This file is indexed.

/usr/include/polymake/next/SparseVector.h is in polymake 3.0r1-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
/* Copyright (c) 1997-2015
   Ewgenij Gawrilow, Michael Joswig (Technische Universitaet Berlin, Germany)
   http://www.polymake.org

   This program is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by the
   Free Software Foundation; either version 2, or (at your option) any
   later version: http://www.gnu.org/licenses/gpl.txt.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
--------------------------------------------------------------------------------
*/

/** @file SparseVector.h
    @brief Implementation of pm::SparseVector class
 */

#ifndef POLYMAKE_SPARSE_VECTOR_H
#define POLYMAKE_SPARSE_VECTOR_H

#include "polymake/GenericVector.h"
#include "polymake/internal/tree_containers.h"
#include "polymake/internal/sparse.h"
#include "polymake/internal/shared_object.h"
#include "polymake/internal/AVL.h"

namespace pm {

template <typename NodeRef>
class sparse_vector_accessor : public AVL::node_accessor<NodeRef> {
   typedef AVL::node_accessor<NodeRef> _super;
public:
   typedef typename inherit_ref<typename deref<NodeRef>::type::mapped_type, typename _super::argument_type>::type result_type;
   result_type operator() (typename _super::argument_type n) const { return n.key_and_data.second; }
};

template <typename NodeRef>
struct sparse_vector_index_accessor {
   typedef NodeRef argument_type;
   typedef const int result_type;
   result_type operator() (NodeRef n) const { return n.key_and_data.first; }
};

/** \ref vector_sec "Vector type" class which is an associative container with
    element indices (coordinates) as keys; elements equal to the default value
    (@c ElementType(), which is 0 for most numerical types) are not stored,
    but implicitly encoded by the gaps in the key set.  It is based on an AVL
    tree.
*/

template <typename E>
class SparseVector
   : public modified_tree< SparseVector<E>,
                           list( Container< AVL::tree< AVL::traits<int, E, operations::cmp> > >,
                                 Operation< pair< BuildUnary<sparse_vector_accessor>,
                                                  BuildUnary<sparse_vector_index_accessor> > > ) >,
     public GenericVector<SparseVector<E>, E> {
   typedef modified_tree<SparseVector> _super;
protected:
   typedef AVL::tree< AVL::traits<int, E, operations::cmp> > tree_type;
   struct impl {
      tree_type tree;
      int d;
 
      impl() : d(0) {}
      void clear() { d=0; tree.clear(); }
   };
   shared_object<impl, AliasHandler<shared_alias_handler> > data;

   friend SparseVector& make_mutable_alias(SparseVector& alias, SparseVector& owner)
   {
      alias.data.make_mutable_alias(owner.data);
      return alias;
   }

   typedef sparse_proxy_base<SparseVector> proxy_base;

   template <typename Iterator>
   void init(Iterator src, int dim_arg)
   {
      data.get()->d=dim_arg;
      data.get()->tree.assign(src);
   }

public:
   typedef random_access_iterator_tag container_category;
   typedef sparse_elem_proxy<proxy_base> reference;

   tree_type& get_container() { return data->tree; }
   const tree_type& get_container() const { return data->tree; }

   /// tell the current vector dimension, i.e., the number of non-zero elements (may differ from size)
   int dim() const { return data->d; }
   
   /// create as empty
   SparseVector() {}

   /// create vector of length n, (implicitly) initialize all elements with 0  
   explicit SparseVector(int dim_arg) { data.get()->d=dim_arg; }

   /** Create a vector of dimension n, initialize the elements from a data sequence.
       Iterator can be either indexed, or supply index-value pairs, e.g. std::pair<int,ElementType> or a plain sequence of data items. In the latter case zero elements are filtered out.*/ 
   template <typename Iterator>
   SparseVector(int dim_arg, Iterator src,
                typename construct_sparse_iterator<Iterator, E>::enabled=0)
   {
      init(construct_sparse_iterator<Iterator, E>()(src, dim_arg), dim_arg);
   }

   /// Copy of a disguised SparseVector object.
   SparseVector(const GenericVector<SparseVector>& v)
      : data(v.top().data) {}

   /// Create a vector as a copy of another vector of the same element type.
   template <typename Vector2>
   SparseVector(const GenericVector<Vector2, E>& v)
   {
      init(ensure(v.top(), (pure_sparse*)0).begin(), v.dim());
   }

   /// Create a vector as a copy of another vector with a different element type. 
   template <typename Vector2, typename E2>
   explicit SparseVector(const GenericVector<Vector2, E2>& v,
                         typename enable_if<void**, convertible_to<E2, E>::value>::type=0)
   {
      init(ensure(v.top(), (pure_sparse*)0).begin(), v.dim());
   }

   template <typename Vector2, typename E2>
   explicit SparseVector(const GenericVector<Vector2, E2>& v,
                         typename enable_if<void**, explicitly_convertible_to<E2, E>::value>::type=0)
   {
      init(ensure(attach_converter<E>(v.top()), (pure_sparse*)0).begin(), v.dim());
   }

   /// Create a vector of dimension n, copy element values from a built-in array. 
   template <typename E2, size_t n>
   explicit SparseVector(const E2 (&a)[n],
                         typename enable_if<void**, convertible_to<E2, E>::value>::type=0)
   {
      init(ensure(array2container(a), (pure_sparse*)0).begin(), n);
   }

   /// Create a vector with another element type, using explicit type conversion. 
   template <typename E2, size_t n>
   explicit SparseVector(const E2 (&a)[n],
                         typename enable_if<void**, explicitly_convertible_to<E2, E>::value>::type=0)
   {
      init(ensure(attach_converter<E>(array2container(a)), (pure_sparse*)0).begin(), n);
   }

   /// truncate to zero size
   void clear() { data.apply(shared_clear()); }

   /// change the size, initialize appended elements with default constructor
   void resize(int n)
   {
      if (n<data->d) {
         typename _super::reverse_iterator i=this->rbegin();
         while (!i.at_end() && i.index()>=n) this->erase(i++);
      }
      data->d=n;
   }

   SparseVector& operator= (const SparseVector& other) { assign(other); return *this; }
   using SparseVector::generic_type::operator=;

   void swap(SparseVector& v) { data.swap(v.data); }

   friend void relocate(SparseVector* from, SparseVector* to)
   {
      relocate(&from->data, &to->data);
   }

   /// random access, may cost O(log(n)) time; \ref vector_performance
   reference operator[] (int i)
   {
      if (POLYMAKE_DEBUG) {
         if (i<0 || i>=dim())
            throw std::runtime_error("SparseVector::operator[] - index out of range");
      }
      return proxy_base(*this,i);
   }

   /// constant random access, may cost O(log(n)) time; \ref vector_performance
   const E& operator[] (int i) const
   {
      if (POLYMAKE_DEBUG) {
         if (i<0 || i>=dim())
            throw std::runtime_error("SparseVector::operator[] - index out of range");
      }
      return deref_sparse_iterator(this->find(i));
   }

   /// appending a GenericVector
   template <typename Vector2, typename E2>
   typename enable_if<SparseVector, convertible_to<E2, E>::value>::type&
   operator|= (const GenericVector<Vector2, E2>& v)
   {
      append(v.dim(), ensure(v.top(), (pure_sparse*)0).begin());
      return *this;
   }

   template <typename Vector2, typename E2>
   typename enable_if<SparseVector, explicitly_convertible_to<E2, E>::value>::type&
   operator|= (const GenericVector<Vector2, E2>& v)
   {
      append(v.dim(), make_converting_iterator<E>(ensure(v.top(), (pure_sparse*)0).begin()));
      return *this;
   }

   /// appending an element
   template <typename E2>
   typename enable_if<SparseVector, convertible_to<E2, E>::value>::type&
   operator|= (const E2& r)
   {
      if (!is_zero(r)) data->tree.push_back(data->d, r);
      data->d++;
      return *this;
   }

   template <typename E2>
   typename enable_if<SparseVector, explicitly_convertible_to<E2, E>::value>::type&
   operator|= (const E2& r)
   {
      if (!is_zero(r)) data->tree.push_back(data->d, conv<E2, E>()(r));
      data->d++;
      return *this;
   }

#if POLYMAKE_DEBUG
   void check() const { data->tree.check(""); }
   void tree_dump() const { data->tree.dump(); }
#endif

protected:
   template <typename, typename> friend class GenericVector;

   void assign(const SparseVector& v) { data=v.data; }

   template <typename Vector2>
   void assign(const Vector2& v,
               typename enable_if<void**, convertible_to<typename Vector2::element_type, E>::value>::type=0)
   {
      if (data.is_shared()) {
         *this=SparseVector(v);
      } else {
         data.get()->tree.assign(ensure(v, (pure_sparse*)0).begin());
         data.get()->d=v.dim();
      }
   }

   template <typename Vector2>
   void assign(const Vector2& v,
               typename enable_if<void**, explicitly_convertible_to<typename Vector2::element_type, E>::value>::type=0)
   {
      if (data.is_shared()) {
         *this=SparseVector(v);
      } else {
         data.get()->tree.assign(ensure(attach_converter<E>(v), (pure_sparse*)0).begin());
         data.get()->d=v.dim();
      }
   }

   template <typename Operation>
   void assign_op(const Operation& op)
   {
      if (data.is_shared())
         *this=SparseVector(LazyVector1<const SparseVector&, Operation>(*this,op));
      else
         SparseVector::generic_type::assign_op(op);
   }

   template <typename Vector2, typename Operation>
   void assign_op(const Vector2& v, const Operation& op)
   {
      if (data.is_shared())
         *this=SparseVector(LazyVector2<const SparseVector&, const Vector2&, Operation>(*this,v,op));
      else
         SparseVector::generic_type::assign_op(v,op);
   }

   template <typename Iterator>
   void append(int added, Iterator src)
   {
      const int d=data->d;
      tree_type& t=data->tree;
      for (; !src.at_end();  ++src)
         t.push_back(src.index()+d, *src);
      data->d += added;
   }

   template <typename E2>
   void _fill(const E2& x, pure_sparse,
              typename enable_if<void**, convertible_to<E2, E>::value>::type=0)
   {
      data->tree.clear();
      if (!is_zero(x)) {
         tree_type& t=data.get()->tree;
         const int d=data.get()->d;
         for (int i=0; i<d; ++i) t.push_back(i,x);
      }
   }
};

template <typename E>
struct check_container_feature<SparseVector<E>, pure_sparse> : True {};

template <typename Vector, typename E, typename Permutation> inline
typename enable_if<SparseVector<E>, Vector::is_sparse>::type
permuted(const GenericVector<Vector,E>& v, const Permutation& perm)
{
   if (POLYMAKE_DEBUG || !Unwary<Vector>::value) {
      if (v.dim() != perm.size())
         throw std::runtime_error("permuted - dimension mismatch");
   }
   SparseVector<E> result(v.dim());
   for (typename ensure_features<Permutation, cons<end_sensitive,indexed> >::const_iterator p=ensure(perm, (cons<end_sensitive,indexed>*)0).begin();
        !p.at_end();  ++p) {
      typename Vector::const_iterator e=v.top().find(*p);
      if (!e.at_end()) result.push_back(p.index(), *e);
   }
   return result;
}

template <typename Vector, typename E, typename Permutation> inline
typename enable_if<SparseVector<E>, Vector::is_sparse>::type
permuted_inv(const GenericVector<Vector,E>& v, const Permutation& perm)
{
   if (POLYMAKE_DEBUG || !Unwary<Vector>::value) {
      if (v.dim() != perm.size())
         throw std::runtime_error("permuted_inv - dimension mismatch");
   }
   SparseVector<E> result(v.dim());
   int pos=0;
   typename Permutation::const_iterator p=perm.begin();
   for (typename Entire<Vector>::const_iterator e=entire(v.top());  !e.at_end();  ++e) {
      std::advance(p, e.index()-pos);
      pos=e.index();
      result.insert(*p,*e);
   }
   return result;
}

} // end namespace pm

namespace polymake {
   using pm::SparseVector;
}

namespace std {
   template <typename E> inline
   void swap(pm::SparseVector<E>& v1, pm::SparseVector<E>& v2) { v1.swap(v2); }
}

#endif // POLYMAKE_SPARSE_VECTOR_H

// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End: