruler().size();
   }
   int max_size(False) const
   {
      return reinterpret_cast<const long&>(this->get_cross_ruler(True()).prefix());
   }

public:
   traits() {}
   traits(typename Base::arg_type init_arg) : Base(init_arg) {}

   void destroy_node(Node* n)
   {
      remove_node_cross(n, bool2type<restriction==full>());
      if (restriction != dying) this->notify_remove(n);
      node_allocator.destroy(n);
      node_allocator.deallocate(n,1);
   }

   int max_size() const
   {
      return max_size(bool2type<(restriction!=only_rows && restriction!=only_cols)>());
   }
   const key_comparator_type& get_comparator() const
   {
      return key_comparator;
   }

   friend void relocate(traits *from, traits *to)
   {
      pm::relocate(static_cast<Base*>(from), static_cast<Base*>(to), True());
   }

   template <typename,bool,restriction_kind> friend class Table;
   template <typename> friend struct sym_permute_entries;
   template <typename,typename,bool> friend struct asym_permute_entries;
};

template <typename Base, restriction_kind restriction>
class traits<Base, true, restriction> : public traits<Base, false, restriction> {
public:
   typedef typename traits<Base,false,restriction>::Node Node;
protected:
   Node* insert_node(Node *n, int i)
   {
      if (i != this->get_line_index())
         this->get_cross_tree(i).insert_node(n);
      this->notify_add(n);
      return n;
   }

   Node* create_node(int i)
   {
      return insert_node(new(this->node_allocator.allocate(1)) Node(i + this->get_line_index()), i);
   }

   template <typename Data>
   Node* create_node(int i, const Data& data)
   {
      return insert_node(new(this->node_allocator.allocate(1)) Node(i + this->get_line_index(), data), i);
   }

   template <typename Data>
   Node* create_node(const pair<int, Data>& p)
   {
      return create_node(p.first, p.second);
   }

   Node* create_node(const pair<int, nothing>& p)
   {
      return create_node(p.first);
   }

   void remove_node_cross(Node* n, True)
   {
      const int l=this->get_line_index(), i=n->key - l;
      if (i != l) this->get_cross_tree(i).remove_node(n);
   }
   void remove_node_cross(Node*, False) {}

   bool own_node(Node *n) const
   {
      return restriction==full || n->key >= 2*this->get_line_index();
   }
public:
   traits() {}
   traits(typename Base::arg_type init_arg) : traits<Base,false,restriction>(init_arg) {}

   void destroy_node(Node* n)
   {
      remove_node_cross(n, bool2type<restriction==full>());
      if (restriction != dying) this->notify_remove(n);
      this->node_allocator.destroy(n);
      this->node_allocator.deallocate(n,1);
   }
};

template <typename CellRef>
struct cell_accessor {
   typedef CellRef argument_type;
   typedef typename deref<CellRef>::type::mapped_type mapped_type;
   typedef typename if_else<identical<mapped_type,nothing>::value,
                            const nothing&,
                            typename inherit_ref<mapped_type,CellRef>::type >::type
      result_type;
   result_type operator() (typename function_argument<CellRef>::type c) const { return c.get_data(); }
};

template <typename IteratorRef>
struct cell_index_accessor {
   typedef IteratorRef argument_type;
   typedef const int result_type;

   result_type operator() (argument_type it) const
   {
      return it->key - it.get_line_index();
   }
};

template <typename row_ruler, typename col_ruler, bool restricted>
struct asym_permute_entries {
   col_ruler *C;

   typedef typename row_ruler::value_type tree_type;
   typedef typename tree_type::Node Node;

   static void relocate(tree_type *from, tree_type *to) { relocate_tree(from,to,True()); }

   void operator()(row_ruler*, row_ruler* R) const
   {
      if (!restricted) {
         for (typename Entire<col_ruler>::iterator ci=entire(*C);  !ci.at_end();  ++ci)
            ci->init();
         R->prefix()=C;
         C->prefix()=R;
      }
      int r=0;
      for (typename Entire<row_ruler>::iterator ri=entire(*R); !ri.at_end();  ++ri, ++r) {
         const int old_r=ri->line_index, rdiff=r-old_r;
         ri->line_index=r;
         for (typename tree_type::iterator e=ri->begin(); !e.at_end(); ++e) {
            Node *node=e.operator->();
            const int c=node->key-old_r;
            node->key += rdiff;
            if (!restricted) (*C)[c].push_back_node(node);
         }
      }
   }

   asym_permute_entries(col_ruler *C_arg) : C(C_arg) {}
};

template <typename Iterator> struct cross_direction_helper;

template <typename Traits, AVL::link_index Dir>
struct cross_direction_helper< AVL::tree_iterator<Traits,Dir> > {
   typedef AVL::tree_iterator<typename inherit_const<typename Traits::cross_traits, Traits>::type, Dir> iterator;
};

template <typename Iterator> inline
unary_transform_iterator<typename cross_direction_helper<Iterator>::iterator,
                         pair< BuildUnary<cell_accessor>, BuildUnaryIt<cell_index_accessor> > >
cross_direction(const unary_transform_iterator<Iterator, pair< BuildUnary<cell_accessor>, BuildUnaryIt<cell_index_accessor> > >& it)
{
   return typename cross_direction_helper<Iterator>::iterator(it.index(), it.Iterator::operator->());
}

template <typename Top, typename E, bool symmetric, restriction_kind restriction, typename LineFactory> class Rows;
template <typename Top, typename E, bool symmetric, restriction_kind restriction, typename LineFactory> class Cols;
template <typename Tree> class line;

template <typename E, bool symmetric, restriction_kind restriction>
class Table {
protected:
   static const bool restricted= restriction != full;
   typedef traits<traits_base<E,true,symmetric,restriction>, symmetric,restriction> row_tree_traits;
   typedef traits<traits_base<E,false,symmetric,restriction>, symmetric,restriction> col_tree_traits;
public:
   typedef AVL::tree<row_tree_traits> row_tree_type;
   typedef AVL::tree<col_tree_traits> col_tree_type;
   typedef typename if_else<restriction==only_cols, col_tree_type, row_tree_type>::type primary_tree_type;
   typedef typename row_tree_traits::own_ruler row_ruler;
   typedef typename col_tree_traits::own_ruler col_ruler;
protected:
   typedef Table<E,symmetric,dying> restricted_Table;

   row_ruler *R;
   col_ruler *C;

   void _copy(const Table& t, int add_r=0, int add_c=0)
   {
      R= restriction != only_cols ? row_ruler::construct(*t.R,add_r) : 0;
      C= restriction != only_rows ? col_ruler::construct(*t.C,add_c) : 0;
      if (!restricted) {
         R->prefix()=C;
         C->prefix()=R;
      } else if (restriction == only_rows) {
         R->prefix()=t.R->prefix();
      } else if (restriction == only_cols) {
         C->prefix()=t.C->prefix();
      }
   }
public:
   Table()
      : R(row_ruler::construct(0)),
        C(col_ruler::construct(0))
   {
      R->prefix()=C;
      C->prefix()=R;
   }

   Table(const nothing&)
   {
      if (!restricted)
         throw std::runtime_error("sparse2d::Table - both dimensions required in unrestricted mode");
      R=NULL; C=NULL;
   }

   explicit Table(int n)
      : R(restriction != only_cols ? row_ruler::construct(n) : 0),
        C(restriction != only_rows ? col_ruler::construct(n) : 0)
   {
      if (!restricted)
         throw std::runtime_error("sparse2d::Table - both dimensions required in unrestricted mode");
      if (restriction == only_rows)
         R->prefix()=NULL;
      else
         C->prefix()=NULL;
   }

   Table(int r, int c)
      : R(restriction != only_cols ? row_ruler::construct(r) : 0),
        C(restriction != only_rows ? col_ruler::construct(c) : 0)
   {
      if (restriction == only_rows) {
         reinterpret_cast<long&>(R->prefix())=c;
      } else if (restriction == only_cols) {
         reinterpret_cast<long&>(C->prefix())=r;
      } else {
         R->prefix()=C;
         C->prefix()=R;
      }
   }

   Table(const Table& t, int add_r=0, int add_c=0)
   {
      _copy(t,add_r,add_c);
   }
private:
   template <typename _row_ruler, typename _col_ruler>
   static _col_ruler* _take_over(_row_ruler* R, _col_ruler* C)
   {
      C=_col_ruler::construct(reinterpret_cast<const long&>(R->prefix()));
      for (typename Entire<_row_ruler>::iterator t=entire(*R);  !t.at_end();  ++t)
         for (typename _row_ruler::value_type::iterator e=t->begin(); !e.at_end(); ++e)
            (*C)[e->key - t->get_line_index()].push_back_node(e.operator->());
      R->prefix()=C;
      C->prefix()=R;
      return C;
   }
public:
   Table(Table<E,symmetric,only_rows>& t)
   {
      if (restriction==only_rows) {
         _copy(reinterpret_cast<const Table&>(t));
      } else {
         if (restricted)
            throw std::runtime_error("sparse2d::Table - conversion between two restricted modes");
         R=reinterpret_cast<row_ruler*>(t.R); t.R=NULL;
         C=_take_over(R, C);
      }
   }

   Table(Table<E,symmetric,only_cols>& t)
   {
      if (restriction==only_cols) {
         _copy(reinterpret_cast<const Table&>(t));
      } else {
         if (restricted)
            throw std::runtime_error("sparse2d::Table - conversion between two restricted modes");
         C=reinterpret_cast<col_ruler*>(t.C); t.C=NULL;
         R=_take_over(C,R);
      }
   }

   ~Table()
   {
      if (restriction==full) {
         std::_Destroy(reinterpret_cast<restricted_Table*>(this));
      } else {
         if (restriction==only_cols && C || restriction==dying) col_ruler::destroy(C);
         if (restriction==only_rows && R || restriction==dying) row_ruler::destroy(R);
      }
   }

   Table& operator= (const Table& t)
   {
      this->~Table();
      new(this) Table(t);
      return *this;
   }

   Table& operator= (Table<E,symmetric,only_rows>& t)
   {
      this->~Table();
      new(this) Table(t);
      return *this;
   }

   Table& operator= (Table<E,symmetric,only_cols>& t)
   {
      this->~Table();
      new(this) Table(t);
      return *this;
   }

   void swap(Table& t)
   {
      std::swap(R,t.R);
      std::swap(C,t.C);
   }

   int rows() const
   {
      return restriction != only_cols ? R->size() : reinterpret_cast<const long&>(C->prefix());
   }
   int cols() const
   {
      return restriction != only_rows ? C->size() : reinterpret_cast<const long&>(R->prefix());
   }

   void clear(int r=0, int c=0)
   {
      if (restriction==full) {
         reinterpret_cast<restricted_Table*>(this)->clear(r,c);
      } else if (restriction==only_rows) {
         R=row_ruler::resize_and_clear(R,r);
         R->prefix()=NULL;
      } else if (restriction==only_cols) {
         C=col_ruler::resize_and_clear(C,r);    // not a typo: the second argument must be omitted in this case
         C->prefix()=NULL;
      } else {
         R=row_ruler::resize_and_clear(R,r);
         C=col_ruler::resize_and_clear(C,c);
         R->prefix()=C;
         C->prefix()=R;
      }
   }

   struct shared_clear {
      int r, c;
      shared_clear(int r_arg, int c_arg) : r(r_arg), c(c_arg) {}

      void operator() (void *p, const Table&) const { new(p) Table(r,c); }
      void operator() (Table& t) const { t.clear(r,c); }
   };

