This file is indexed.

/usr/include/polymake/tropical/pruefer.h is in polymake 3.0r1-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
/*
	This program is free software; you can redistribute it and/or
	modify it under the terms of the GNU General Public License
	as published by the Free Software Foundation; either version 2
	of the License, or (at your option) any later version.

	This program is distributed in the hope that it will be useful,
	but WITHOUT ANY WARRANTY; without even the implied warranty of
	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
	GNU General Public License for more details.

	You should have received a copy of the GNU General Public License
	along with this program; if not, write to the Free Software
	Foundation, Inc., 51 Franklin Street, Fifth Floor,
	Boston, MA  02110-1301, USA.

	---
	Copyright (C) 2011 - 2015, Simon Hampe <simon.hampe@googlemail.com>

	Contains functions handling pruefer sequences.
	*/

#ifndef POLYMAKE_ATINT_PRUEFER_H
#define POLYMAKE_ATINT_PRUEFER_H

#include "polymake/client.h"
#include "polymake/Matrix.h"
#include "polymake/Rational.h"
#include "polymake/Vector.h"
#include "polymake/Array.h"
#include "polymake/Set.h"
#include "polymake/PowerSet.h"
#include "polymake/tropical/LoggingPrinter.h"
#include "polymake/tropical/moduli_rational.h"


namespace polymake { namespace tropical {

	/**
	  @brief This computes the set of all Pruefer sequences of order n fulfilling one of a list of certain valency condition. These conditions are given as a matrix of integers, seen as a list of row vectors. Each row has length k+1, where k is the number of bounded edges. Column c_i, i= 0,..,k stands for the interior vertex labelled n+i and indicates what valence it should have. That means that in a sequence corresponding to row r the vertex n+i occurs valences(r,i)-1 times.
	  @param int n The number of leaves of rational curves for which we compute Pruefer sequences.
	  @param Matrix<int> valences. Each row prescribes a valence for each interior vertex
	  @return Matrix<int> A list of all Pruefer sequences fulfilling one of the valency conditions (as row vectors).
	  */
	Matrix<int> prueferSequenceFromValences(int n, Matrix<int> valences);

	/**
	  @brief This computes the set of all Pruefer sequences corresponding to k-dimensional combinatorial types in M_0,n
	  @param int n The number of leaves of rational curves
	  @param int k The number of  bounded edges in rational curves
	  @return Matrix<int> A list of all Pruefer sequences of combinatorial types of curves with n leaves and k bounded edges (as row vectors).
	  */
	Matrix<int> dimension_k_prueferSequence(int n, int k) ;

	/**
	  @brief Takes a list of Pruefer sequences and decodes them into a Cycle containing for each sequence the cone that corresponds to it
	  @param int n The parameter n of the M_0,n on which the sequence is defined.
	  @param Matrix<int> A list of Pruefer sequences (as row vectors)
	  @return perl::Object A cycle (but without any weights)
	  */
	template <typename Addition>
		perl::Object complex_from_prueferSequences(int n, Matrix<int> pseq) {

			Vector<Set<int> > rays_as_sets;
			int br_cols = (n*(n-3))/2 + 1;
			Matrix<Rational> bergman_rays(0,br_cols);
			Vector<Set<int> > cones;
			Set<int> all_leaves = sequence(0,n);
			Vector<Rational> onlyones = ones_vector<Rational>(br_cols);
			int nextindex = 0;
			Matrix<int> E(n-1,n-1);
			for(int i = 0; i < n-2; i++) {
				for(int j = i+1; j < n-1; j++) {
					//dbgtrace << "Setting E(" << i << "," << j << ") = " << nextindex << endl;
					E(i,j) = nextindex;
					E(j,i) = nextindex;
					nextindex++;
				}
			}

			//Go through each Pruefer sequence and decode it. Then check whether any of its rays
			//has already been added and construct its cone accordingly. 
			for(int p = 0; p < pseq.rows(); p++) {
				Vector<Set<int> > partitions = decodePrueferSequence(pseq.row(p),n);

				Set<int> pcone;

				//Iterate ray partitions
				for(int r = 0; r < partitions.dim(); r++) {
					Set<int> rset = partitions[r];
					//Check if we have that ray already
					int index = -1;
					for(int oray = 0; oray < rays_as_sets.dim(); oray++) {
						if(rays_as_sets[oray] == rset) {
							index = oray; break;
						}
					}
					if(index == -1) {
						rays_as_sets |= rset;
						pcone += (rays_as_sets.dim()-1);
						//Now create the bergman coordinates of the ray
						Vector<int> raylist(rset);
						Vector<Rational> newray(br_cols);
						for(int k = 0; k < raylist.dim()-1; k++) {
							for(int l = k+1; l < raylist.dim(); l++) {
								int newrayindex = E(raylist[k],raylist[l]);
								//If the newrayindex is one higher than the ray dimension, 
								//this means it is first of all the last pair. Also, we don't
								//add -e_n but e_1 + ... + e_{n-1} (as we mod out lineality)
								if(newrayindex < newray.dim()) {
									newray[newrayindex] = -1;
								}
								else {
									newray = newray + onlyones;
								}
							}
						}
						//dbgtrace << "Ray: " << rset << " has bergman ray " << newray << endl;
						bergman_rays /= newray; 
					}
					else {
						pcone += index;
					}
				}//END iterate rays of sequence
				cones |= pcone;
			}//END iterate Pruefer sequences

			//Add vertex
			bergman_rays = zero_vector<Rational>() | bergman_rays;
			bergman_rays /= unit_vector<Rational>(bergman_rays.cols(),0);
			for(int mc =0; mc < cones.dim(); mc++) {
				cones[mc] += scalar2set(bergman_rays.rows()-1);
			}

			perl::Object result(perl::ObjectType::construct<Addition>("Cycle"));
			result.take("PROJECTIVE_VERTICES") << bergman_rays; 
			result.take("MAXIMAL_POLYTOPES") << cones;

			return result;

		}//END complex_from_prueferSequences

}}

#endif // PRUEFER_H