This file is indexed.

/usr/include/polymake/matroid/check_axioms.h is in polymake 3.0r1-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
/* Copyright (c) 1997-2015
   Ewgenij Gawrilow, Michael Joswig (Technische Universitaet Berlin, Germany)
   http://www.polymake.org

   This program is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by the
   Free Software Foundation; either version 2, or (at your option) any
   later version: http://www.gnu.org/licenses/gpl.txt.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
--------------------------------------------------------------------------------
*/

#ifndef __POLYMAKE_MATROID_CHECK_AXIOMS_H__
#define __POLYMAKE_MATROID_CHECK_AXIOMS_H__

#include "polymake/Set.h"
#include "polymake/PowerSet.h"
#include "polymake/FacetList.h"

namespace polymake { namespace matroid {

template<typename Container>
bool check_basis_exchange_axiom_impl(const Container& bases, bool verbose=false)
{
   Set<Set<int> > basis_set;
   for (typename Entire<Container>::const_iterator bit = entire(bases); !bit.at_end(); ++bit)
      basis_set += *bit; // have to do it like this so that the comparison tree gets built properly
   
   for (typename Entire<Container>::const_iterator bit1 = entire(bases); !bit1.at_end(); ++bit1) {
      for (typename Entire<Container>::const_iterator bit2 = entire(bases); !bit2.at_end(); ++bit2) {
         const Set<int> 
            AmB = *bit1 - *bit2,
            BmA = *bit2 - *bit1;
         for (Entire<Set<int> >::const_iterator ambit = entire(AmB); !ambit.at_end(); ++ambit) {
            bool verified (false);
            for (Entire<Set<int> >::const_iterator bmait = entire(BmA); !verified && !bmait.at_end(); ++bmait) {
               verified = basis_set.contains(*bit1 - *ambit + *bmait);
            }
            if (!verified) {
               if (verbose) {
                  cout << "The given set of bases\n" << basis_set
                       << "\nis not a matroid.\nProof: A=" << *bit1 << ", B=" << *bit2 << "; A-B contains " << *ambit << ", B-A=" << BmA 
                       << "; but A - " << *ambit << " + b is not a basis for any b in " << BmA << endl;
               }
               return false;
            }
         }
      }
   }
   return true;
}

template<typename SetType>
bool check_hyperplane_axiom_impl(const Array<SetType>& H, bool verbose=false)
{
   /*
     The hyperplane axioms are:
     (H1) E is not in H;
     (H2) No set in H properly contains any other;
     (H3) If  h1 ne h2 in H , and  x in E setminus (h1 cup h2) ,
          then there exists h in H such that (h1 intersect h2) union x subset h.
    */
   SetType E; // ground set
   for (typename Entire<Array<SetType> >::const_iterator hit = entire(H); !hit.at_end(); ++hit)
      E += *hit;

   for (typename Entire<Subsets_of_k<const Array<SetType>&> >::const_iterator pit=entire(all_subsets_of_k(H, 2)); !pit.at_end(); ++pit) {
      const Set<SetType> p(*pit);
      const SetType& h1(p.front()), h2(p.back());
      if( E==h1 || E==h2){
         if (verbose) cout << "The given sets H =\n" << H << endl 
                           << "do not form the sets of hyperplanes of a matroid, because the groud set is in H."  << endl;
         return false;
      }
      if (incl(h1,h2) != 2) {
         if (verbose) cout << "The given sets H =\n" << H << endl 
                           << "do not form the sets of hyperplanes of a matroid, because the sets " 
                           << h1 << " and " << h2 << " are not independent." << endl;
         return false;
      }
      const SetType C(E - h1 - h2);
      for (typename Entire<SetType>::const_iterator sit = entire(C); !sit.at_end(); ++sit) {
         const SetType U((h1 * h2) + scalar2set(*sit));
         bool found_container(false);
         for (typename Entire<Array<SetType> >::const_iterator hit = entire(H); !hit.at_end() && !found_container; ++hit) {
            found_container = incl(U, *hit) <= 0;
         }
         if (!found_container) {
            if (verbose) cout << "The given sets H =\n" << H << endl 
                              << "do not form the sets of hyperplanes of a matroid, because " 
                              << "h1=" << h1 << ", h2=" << h2 << ", x=" << *sit 
                              << " do not satisfy that there exists h in H such that (h1 intersect h2) union x subset h." << endl;
            return false;
         }
      }
   }
   return true;
}

template<typename SetType>
bool check_flat_axiom_impl(const Array<SetType>& F, bool verbose=false)
{
   // Extract the hyperplanes from the flats, then check the hyperplane axioms.
   SetType E; // ground set
   for (typename Entire<Array<SetType> >::const_iterator fit = entire(F); !fit.at_end(); ++fit)
      E += *fit;

   FacetList HL(E.size());
   for (typename Entire<Array<SetType> >::const_iterator fit = entire(F); !fit.at_end(); ++fit)
      if (fit->size() != E.size())
         HL.insertMax(*fit);

   Array<Set<int> > H(HL.size(), entire(HL));

   return check_hyperplane_axiom_impl(H, verbose);
}

} }

#endif // __POLYMAKE_MATROID_CHECK_AXIOMS_H__

// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End: