/usr/include/polymake/tropical/divisor.h is in polymake 3.0r1-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 | /*
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA.
---
Copyright (C) 2011 - 2015, Simon Hampe <simon.hampe@googlemail.com>
Contains functionality for computing divisors
*/
#ifndef POLYMAKE_ATINT_DIVISOR_H
#define POLYMAKE_ATINT_DIVISOR_H
#include "polymake/client.h"
#include "polymake/Set.h"
#include "polymake/Map.h"
#include "polymake/Array.h"
#include "polymake/Matrix.h"
#include "polymake/IncidenceMatrix.h"
#include "polymake/Vector.h"
#include "polymake/Rational.h"
#include "polymake/tropical/thomog.h"
#include "polymake/tropical/minimal_interior.h"
#include "polymake/tropical/specialcycles.h"
#include "polymake/tropical/LoggingPrinter.h"
namespace polymake { namespace tropical {
typedef Map<std::pair<int,int>, Vector<Integer> > LatticeMap ;
typedef Map<std::pair<int,int>, Vector<Rational> > LatticeFunctionMap;
//using namespace atintlog::donotlog;
//using namespace atintlog::dolog;
//using namespace atintlog::dotrace;
/**
@brief Takes as input a tropical cycle and a matrix of rational values.
Each row of the matrix is interpreted as a value vector on the [[SEPARATED_VERTICES]] and
[[LINEALITY_SPACE]] generators. The row count of the matrix is arbitrary in principle,
but should be smaller than or equal to the dimension of the cycle. The function will then compute
the Weil divisor obtained by intersecting with all the functions described by the rows (starting from top).
Note that this still produces a meaningful result, if the Cycle is not balanced:
The "divisor" of a given function is computed by taking all codim-1-faces, at which f is balanced and
computing weights there.
@param Cycle fan A tropical variety
@param Matrix<Rational> values A matrix of rational values
@tparam Addition Whether divisor values are computed using min or max.
@return The divisor r_k * ... * r_1 * fan, where r_i is the function described by the i-th row.
*/
template <typename Addition>
perl::Object divisorByValueMatrix(perl::Object complex, Matrix<Rational> values) {
//This value carries all the intermediate results.
perl::Object result = complex;
//Now we extract the values that we will later recompute by hand or that don't change at all
Matrix<Rational> rays = complex.give("VERTICES");
Matrix<Rational> crays = complex.give("SEPARATED_VERTICES");
Vector<Integer> weights = complex.give("WEIGHTS");
Matrix<Rational> lineality_space = complex.give("LINEALITY_SPACE");
int lineality_dim = complex.give("LINEALITY_DIM");
IncidenceMatrix<> local_restriction;
if(complex.exists("LOCAL_RESTRICTION")) {
complex.give("LOCAL_RESTRICTION") >> local_restriction;
}
Matrix<Integer> lattice_generators = complex.give("LATTICE_GENERATORS");
IncidenceMatrix<> lattice_bases = complex.give("LATTICE_BASES");
//dbgtrace << "Rays: " << crays << endl;
//dbgtrace << "Values: " << values << endl;
//Do a compatibility check on the value matrix to avoid segfaults in the case of faulty input
if(values.cols() != crays.rows() + lineality_space.rows()) {
throw std::runtime_error("Value matrix is not compatible with variety. Aborting computation");
}
Matrix<Rational> lineality_values = values.minor(All,~(sequence(0,values.cols() - lineality_dim)));
//Prepare the additional variables that will be used in all but the first iteration to recompute the
//values vector
//Contains at position i the row index of ray i in the ray matrix of the iteration before
Vector<int> newRaysToOldRays;
//Contains the SEPARATED_MAXIMAL_POLYTOPES of the iteration before
IncidenceMatrix<> cmplx_oldcones;
//Tells which new maximal cone is contained in which old maximal cone (this is essentially the
//MAXIMAL_AT_CODIM_ONE without the rows for cones of weight 0)
IncidenceMatrix<> newConesInOld;
//For each cmplx_ray in the LAST iteration, this tells which should be the appropriate
//column index in values for function value computation
Vector<int> cmplx_origins (sequence(0,values.cols() - lineality_dim));
//Contains the conversion vector for the last iteration (this one we recompute during
//value recomputation)
Vector<int> old_conversion;
//Only uses in the fan case: For all iterations but the first it contains the set of rays of
//the last iteration that remained after computing the divisor
Set<int> remainingFanRays;
//When computing the codim-one-weights, this contains the correct function value vector for the current iteration
//When computing the new function vector for the current iteration, this means it contains the function
//values of the old iteration
Vector<Rational> currentValues;
//Now we iterate through the matrix rows
for(int r = 0; r < values.rows(); r++) {
//dbgtrace << "Computing on row " << r << endl;
//First we recompute values that we can't/won't compute by hand
IncidenceMatrix<> codimOneCones = result.give("CODIMENSION_ONE_POLYTOPES");
if(codimOneCones.rows() == 0)
return empty_cycle<Addition>(std::max(rays.cols(),lineality_space.cols())-2);
IncidenceMatrix<> coneIncidences = result.give("MAXIMAL_AT_CODIM_ONE");
LatticeMap latticeNormals = result.give("LATTICE_NORMALS");
LatticeFunctionMap lnFunctionVector = result.give("LATTICE_NORMAL_FCT_VECTOR");
Matrix<Rational> lsumFunctionVector = result.give("LATTICE_NORMAL_SUM_FCT_VECTOR");
Vector<bool> balancedFaces = result.give("BALANCED_FACES");
//dbgtrace << "Balanced faces: " << balancedFaces << endl;
//Recompute the lattice bases
Vector<Set<int> > new_lattice_bases;
for(int co = 0; co < codimOneCones.rows(); co++) {
new_lattice_bases |= lattice_bases.row(*(coneIncidences.row(co).begin()));
//dbgtrace << "Co " << co << ": " << new_lattice_bases[new_lattice_bases.dim()-1] << " from " << *(coneIncidences.row(co).begin()) << endl;
}
lattice_bases = new_lattice_bases;
//dbgtrace << "lb: " << lattice_bases << endl;
//Now we compute the correct value vector:
if(r == 0) {
currentValues = values.row(r);
}
else {
currentValues = Vector<Rational>();
Matrix<Rational> cmplx_rays = result.give("SEPARATED_VERTICES");
Vector<int> conversion_vector = result.give("SEPARATED_CONVERSION_VECTOR");
//Compute the maximal cones containing each cmplx_ray
IncidenceMatrix<> cmplx_cones_t = result.give("SEPARATED_MAXIMAL_POLYTOPES");
cmplx_cones_t = T(cmplx_cones_t);
Vector<int> newcmplx_origins;
for(int cr = 0; cr < cmplx_rays.rows(); cr++) {
//Find the corresponding cmplx_ray in the last iteration
int mc = *(cmplx_cones_t.row(cr).begin()); //A cone containing the ray
int oc = *(newConesInOld.row(mc).begin()); //An old cone containing mc
//Now find the cmplx_ray of the old cone, such that
//its corresponding ray is equal to the corresponding ray of the new ray
Set<int> ocrays = cmplx_oldcones.row(oc);
for(Entire<Set<int> >::iterator ocr = entire(ocrays); !ocr.at_end(); ocr++) {
//If the old ray (in non-complex counting in the old iteration) is the same as
//the new ray (in non-complex counting) in the new iteration, we can
//copy its function column index
if(old_conversion[*ocr] == newRaysToOldRays[conversion_vector[cr]]) {
currentValues |= values(r,cmplx_origins[*ocr]);
newcmplx_origins |= cmplx_origins[*ocr];
break;
}
}
}
cmplx_origins = newcmplx_origins;
//Finally append lineality values
if(lineality_values.rows() > 0)
currentValues |= lineality_values.row(r);
}
//dbgtrace << "Value vector is: " << currentValues << endl;
//Then we compute the divisor
Vector<Integer> newweights; //Contains the new weights
Set<int> usedCones; //Contains the codim 1 cones with weight != 0
Set<int> usedRays; //Contains the rays in used cones
//Go through each facet and compute its weight.
for(int co = 0; co < codimOneCones.rows(); co++) {
if(balancedFaces[co]) { //Only compute values at balanced codim-1-cones
//dbgtrace << "Codim 1 face " << co << endl;
Rational coweight(0); //Have to take rational since intermediate values may be rational
Set<int> adjacentCones = coneIncidences.row(co);
for(Entire<Set<int> >::iterator mc = entire(adjacentCones); !mc.at_end(); ++mc) {
//dbgtrace << "Maximal cone " << *mc << endl;
coweight = coweight + weights[*mc] * lnFunctionVector[std::make_pair(co,*mc)] * currentValues;
//dbgtrace <<(lnFunctionVector[co])[*mc] * currentValues << endl;
}
//Now substract the value of the lattice normal sum
//dbgtrace << "Substracting sum" << endl;
//dbgtrace << lsumFunctionVector.row(co) * currentValues << endl;
coweight = coweight - lsumFunctionVector.row(co) * currentValues;
if(coweight != 0) {
//Invert weight sign for min people, the computation is rigged for max
coweight *= (- Addition::orientation());
newweights = newweights | Integer(coweight);
usedCones += co;
usedRays += codimOneCones.row(co);
}
}
}//END iterate co-1-cones
//dbgtrace << "Remaining " << usedCones.size() << " of " << codimOneCones.rows() << " codim one cones" << endl;
//dbgtrace << "Removing " << sequence(0,codimOneCones.rows()) - usedCones << endl;
//dbgtrace << "Computed codim one weights" << endl;
//dbgtrace << "Weights are " << newweights << endl;
//Compute the new-to-old maps used for recomputing the value vector in the next iteration
if(r != values.rows()-1) {
remainingFanRays = usedRays;
newConesInOld = coneIncidences.minor(usedCones,All);
result.give("SEPARATED_MAXIMAL_POLYTOPES") >> cmplx_oldcones;
result.give("SEPARATED_CONVERSION_VECTOR") >> old_conversion;
newRaysToOldRays = Vector<int>();
for(Entire<Set<int> >::iterator orays = entire(usedRays); !orays.at_end(); orays++) {
newRaysToOldRays |= (*orays);
}
}
//dbgtrace << "newConesInOld: " << newConesInOld << endl;
//dbgtrace << "newRaysToOldRays:" << newRaysToOldRays << endl;
//Now recompute the rays and maximal cones for re-initialization of the result
rays = rays.minor(usedRays,All);
weights = newweights;
IncidenceMatrix<> newMaximal = codimOneCones.minor(usedCones,usedRays);
//Recompute local restriction cones
if(local_restriction.rows() > 0) {
//We need to adapt rays indices and remove old maximal local cones
// and codimension one cones that have weight 0
//Also we remove all local cones that lose rays
//dbgtrace << "Local restriction before: " << local_restriction << endl;
IncidenceMatrix<> maxCones = result.give("MAXIMAL_CONES");
Set<int> removableCones;
Set<int> weightzerocones = sequence(0,codimOneCones.rows()) - usedCones;
Set<int> codimToReplace; //Indices of used codim one cones that are local
for(int lc = 0; lc < local_restriction.rows(); lc++) {
//If the local cone loses any rays, remove it
if((local_restriction.row(lc) * usedRays).size() < local_restriction.row(lc).size()) {
removableCones += lc;
continue;
}
bool found_cone = false;
for(int mc = 0; mc < maxCones.rows(); mc++) {
if((local_restriction.row(lc) * maxCones.row(mc)).size() == maxCones.row(mc).size()) {
removableCones += lc;
found_cone = true; break;
}
}
for(Entire<Set<int> >::iterator cz = entire(weightzerocones); !cz.at_end() && !found_cone; cz++) {
if((local_restriction.row(lc) * codimOneCones.row(*cz)).size() == codimOneCones.row(*cz).size()) {
removableCones += lc;
break;
}
}
}
//Remove cones
local_restriction = local_restriction.minor(~removableCones, usedRays);
//dbgtrace << "Adapted local cones: " << local_restriction << endl;
}//END adapt local restriction
result = perl::Object(perl::ObjectType::construct<Addition>("Cycle"));
result.take("PROJECTIVE_VERTICES") << rays;
result.take("MAXIMAL_CONES") << newMaximal;
result.take("WEIGHTS") << weights;
result.take("LINEALITY_SPACE") << lineality_space;
if(local_restriction.rows() > 0)
result.take("LOCAL_RESTRICTION") << local_restriction;
result.take("LATTICE_GENERATORS") << lattice_generators;
lattice_bases = lattice_bases.minor(usedCones,All);
result.take("LATTICE_BASES") << lattice_bases;//(lattice_bases.minor(usedCones,All));
} //END iterate function rows
//dbgtrace << "Done. Returning divisor" << endl;
return result;
}//END divisorByValueMatrix
/**
* @brief Computes the (k-fold) divisor of a RationalFunction on a given cycle
* @param Cycle complex A tropical cycle
* @param RationalFunction function A rational function, the cycle should be contained in
* its domain (as a set, not as a polyhedral complex)
* @param int k How often the function should be applied, 1 by default
* @tparam Addition Min or Max.
* @return Cycle The divisor.
*/
template <typename Addition>
perl::Object divisor_with_refinement(perl::Object cycle, perl::Object function) {
//Restrict the function to the cycle
int power = function.give("POWER");
perl::Object restricted_function = function.CallPolymakeMethod("restrict",cycle);
perl::Object domain = restricted_function.give("DOMAIN");
//If the cycle had local restriction, we have to refine it as well
if(cycle.exists("LOCAL_RESTRICTION")) {
IncidenceMatrix<> ref_local = refined_local_cones(cycle, domain);
domain = CallPolymakeFunction("local_restrict",domain, ref_local);
}
Vector<Rational> vertex_values = restricted_function.give("VERTEX_VALUES");
Vector<Rational> lineality_values = restricted_function.give("LINEALITY_VALUES");
Vector<Rational> full_values = vertex_values | lineality_values;
Matrix<Rational> value_matrix(0, full_values.dim());
for(int it = 1; it <= power; it++) {
value_matrix /= full_values;
}
return divisorByValueMatrix<Addition>(domain,value_matrix);
}//END divisor
/**
* @brief Computes the divisor of a RationalFunction on a cycle which is supposed to be
* equal to the [[DOMAIN]] of the function (as a polyhedral complex!)
* (Note that [[DOMAIN]] needn't have weights, so we can't just take this.
*/
template <typename Addition>
perl::Object divisor_no_refinement(perl::Object cycle, perl::Object function) {
int power = function.give("POWER");
Vector<Rational> vertex_values = function.give("VERTEX_VALUES");
Vector<Rational> lineality_values = function.give("LINEALITY_VALUES");
Vector<Rational> full_values = vertex_values | lineality_values;
Matrix<Rational> value_matrix(0, full_values.dim());
for(int it = 1; it <= power; it++) {
value_matrix /= full_values;
}
return divisorByValueMatrix<Addition>(cycle,value_matrix);
}
}}
#endif
|