   void resize_rows(int r)
   {
      if (restriction == only_rows && !R) {
         R=row_ruler::construct(r);
         R->prefix()=NULL;
      } else if (restriction == only_cols) {
         reinterpret_cast<long&>(C->prefix())=r;
      } else {
         R=row_ruler::resize(R,r);
      }
      if (!restricted) {
         R->prefix()=C;
         C->prefix()=R;
      }
   }

   void resize_cols(int c)
   {
      if (restriction == only_cols && !C) {
         C=col_ruler::construct(c);
         C->prefix()=NULL;
      } else if (restriction == only_rows) {
         reinterpret_cast<long&>(R->prefix())=c;
      } else {
         C=col_ruler::resize(C,c);
      }
      if (!restricted) {
         R->prefix()=C;
         C->prefix()=R;
      }
   }

   struct shared_add_rows {
      int n;
      shared_add_rows(int n_arg) : n(n_arg) {}

      void operator() (void *p, const Table& t) const { new(p) Table(t,n,0); }
      void operator() (Table& t) const { t.resize_rows(t.rows()+n); }
   };

   struct shared_add_cols {
      int n;
      shared_add_cols(int n_arg) : n(n_arg) {}

      void operator() (void *p, const Table& t) const { new(p) Table(t,0,n); }
      void operator() (Table& t) const { t.resize_cols(t.cols()+n); }
   };

   void resize(int r, int c)
   {
      if (!restricted) {
         R=row_ruler::resize(R,r);
         C=col_ruler::resize(C,c);
         R->prefix()=C;
         C->prefix()=R;
      } else {
         if (restricted)
            throw std::runtime_error("sparse2d::Table::resize - exactly one non-zero dimension allowed in restricted mode");
      }
   }

protected:
   template <typename _ruler, typename number_consumer>
   static void _squeeze(_ruler* &R, const number_consumer& nc)
   {
      typedef typename _ruler::value_type tree_type;
      int i=0, inew=0;
      for (tree_type *t=R->begin(), *end=R->end(); t!=end; ++t, ++i) {
         if (t->size()) {
            if (int idiff=i-inew) {
               t->line_index=inew;
               for (typename Entire<tree_type>::iterator e=entire(*t); !e.at_end(); ++e)
                  e->key -= idiff;
               relocate_tree(t, t-idiff, True());
            }
            nc(i, inew);  ++inew;
         } else {
            std::_Destroy(t);
         }
      }
      if (inew < i) R=_ruler::resize(R,inew,false);
   }
public:
   /** Remove the empty rows and columns.
       The remaining rows and columns are renumbered without gaps.
   */
   template <typename row_number_consumer, typename col_number_consumer>
   void squeeze(const row_number_consumer& rnc, const col_number_consumer& cnc)
   {
      if (restriction != only_cols) _squeeze(R, rnc);
      if (restriction != only_rows) _squeeze(C, cnc);
      if (!restricted) R->prefix()=C, C->prefix()=R;
   }

   template <typename row_number_consumer>
   void squeeze(const row_number_consumer& rnc) { squeeze(rnc, operations::binary_noop()); }

   void squeeze() { squeeze(operations::binary_noop(), operations::binary_noop()); }

   template <typename number_consumer>
   void squeeze_rows(const number_consumer& nc)
   {
      if (restriction==only_cols)
         throw std::runtime_error("squeeze_rows not allowed in restricted-to-columns mode");
      _squeeze(R, nc);
      if (!restricted) R->prefix()=C, C->prefix()=R;
   }

   void squeeze_rows() { squeeze_rows(operations::binary_noop()); }

   template <typename number_consumer>
   void squeeze_cols(const number_consumer& nc)
   {
      if (restriction==only_rows)
         throw std::runtime_error("squeeze_rows not allowed in restricted-to-rows mode");
      _squeeze(C, nc);
      if (!restricted) R->prefix()=C, C->prefix()=R;
   }

   void squeeze_cols() { squeeze_cols(operations::binary_noop()); }

   template <typename Iterator, typename _inverse>
   void permute_rows(Iterator perm, _inverse)
   {
      if (restriction==only_cols)
         throw std::runtime_error("sparse2d::Table::permute_rows - disabled in restricted mode");
      R=row_ruler::permute(R, perm, asym_permute_entries<row_ruler, col_ruler, restriction==only_rows>(C), _inverse());
   }

   template <class Iterator, typename _inverse>
   void permute_cols(Iterator perm, _inverse)
   {
      if (restriction==only_rows)
         throw std::runtime_error("sparse2d::Table::permute_cols - disabled in restricted mode");
      C=col_ruler::permute(C, perm, asym_permute_entries<col_ruler, row_ruler, restriction==only_cols>(R), _inverse());
   }

   row_tree_type& row(int i)             { return (*R)[i]; }
   const row_tree_type& row(int i) const { return (*R)[i]; }
   col_tree_type& col(int i)             { return (*C)[i]; }
   const col_tree_type& col(int i) const { return (*C)[i]; }

   line<row_tree_type>& get_line(int i, row_tree_type*) { return reinterpret_cast<line<row_tree_type>&>(row(i)); }
   const line<row_tree_type>& get_line(int i, row_tree_type*) const { return reinterpret_cast<const line<row_tree_type>&>(row(i)); }
   line<col_tree_type>& get_line(int i, col_tree_type*) { return reinterpret_cast<line<col_tree_type>&>(col(i)); }
   const line<col_tree_type>& get_line(int i, col_tree_type*) const { return reinterpret_cast<const line<col_tree_type>&>(col(i)); }

#if POLYMAKE_DEBUG
   void check() const
   {
      if (restriction != only_cols)
         for (int r=0, rend=this->rows(); r<rend; ++r) {
            std::ostringstream label;
            label << "row " << r << ": ";
            (*R)[r].check(label.str().c_str());
         }
      if (restriction != only_cols)
         for (int c=0, cend=this->cols(); c<cend; ++c) {
            std::ostringstream label;
            label << "column " << c << ": ";
            (*C)[c].check(label.str().c_str());
         }
   }
#endif // POLYMAKE_DEBUG

   template <typename, typename, bool, restriction_kind, typename> friend class Rows;
   template <typename, typename, bool, restriction_kind, typename> friend class Cols;
   template <typename, bool, restriction_kind> friend class Table;
};

template <typename Traits>
struct sym_permute_entries : public Traits {
   typedef typename Traits::tree_type tree_type;
   typedef typename Traits::ruler ruler;
   typedef typename tree_type::Node Node;

   static void relocate(tree_type *from, tree_type *to) { relocate_tree(from,to,False()); }

   static void complete_cross_links(ruler* R)
   {
      int r=0;
      for (typename Entire<ruler>::iterator ri=entire(*R); !ri.at_end();  ++ri, ++r) {
         for (typename tree_type::iterator e=Traits::tree(*ri).begin(); !e.at_end(); ++e) {
            Node *node=e.operator->();
            const int c=node->key-r;
            if (c!=r) Traits::tree((*R)[c]).push_back_node(node);
         }
      }
   }

   void operator()(ruler* Rold, ruler* R) const
   {
      // unfortunately I can't reuse the line_index entries in both old and new rulers,
      // as the iterators always need correct values there
      const int n=R->size();
      std::vector<int> perm(n), inv_perm(n);

      int r=0;
      for (typename Entire<ruler>::iterator ri=entire(*R);  !ri.at_end();  ++ri, ++r) {
         tree_type& t=Traits::tree(*ri);
         perm[r]=t.line_index;
         inv_perm[t.line_index]=r;
         t.line_index=r;
      }

      for (r=0; r<n; ++r) {
         const int old_r=perm[r];
         for (typename tree_type::iterator e=Traits::tree((*Rold)[old_r]).begin(); !e.at_end(); ) {
            Node *node=e.operator->();  ++e;
            const int old_c=node->key-old_r, c=inv_perm[old_c];
            if (old_r!=old_c) Traits::tree((*Rold)[old_c]).unlink_node(node);
            node->key=r+c;
            Traits::tree((*R)[std::max(r,c)]).push_back_node(node);
         }
      }

      complete_cross_links(R);
   }

   template <typename Perm, typename InvPerm>
   static void copy(const ruler *Rold, ruler *R, const Perm& perm, const InvPerm& inv_perm)
   {
      const int n=R->size();
      typename Perm::const_iterator p=perm.begin();
      for (int r=0; r<n; ++r, ++p) {
         const int old_r=*p;
         for (typename tree_type::const_iterator e=Traits::tree((*Rold)[old_r]).begin(); !e.at_end(); ++e) {
            const Node *node=e.operator->();
            const int old_c=node->key-old_r, c=inv_perm[old_c];
            if (c>=r) {
               tree_type& t=Traits::tree((*R)[c]);
               t.push_back_node(new(t.allocate_node()) Node(r+c, node->get_data()));
            }
         }
      }

      complete_cross_links(R);
   }
};

template <typename E, restriction_kind restriction>
class Table<E, true, restriction> {
protected:
   static const bool restricted= restriction==dying;
   typedef traits<traits_base<E,false,true,restriction>, true, restriction> row_tree_traits;
   typedef row_tree_traits col_tree_traits;
public:
   typedef AVL::tree<row_tree_traits> row_tree_type;
   typedef row_tree_type col_tree_type;
   typedef row_tree_type primary_tree_type;
   typedef typename row_tree_traits::own_ruler row_ruler;
   typedef row_ruler col_ruler;
protected:
   typedef Table<E,true,dying> restricted_Table;
   row_ruler *R;
public:
   Table() : R(row_ruler::construct(0)) {}

   explicit Table(int r, int=0)
      : R(row_ruler::construct(r)) {}

   Table(const Table& t, int add_r=0)
      : R(row_ruler::construct(*t.R,add_r)) {}

   ~Table()
   {
      if (restricted)
         row_ruler::destroy(R);
      else
         std::_Destroy(reinterpret_cast<restricted_Table*>(this));
   }

   Table& operator= (const Table& t)
   {
      this->~Table();
      new(this) Table(t);
      return *this;
   }

   void swap(Table& t) { std::swap(R,t.R); }

   int rows() const { return R->size(); }
   int cols() const { return this->rows(); }

   void clear(int r=0) { R=row_ruler::resize_and_clear(R,r); }

   void resize_rows(int r) { R=row_ruler::resize(R,r); }
   void resize_cols(int r) { resize_rows(r); }

   struct shared_clear {
      int r;
      shared_clear(int r_arg, int=0) : r(r_arg) {}

      void operator() (void *p, const Table&) const { new(p) Table(r); }
      void operator() (Table& t) const { t.clear(r); }
   };

   struct shared_add_rows {
      int n;
      shared_add_rows(int n_arg) : n(n_arg) {}

      void operator() (void *p, const Table& t) const { new(p) Table(t,n); }
      void operator() (Table& t) const { t.resize_rows(t.rows()+n); }
   };

   void resize() { resize_rows(this->rows()); }
   void resize(int r, int=0) { resize_rows(r); }

   template <typename row_number_consumer>
   void squeeze(const row_number_consumer& rnc)
   {
      int r=0, rnew=0;
      for (row_tree_type *t=R->begin(), *end=R->end(); t!=end; ++t, ++r) {
         if (t->size()) {
            if (int rdiff=r-rnew) {
               const int diag=2*r;
               for (typename Entire<row_tree_type>::iterator e=entire(*t); !e.at_end(); ) {
                  cell<E>& c=*e; ++e;
                  c.key -= rdiff << (c.key==diag);
               }
               t->line_index=rnew;
               relocate_tree(t, t-rdiff, True());
            }
            rnc(r, rnew);  ++rnew;
         } else {
            std::_Destroy(t);
         }
      }
      if (rnew < this->rows()) R=row_ruler::resize(R,rnew,false);
   }

   void squeeze() { squeeze(operations::binary_noop()); }

   template <typename row_number_consumer>
   void squeeze_rows(const row_number_consumer& rnc) { squeeze(rnc); }

   void squeeze_rows() { squeeze(); }

   template <typename row_number_consumer>
   void squeeze_cols(const row_number_consumer& rnc) { squeeze(rnc); }

   void squeeze_cols() { squeeze(); }

   struct perm_traits {
      typedef row_ruler ruler;
      typedef row_tree_type tree_type;
      static tree_type& tree(tree_type& t) { return t; }
      static const tree_type& tree(const tree_type& t) { return t; }
   };
   typedef sym_permute_entries<perm_traits> permute_entries;

   template <typename Iterator, typename _inverse>
   void permute_rows(Iterator perm, _inverse)
   {
      R=row_ruler::permute(R, perm, permute_entries(), _inverse());
   }

   template <class Iterator, typename _inverse>
   void permute_cols(Iterator perm, _inverse)
   {
      permute_rows(perm, _inverse());
   }

   template <typename Perm, typename InvPerm>
   void copy_permuted(const Table& src, const Perm& perm, const InvPerm& inv_perm)
   {
      permute_entries::copy(src.R, R, perm, inv_perm);
   }

   row_tree_type&       row(int i)       { return (*R)[i]; }
   const row_tree_type& row(int i) const { return (*R)[i]; }
   col_tree_type&       col(int i)       { return row(i); }
   const col_tree_type& col(int i) const { return row(i); }

   line<row_tree_type>& get_line(int i, row_tree_type*) { return reinterpret_cast<line<row_tree_type>&>(row(i)); }
   const line<row_tree_type>& get_line(int i, row_tree_type*) const { return reinterpret_cast<const line<row_tree_type>&>(row(i)); }

#if POLYMAKE_DEBUG
   void check() const
   {
      for (int r=0, rend=this->rows(); r<rend; ++r) {
         std::ostringstream label;
         label << "row " << r << ": ";
         (*R)[r].check(label.str().c_str());
      }
   }
#endif

   template <typename, typename, bool, restriction_kind, typename> friend class Rows;
};

template <typename Tree>
class line
   : public modified_tree< line<Tree>,
                           list( Operation< pair< BuildUnary<cell_accessor>, BuildUnaryIt<cell_index_accessor> > >,
                                 Hidden< Tree > ) > {
protected:
   ~line();
public:
   int get_line_index() const { return this->hidden().get_line_index(); }
   int dim() const { return this->max_size(); }
};

template <typename TreeRef=void>
struct line_index_accessor {
   typedef TreeRef argument_type;
   typedef TreeRef first_argument_type;
   typedef void second_argument_type;
   typedef const int result_type;

   result_type operator() (TreeRef t) const { return t.get_line_index(); }

   template <typename Iterator2>
   result_type operator() (TreeRef t, const Iterator2&) const { return operator()(t); }
};

template <>
struct line_index_accessor<void> : operations::incomplete {};

} // end namespace sparse2d

template <typename Iterator, typename Reference>
struct unary_op_builder< sparse2d::line_index_accessor<>, Iterator, Reference>
   : empty_op_builder< sparse2d::line_index_accessor<Reference> > {};

template <typename Iterator1, typename Iterator2, typename Reference1, typename Reference2>
struct binary_op_builder< sparse2d::line_index_accessor<>, Iterator1, Iterator2, Reference1, Reference2>
   : empty_op_builder< sparse2d::line_index_accessor<Reference1> > {};

namespace sparse2d {

template <typename Top, typename E, bool symmetric, restriction_kind restriction, typename LineFactory>
class Rows
   : public modified_container_impl< pm::Rows<Top>,
                                     list( Container< typename Table<E,symmetric,restriction>::row_ruler >,
                                           Operation< pair< LineFactory, line_index_accessor<> > >,
                                           Hidden< Top > ) > {
public:
   typename Rows::container& get_container()
   {
      return *this->hidden().get_table().R;
   }
   const typename Rows::container& get_container() const
   {
      return *this->hidden().get_table().R;
   }
   void resize(int n)
   {
      this->hidden().get_table().resize_rows(n);
   }
};

template <typename Top, typename E, bool symmetric, restriction_kind restriction, typename LineFactory>
class Cols
   : public modified_container_impl< pm::Cols<Top>,
                                     list( Container< typename Table<E,false,restriction>::col_ruler >,
                                           Operation< pair< LineFactory, line_index_accessor<> > >,
                                           Hidden< Top > ) > {
public:
   typename Cols::container& get_container()
   {
      return *this->hidden().get_table().C;
   }
   const typename Cols::container& get_container() const
   {
      return *this->hidden().get_table().C;
   }
   void resize(int n)
   {
      this->hidden().get_table().resize_cols(n);
   }
};

template <typename Top, typename E, restriction_kind restriction, typename LineFactory>
class Cols<Top, E, true, restriction, LineFactory> : public Rows<Top, E, true, restriction, LineFactory> {};

template <typename IteratorRef>
struct lower_triangle_selector {
   typedef IteratorRef argument_type;
   typedef bool result_type;

   bool operator() (argument_type it) const
   {
      return it.index() <= it.get_line_index();
   }
};

template <typename Line>
class lower_triangle_line
   : public modified_container_impl< lower_triangle_line<Line>,
                                     list( IteratorConstructor< input_truncator_constructor >,
                                           Operation< BuildUnaryIt< lower_triangle_selector > >,
                                           MasqueradedTop ) > {
   typedef modified_container_impl<lower_triangle_line> _super;
protected:
   ~lower_triangle_line();
public:
   template <typename First>
   typename _super::iterator insert(const First& first_arg)
   {
      return this->hidden().insert(first_arg);
   }
   template <typename First, typename Second>
   typename _super::iterator insert(const First& first_arg, const Second& second_arg)
   {
      return this->hidden().insert(first_arg,second_arg);
   }
   template <typename First, typename Second, typename Third>
   typename _super::iterator insert(const First& first_arg, const Second& second_arg, const Third& third_arg)
   {
      return this->hidden().insert(first_arg,second_arg,third_arg);
   }
   template <typename Key_or_Iterator>
   void erase(const Key_or_Iterator& k_or_it)
   {
      return this->hidden().erase(k_or_it);
   }
};

template <typename Line> inline
lower_triangle_line<Line>& select_lower_triangle(Line& l)
{
   return reinterpret_cast<lower_triangle_line<Line>&>(l);
}

template <typename Line> inline
const lower_triangle_line<Line>& select_lower_triangle(const Line& l)
{
   return reinterpret_cast<const lower_triangle_line<Line>&>(l);
}

template <typename TreeRef>
struct line_params {
   typedef typename deref<TreeRef>::type tree_type;
   typedef line<tree_type> container;
   typedef typename if_else< attrib<TreeRef>::is_reference,
                             Container< typename inherit_const<container, TreeRef>::type >,
                             cons< Container<container>, Hidden<tree_type> > >::type
      type;
};

} // end namespace sparse2d

template <typename TreeRef>
struct check_container_feature<sparse2d::line<TreeRef>, pure_sparse> : True {};

} // end namespace pm

namespace std {
   template <typename E, bool symmetric, pm::sparse2d::restriction_kind restriction> inline
   void swap(pm::sparse2d::Table<E,symmetric,restriction>& t1, pm::sparse2d::Table<E,symmetric,restriction>& t2)
   { t1.swap(t2); }
} // end namespace std

namespace polymake {
   using pm::sparse2d::only_rows;
   using pm::sparse2d::only_cols;
}

#endif // POLYMAKE_INTERNAL_SPARSE2D_H

// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End: