This file is indexed.

/usr/lib/python2.7/dist-packages/astLib/astImages.py is in python-astlib 0.8.0-3build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
"""module for simple .fits image tasks (rotation, clipping out sections, making .pngs etc.)

(c) 2007-2014 Matt Hilton 

U{http://astlib.sourceforge.net}

Some routines in this module will fail if, e.g., asked to clip a section from a .fits image at a
position not found within the image (as determined using the WCS). Where this occurs, the function
will return None. An error message will be printed to the console when this happens if
astImages.REPORT_ERRORS=True (the default). Testing if an astImages function returns None can be
used to handle errors in scripts. 

"""

REPORT_ERRORS=True

import os
import sys
import math
from astLib import astWCS

# So far as I can tell in astropy 0.4 the API is the same as pyfits for what we need...
try:
    import pyfits
except:
    try:
        from astropy.io import fits as pyfits
    except:
        raise Exception("couldn't import either pyfits or astropy.io.fits")
    
try:
    from scipy import ndimage
    from scipy import interpolate
except ImportError:
    print("WARNING: astImages: failed to import scipy.ndimage - some functions will not work.")
import numpy
try:
    import matplotlib
    from matplotlib import pylab
    matplotlib.interactive(False)
except ImportError:
    print("WARNING: astImages: failed to import matplotlib - some functions will not work.")

#---------------------------------------------------------------------------------------------------
def clipImageSectionWCS(imageData, imageWCS, RADeg, decDeg, clipSizeDeg, returnWCS = True):
    """Clips a square or rectangular section from an image array at the given celestial coordinates. 
    An updated WCS for the clipped section is optionally returned, as well as the x, y pixel 
    coordinates in the original image corresponding to the clipped section.
    
    Note that the clip size is specified in degrees on the sky. For projections that have varying
    real pixel scale across the map (e.g. CEA), use L{clipUsingRADecCoords} instead.

    @type imageData: numpy array
    @param imageData: image data array
    @type imageWCS: astWCS.WCS
    @param imageWCS: astWCS.WCS object
    @type RADeg: float
    @param RADeg: coordinate in decimal degrees
    @type decDeg: float
    @param decDeg: coordinate in decimal degrees
    @type clipSizeDeg: float or list in format [widthDeg, heightDeg]
    @param clipSizeDeg: if float, size of square clipped section in decimal degrees; if list,
    size of clipped section in degrees in x, y axes of image respectively
    @type returnWCS: bool
    @param returnWCS: if True, return an updated WCS for the clipped section
    @rtype: dictionary
    @return: clipped image section (numpy array), updated astWCS WCS object for
    clipped image section, and coordinates of clipped section in imageData in format 
    {'data', 'wcs', 'clippedSection'}.
        
    """	
    
    imHeight=imageData.shape[0]
    imWidth=imageData.shape[1]
    xImScale=imageWCS.getXPixelSizeDeg()
    yImScale=imageWCS.getYPixelSizeDeg()
    
    if type(clipSizeDeg) == float:
        xHalfClipSizeDeg=clipSizeDeg/2.0
        yHalfClipSizeDeg=xHalfClipSizeDeg
    elif type(clipSizeDeg) == list or type(clipSizeDeg) == tuple:
        xHalfClipSizeDeg=clipSizeDeg[0]/2.0
        yHalfClipSizeDeg=clipSizeDeg[1]/2.0
    else:
        raise Exception("did not understand clipSizeDeg: should be float, or [widthDeg, heightDeg]")
    
    xHalfSizePix=xHalfClipSizeDeg/xImScale
    yHalfSizePix=yHalfClipSizeDeg/yImScale    
    
    cPixCoords=imageWCS.wcs2pix(RADeg, decDeg)
    
    cTopLeft=[cPixCoords[0]+xHalfSizePix, cPixCoords[1]+yHalfSizePix]
    cBottomRight=[cPixCoords[0]-xHalfSizePix, cPixCoords[1]-yHalfSizePix]
        
    X=[int(round(cTopLeft[0])),int(round(cBottomRight[0]))]
    Y=[int(round(cTopLeft[1])),int(round(cBottomRight[1]))]
    
    X.sort()
    Y.sort()
    
    if X[0] < 0:
        X[0]=0
    if X[1] > imWidth:
        X[1]=imWidth
    if Y[0] < 0:
        Y[0]=0
    if Y[1] > imHeight:
        Y[1]=imHeight
    
    clippedData=imageData[Y[0]:Y[1],X[0]:X[1]]

    # Update WCS
    if returnWCS == True:
        try:
            oldCRPIX1=imageWCS.header['CRPIX1']
            oldCRPIX2=imageWCS.header['CRPIX2']
            clippedWCS=imageWCS.copy()
            clippedWCS.header['NAXIS1']=clippedData.shape[1]
            clippedWCS.header['NAXIS2']=clippedData.shape[0]
            clippedWCS.header['CRPIX1']=oldCRPIX1-X[0]
            clippedWCS.header['CRPIX2']=oldCRPIX2-Y[0]
            clippedWCS.updateFromHeader()
            
        except KeyError:
            
            if REPORT_ERRORS == True:
                
                print("WARNING: astImages.clipImageSectionWCS() : no CRPIX1, CRPIX2 keywords found - not updating clipped image WCS.")
                
                clippedData=imageData[Y[0]:Y[1],X[0]:X[1]]
                clippedWCS=imageWCS.copy()
    else:
        clippedWCS=None
    
    return {'data': clippedData, 'wcs': clippedWCS, 'clippedSection': [X[0], X[1], Y[0], Y[1]]}
    
#---------------------------------------------------------------------------------------------------
def clipImageSectionPix(imageData, XCoord, YCoord, clipSizePix):
    """Clips a square or rectangular section from an image array at the given pixel coordinates.
    
    @type imageData: numpy array
    @param imageData: image data array
    @type XCoord: float
    @param XCoord: coordinate in pixels
    @type YCoord: float
    @param YCoord: coordinate in pixels
    @type clipSizePix: float or list in format [widthPix, heightPix]
    @param clipSizePix: if float, size of square clipped section in pixels; if list,
    size of clipped section in pixels in x, y axes of output image respectively
    @rtype: numpy array
    @return: clipped image section
    
    """		
    
    imHeight=imageData.shape[0]
    imWidth=imageData.shape[1]
    
    if type(clipSizePix) == float or type(clipSizePix) == int:
        xHalfClipSizePix=int(round(clipSizePix/2.0))
        yHalfClipSizePix=xHalfClipSizePix
    elif type(clipSizePix) == list or type(clipSizePix) == tuple:
        xHalfClipSizePix=int(round(clipSizePix[0]/2.0))
        yHalfClipSizePix=int(round(clipSizePix[1]/2.0))
    else:
        raise Exception("did not understand clipSizePix: should be float, or [widthPix, heightPix]")
       
    cTopLeft=[XCoord+xHalfClipSizePix, YCoord+yHalfClipSizePix]
    cBottomRight=[XCoord-xHalfClipSizePix, YCoord-yHalfClipSizePix]
    
    X=[int(round(cTopLeft[0])),int(round(cBottomRight[0]))]
    Y=[int(round(cTopLeft[1])),int(round(cBottomRight[1]))]
    
    X.sort()
    Y.sort()
    
    if X[0] < 0:
        X[0]=0
    if X[1] > imWidth:
        X[1]=imWidth
    if Y[0] < 0:
        Y[0]=0
    if Y[1] > imHeight:
        Y[1]=imHeight		
        
    return imageData[Y[0]:Y[1],X[0]:X[1]]
    
#---------------------------------------------------------------------------------------------------
def clipRotatedImageSectionWCS(imageData, imageWCS, RADeg, decDeg, clipSizeDeg, returnWCS = True):
    """Clips a square or rectangular section from an image array at the given celestial coordinates. 
    The resulting clip is rotated and/or flipped such that North is at the top, and East appears at
    the left. An updated WCS for the clipped section is also returned. Note that the alignment
    of the rotated WCS is currently not perfect - however, it is probably good enough in most
    cases for use with L{ImagePlot} for plotting purposes.
    
    Note that the clip size is specified in degrees on the sky. For projections that have varying
    real pixel scale across the map (e.g. CEA), use L{clipUsingRADecCoords} instead.
    
    @type imageData: numpy array
    @param imageData: image data array
    @type imageWCS: astWCS.WCS
    @param imageWCS: astWCS.WCS object
    @type RADeg: float
    @param RADeg: coordinate in decimal degrees
    @type decDeg: float
    @param decDeg: coordinate in decimal degrees
    @type clipSizeDeg: float
    @param clipSizeDeg: if float, size of square clipped section in decimal degrees; if list,
    size of clipped section in degrees in RA, dec. axes of output rotated image respectively
    @type returnWCS: bool
    @param returnWCS: if True, return an updated WCS for the clipped section
    @rtype: dictionary
    @return: clipped image section (numpy array), updated astWCS WCS object for
    clipped image section, in format {'data', 'wcs'}.
    
    @note: Returns 'None' if the requested position is not found within the image. If the image
    WCS does not have keywords of the form CD1_1 etc., the output WCS will not be rotated.
    
    """
        
    halfImageSize=imageWCS.getHalfSizeDeg()
    imageCentre=imageWCS.getCentreWCSCoords()
    imScale=imageWCS.getPixelSizeDeg()

    if type(clipSizeDeg) == float:
        xHalfClipSizeDeg=clipSizeDeg/2.0
        yHalfClipSizeDeg=xHalfClipSizeDeg
    elif type(clipSizeDeg) == list or type(clipSizeDeg) == tuple:
        xHalfClipSizeDeg=clipSizeDeg[0]/2.0
        yHalfClipSizeDeg=clipSizeDeg[1]/2.0
    else:
        raise Exception("did not understand clipSizeDeg: should be float, or [widthDeg, heightDeg]")
    
    diagonalHalfSizeDeg=math.sqrt((xHalfClipSizeDeg*xHalfClipSizeDeg) \
        +(yHalfClipSizeDeg*yHalfClipSizeDeg))
    
    diagonalHalfSizePix=diagonalHalfSizeDeg/imScale
        
    if RADeg>imageCentre[0]-halfImageSize[0] and RADeg<imageCentre[0]+halfImageSize[0] \
        and decDeg>imageCentre[1]-halfImageSize[1] and decDeg<imageCentre[1]+halfImageSize[1]:
        
        imageDiagonalClip=clipImageSectionWCS(imageData, imageWCS, RADeg,
                        decDeg, diagonalHalfSizeDeg*2.0)
        diagonalClip=imageDiagonalClip['data']
        diagonalWCS=imageDiagonalClip['wcs']
        
        rotDeg=diagonalWCS.getRotationDeg()
        imageRotated=ndimage.rotate(diagonalClip, rotDeg)
        if diagonalWCS.isFlipped() == 1:
            imageRotated=pylab.fliplr(imageRotated)
        
        # Handle WCS rotation
        rotatedWCS=diagonalWCS.copy()
        rotRadians=math.radians(rotDeg)

        if returnWCS == True:
            try:
                
                CD11=rotatedWCS.header['CD1_1']
                CD21=rotatedWCS.header['CD2_1']
                CD12=rotatedWCS.header['CD1_2']
                CD22=rotatedWCS.header['CD2_2']
                if rotatedWCS.isFlipped() == 1:
                    CD11=CD11*-1
                    CD12=CD12*-1
                CDMatrix=numpy.array([[CD11, CD12], [CD21, CD22]], dtype=numpy.float64)

                rotRadians=rotRadians
                rot11=math.cos(rotRadians)
                rot12=math.sin(rotRadians)
                rot21=-math.sin(rotRadians)
                rot22=math.cos(rotRadians)
                rotMatrix=numpy.array([[rot11, rot12], [rot21, rot22]], dtype=numpy.float64)
                newCDMatrix=numpy.dot(rotMatrix, CDMatrix)

                P1=diagonalWCS.header['CRPIX1']
                P2=diagonalWCS.header['CRPIX2']
                V1=diagonalWCS.header['CRVAL1']
                V2=diagonalWCS.header['CRVAL2']
                
                PMatrix=numpy.zeros((2,), dtype = numpy.float64)
                PMatrix[0]=P1
                PMatrix[1]=P2
                
                # BELOW IS HOW TO WORK OUT THE NEW REF PIXEL
                CMatrix=numpy.array([imageRotated.shape[1]/2.0, imageRotated.shape[0]/2.0])
                centreCoords=diagonalWCS.getCentreWCSCoords()
                alphaRad=math.radians(centreCoords[0])
                deltaRad=math.radians(centreCoords[1])
                thetaRad=math.asin(math.sin(deltaRad)*math.sin(math.radians(V2)) + \
                                math.cos(deltaRad)*math.cos(math.radians(V2))*math.cos(alphaRad-math.radians(V1)))
                phiRad=math.atan2(-math.cos(deltaRad)*math.sin(alphaRad-math.radians(V1)), \
                                math.sin(deltaRad)*math.cos(math.radians(V2)) - \
                                math.cos(deltaRad)*math.sin(math.radians(V2))*math.cos(alphaRad-math.radians(V1))) + \
                                math.pi
                RTheta=(180.0/math.pi)*(1.0/math.tan(thetaRad))
                
                xy=numpy.zeros((2,), dtype=numpy.float64)
                xy[0]=RTheta*math.sin(phiRad)
                xy[1]=-RTheta*math.cos(phiRad)
                newPMatrix=CMatrix - numpy.dot(numpy.linalg.inv(newCDMatrix), xy)
                
                # But there's a small offset to CRPIX due to the rotatedImage being rounded to an integer
                # number of pixels (not sure this helps much)
                #d=numpy.dot(rotMatrix, [diagonalClip.shape[1], diagonalClip.shape[0]])
                #offset=abs(d)-numpy.array(imageRotated.shape)
                
                rotatedWCS.header['NAXIS1']=imageRotated.shape[1]
                rotatedWCS.header['NAXIS2']=imageRotated.shape[0]
                rotatedWCS.header['CRPIX1']=newPMatrix[0]
                rotatedWCS.header['CRPIX2']=newPMatrix[1]
                rotatedWCS.header['CRVAL1']=V1
                rotatedWCS.header['CRVAL2']=V2
                rotatedWCS.header['CD1_1']=newCDMatrix[0][0]
                rotatedWCS.header['CD2_1']=newCDMatrix[1][0]
                rotatedWCS.header['CD1_2']=newCDMatrix[0][1]
                rotatedWCS.header['CD2_2']=newCDMatrix[1][1]
                rotatedWCS.updateFromHeader()
                                
            except KeyError:
                
                if REPORT_ERRORS == True:
                    print("WARNING: astImages.clipRotatedImageSectionWCS() : no CDi_j keywords found - not rotating WCS.")
                    
                imageRotated=diagonalClip
                rotatedWCS=diagonalWCS
            
        imageRotatedClip=clipImageSectionWCS(imageRotated, rotatedWCS, RADeg, decDeg, clipSizeDeg)
        
        if returnWCS == True:
            return {'data': imageRotatedClip['data'], 'wcs': imageRotatedClip['wcs']}
        else:
            return {'data': imageRotatedClip['data'], 'wcs': None}
        
    else:
        
        if REPORT_ERRORS==True:
            print("""ERROR: astImages.clipRotatedImageSectionWCS() : 
            RADeg, decDeg are not within imageData.""")
        
        return None

#---------------------------------------------------------------------------------------------------
def clipUsingRADecCoords(imageData, imageWCS, RAMin, RAMax, decMin, decMax, returnWCS = True):
    """Clips a section from an image array at the pixel coordinates corresponding to the given
    celestial coordinates.
    
    @type imageData: numpy array
    @param imageData: image data array
    @type imageWCS: astWCS.WCS
    @param imageWCS: astWCS.WCS object
    @type RAMin: float
    @param RAMin: minimum RA coordinate in decimal degrees
    @type RAMax: float
    @param RAMax: maximum RA coordinate in decimal degrees
    @type decMin: float
    @param decMin: minimum dec coordinate in decimal degrees
    @type decMax: float
    @param decMax: maximum dec coordinate in decimal degrees
    @type returnWCS: bool
    @param returnWCS: if True, return an updated WCS for the clipped section
    @rtype: dictionary
    @return: clipped image section (numpy array), updated astWCS WCS object for
    clipped image section, and corresponding pixel coordinates in imageData in format 
    {'data', 'wcs', 'clippedSection'}.
    
    @note: Returns 'None' if the requested position is not found within the image.
    
    """
    
    imHeight=imageData.shape[0]
    imWidth=imageData.shape[1]
    
    xMin, yMin=imageWCS.wcs2pix(RAMin, decMin)
    xMax, yMax=imageWCS.wcs2pix(RAMax, decMax)
    xMin=int(round(xMin))
    xMax=int(round(xMax))
    yMin=int(round(yMin))
    yMax=int(round(yMax))
    X=[xMin, xMax]
    X.sort()
    Y=[yMin, yMax]
    Y.sort()
    
    if X[0] < 0:
        X[0]=0
    if X[1] > imWidth:
        X[1]=imWidth
    if Y[0] < 0:
        Y[0]=0
    if Y[1] > imHeight:
        Y[1]=imHeight   
    
    clippedData=imageData[Y[0]:Y[1],X[0]:X[1]]

    # Update WCS
    if returnWCS == True:
        try:
            oldCRPIX1=imageWCS.header['CRPIX1']
            oldCRPIX2=imageWCS.header['CRPIX2']
            clippedWCS=imageWCS.copy()
            clippedWCS.header['NAXIS1']=clippedData.shape[1]
            clippedWCS.header['NAXIS2']=clippedData.shape[0]
            clippedWCS.header['CRPIX1']=oldCRPIX1-X[0]
            clippedWCS.header['CRPIX2']=oldCRPIX2-Y[0]
            clippedWCS.updateFromHeader()
            
        except KeyError:
            
            if REPORT_ERRORS == True:
                
                print("WARNING: astImages.clipUsingRADecCoords() : no CRPIX1, CRPIX2 keywords found - not updating clipped image WCS.")
                
                clippedData=imageData[Y[0]:Y[1],X[0]:X[1]]
                clippedWCS=imageWCS.copy()
    else:
        clippedWCS=None
    
    return {'data': clippedData, 'wcs': clippedWCS, 'clippedSection': [X[0], X[1], Y[0], Y[1]]}
    
#---------------------------------------------------------------------------------------------------
def scaleImage(imageData, imageWCS, scaleFactor):
    """Scales image array and WCS by the given scale factor.
    
    @type imageData: numpy array
    @param imageData: image data array
    @type imageWCS: astWCS.WCS
    @param imageWCS: astWCS.WCS object
    @type scaleFactor: float or list or tuple
    @param scaleFactor: factor to resize image by - if tuple or list, in format 
        [x scale factor, y scale factor]
    @rtype: dictionary
    @return: image data (numpy array), updated astWCS WCS object for image, in format {'data', 'wcs'}.
    
    """

    if type(scaleFactor) == int or type(scaleFactor) == float:
        scaleFactor=[float(scaleFactor), float(scaleFactor)]    
    scaledData=ndimage.zoom(imageData, scaleFactor)
    
    # Take care of offset due to rounding in scaling image to integer pixel dimensions
    properDimensions=numpy.array(imageData.shape)*scaleFactor
    offset=properDimensions-numpy.array(scaledData.shape)
    
    # Rescale WCS
    try:
        oldCRPIX1=imageWCS.header['CRPIX1']
        oldCRPIX2=imageWCS.header['CRPIX2']
        CD11=imageWCS.header['CD1_1']
        CD21=imageWCS.header['CD2_1']
        CD12=imageWCS.header['CD1_2']
        CD22=imageWCS.header['CD2_2'] 
    except KeyError:
        # Try the older FITS header format
        try:
            oldCRPIX1=imageWCS.header['CRPIX1']
            oldCRPIX2=imageWCS.header['CRPIX2']
            CD11=imageWCS.header['CDELT1']
            CD21=0
            CD12=0
            CD22=imageWCS.header['CDELT2']
        except KeyError:
            if REPORT_ERRORS == True:
                print("WARNING: astImages.rescaleImage() : no CDij or CDELT keywords found - not updating WCS.")
            scaledWCS=imageWCS.copy()
            return {'data': scaledData, 'wcs': scaledWCS}

    CDMatrix=numpy.array([[CD11, CD12], [CD21, CD22]], dtype=numpy.float64)
    scaleFactorMatrix=numpy.array([[1.0/scaleFactor[0], 0], [0, 1.0/scaleFactor[1]]])
    scaledCDMatrix=numpy.dot(scaleFactorMatrix, CDMatrix)

    scaledWCS=imageWCS.copy()
    scaledWCS.header['NAXIS1']=scaledData.shape[1]
    scaledWCS.header['NAXIS2']=scaledData.shape[0]
    scaledWCS.header['CRPIX1']=oldCRPIX1*scaleFactor[0]+offset[1]
    scaledWCS.header['CRPIX2']=oldCRPIX2*scaleFactor[1]+offset[0]
    scaledWCS.header['CD1_1']=scaledCDMatrix[0][0]
    scaledWCS.header['CD2_1']=scaledCDMatrix[1][0]
    scaledWCS.header['CD1_2']=scaledCDMatrix[0][1]
    scaledWCS.header['CD2_2']=scaledCDMatrix[1][1]
    scaledWCS.updateFromHeader()
    
    return {'data': scaledData, 'wcs': scaledWCS}
    
#---------------------------------------------------------------------------------------------------
def intensityCutImage(imageData, cutLevels):
    """Creates a matplotlib.pylab plot of an image array with the specified cuts in intensity
    applied. This routine is used by L{saveBitmap} and L{saveContourOverlayBitmap}, which both
    produce output as .png, .jpg, etc. images.
    
    @type imageData: numpy array
    @param imageData: image data array
    @type cutLevels: list
    @param cutLevels: sets the image scaling - available options:
        - pixel values: cutLevels=[low value, high value].
        - histogram equalisation: cutLevels=["histEq", number of bins ( e.g. 1024)]
        - relative: cutLevels=["relative", cut per cent level (e.g. 99.5)]
        - smart: cutLevels=["smart", cut per cent level (e.g. 99.5)]
    ["smart", 99.5] seems to provide good scaling over a range of different images.
    @rtype: dictionary
    @return: image section (numpy.array), matplotlib image normalisation (matplotlib.colors.Normalize), in the format {'image', 'norm'}.
    
    @note: If cutLevels[0] == "histEq", then only {'image'} is returned.
    
    """
    
    oImWidth=imageData.shape[1]
    oImHeight=imageData.shape[0]
                    
    # Optional histogram equalisation
    if cutLevels[0]=="histEq":
        
        imageData=histEq(imageData, cutLevels[1])
        anorm=pylab.Normalize(imageData.min(), imageData.max())
        
    elif cutLevels[0]=="relative":
        
        # this turns image data into 1D array then sorts
        sorted=numpy.sort(numpy.ravel(imageData))	
        maxValue=sorted.max()
        minValue=sorted.min()
        
        # want to discard the top and bottom specified
        topCutIndex=len(sorted-1) \
            -int(math.floor(float((100.0-cutLevels[1])/100.0)*len(sorted-1)))
        bottomCutIndex=int(math.ceil(float((100.0-cutLevels[1])/100.0)*len(sorted-1)))
        topCut=sorted[topCutIndex]
        bottomCut=sorted[bottomCutIndex]
        anorm=pylab.Normalize(bottomCut, topCut)
        
    elif cutLevels[0]=="smart":
        
        # this turns image data into 1Darray then sorts
        sorted=numpy.sort(numpy.ravel(imageData))	
        maxValue=sorted.max()
        minValue=sorted.min()
        numBins=10000 		# 0.01 per cent accuracy
        binWidth=(maxValue-minValue)/float(numBins)
        histogram=ndimage.histogram(sorted, minValue, maxValue, numBins)
        
        # Find the bin with the most pixels in it, set that as our minimum
        # Then search through the bins until we get to a bin with more/or the same number of
        # pixels in it than the previous one.
        # We take that to be the maximum.
        # This means that we avoid the traps of big, bright, saturated stars that cause
        # problems for relative scaling
        backgroundValue=histogram.max()
        foundBackgroundBin=False
        foundTopBin=False
        lastBin=-10000					
        for i in range(len(histogram)):
            
            if histogram[i]>=lastBin and foundBackgroundBin==True:
                
                # Added a fudge here to stop us picking for top bin a bin within 
                # 10 percent of the background pixel value
                if (minValue+(binWidth*i))>bottomBinValue*1.1:
                    topBinValue=minValue+(binWidth*i)
                    foundTopBin=True
                    break
            
            if histogram[i]==backgroundValue and foundBackgroundBin==False:
                bottomBinValue=minValue+(binWidth*i)
                foundBackgroundBin=True

            lastBin=histogram[i]
        
        if foundTopBin==False:
            topBinValue=maxValue
         
        #Now we apply relative scaling to this
        smartClipped=numpy.clip(sorted, bottomBinValue, topBinValue)
        topCutIndex=len(smartClipped-1) \
            -int(math.floor(float((100.0-cutLevels[1])/100.0)*len(smartClipped-1)))
        bottomCutIndex=int(math.ceil(float((100.0-cutLevels[1])/100.0)*len(smartClipped-1)))
        topCut=smartClipped[topCutIndex]
        bottomCut=smartClipped[bottomCutIndex]
        anorm=pylab.Normalize(bottomCut, topCut)
    else:
        
        # Normalise using given cut levels
        anorm=pylab.Normalize(cutLevels[0], cutLevels[1])
    
    if cutLevels[0]=="histEq":
        return {'image': imageData.copy()}
    else:
        return {'image': imageData.copy(), 'norm': anorm}

#---------------------------------------------------------------------------------------------------
def resampleToTanProjection(imageData, imageWCS, outputPixDimensions=[600, 600]):
    """Resamples an image and WCS to a tangent plane projection. Purely for plotting purposes
    (e.g., ensuring RA, dec. coordinate axes perpendicular).
    
    @type imageData: numpy array
    @param imageData: image data array
    @type imageWCS: astWCS.WCS
    @param imageWCS: astWCS.WCS object
    @type outputPixDimensions: list
    @param outputPixDimensions: [width, height] of output image in pixels
    @rtype: dictionary
    @return: image data (numpy array), updated astWCS WCS object for image, in format {'data', 'wcs'}.
    
    """
    
    RADeg, decDeg=imageWCS.getCentreWCSCoords()
    xPixelScale=imageWCS.getXPixelSizeDeg()
    yPixelScale=imageWCS.getYPixelSizeDeg()
    xSizeDeg, ySizeDeg=imageWCS.getFullSizeSkyDeg()
    xSizePix=int(round(outputPixDimensions[0]))
    ySizePix=int(round(outputPixDimensions[1]))
    xRefPix=xSizePix/2.0
    yRefPix=ySizePix/2.0
    xOutPixScale=xSizeDeg/xSizePix
    yOutPixScale=ySizeDeg/ySizePix
    cardList=pyfits.CardList()
    cardList.append(pyfits.Card('NAXIS', 2))
    cardList.append(pyfits.Card('NAXIS1', xSizePix))
    cardList.append(pyfits.Card('NAXIS2', ySizePix))
    cardList.append(pyfits.Card('CTYPE1', 'RA---TAN'))
    cardList.append(pyfits.Card('CTYPE2', 'DEC--TAN'))
    cardList.append(pyfits.Card('CRVAL1', RADeg))
    cardList.append(pyfits.Card('CRVAL2', decDeg))
    cardList.append(pyfits.Card('CRPIX1', xRefPix+1))
    cardList.append(pyfits.Card('CRPIX2', yRefPix+1))
    cardList.append(pyfits.Card('CDELT1', -xOutPixScale))
    cardList.append(pyfits.Card('CDELT2', xOutPixScale))    # Makes more sense to use same pix scale
    cardList.append(pyfits.Card('CUNIT1', 'DEG'))
    cardList.append(pyfits.Card('CUNIT2', 'DEG'))
    newHead=pyfits.Header(cards=cardList)
    newWCS=astWCS.WCS(newHead, mode='pyfits')
    newImage=numpy.zeros([ySizePix, xSizePix])

    tanImage=resampleToWCS(newImage, newWCS, imageData, imageWCS, highAccuracy=True, 
                            onlyOverlapping=False)
    
    return tanImage 
    
#---------------------------------------------------------------------------------------------------
def resampleToWCS(im1Data, im1WCS, im2Data, im2WCS, highAccuracy = False, onlyOverlapping = True):
    """Resamples data corresponding to second image (with data im2Data, WCS im2WCS) onto the WCS 
    of the first image (im1Data, im1WCS). The output, resampled image is of the pixel same 
    dimensions of the first image. This routine is for assisting in plotting - performing 
    photometry on the output is not recommended. 
    
    Set highAccuracy == True to sample every corresponding pixel in each image; otherwise only
    every nth pixel (where n is the ratio of the image scales) will be sampled, with values
    in between being set using a linear interpolation (much faster).
    
    Set onlyOverlapping == True to speed up resampling by only resampling the overlapping
    area defined by both image WCSs.
    
    @type im1Data: numpy array
    @param im1Data: image data array for first image
    @type im1WCS: astWCS.WCS
    @param im1WCS: astWCS.WCS object corresponding to im1Data
    @type im2Data: numpy array
    @param im2Data: image data array for second image (to be resampled to match first image)
    @type im2WCS: astWCS.WCS
    @param im2WCS: astWCS.WCS object corresponding to im2Data
    @type highAccuracy: bool
    @param highAccuracy: if True, sample every corresponding pixel in each image; otherwise, sample
        every nth pixel, where n = the ratio of the image scales.
    @type onlyOverlapping: bool
    @param onlyOverlapping: if True, only consider the overlapping area defined by both image WCSs
        (speeds things up)
    @rtype: dictionary
    @return: numpy image data array and associated WCS in format {'data', 'wcs'}
    
    """
    
    resampledData=numpy.zeros(im1Data.shape)
    
    # Find overlap - speed things up
    # But have a border so as not to require the overlap to be perfect
    # There's also no point in oversampling image 1 if it's much higher res than image 2
    xPixRatio=(im2WCS.getXPixelSizeDeg()/im1WCS.getXPixelSizeDeg())/2.0
    yPixRatio=(im2WCS.getYPixelSizeDeg()/im1WCS.getYPixelSizeDeg())/2.0
    xBorder=xPixRatio*10.0
    yBorder=yPixRatio*10.0
    if highAccuracy == False:
        if xPixRatio > 1:
            xPixStep=int(math.ceil(xPixRatio))
        else:
            xPixStep=1
        if yPixRatio > 1:
            yPixStep=int(math.ceil(yPixRatio))
        else:
            yPixStep=1
    else:
        xPixStep=1
        yPixStep=1
    
    if onlyOverlapping == True:
        overlap=astWCS.findWCSOverlap(im1WCS, im2WCS)
        xOverlap=[overlap['wcs1Pix'][0], overlap['wcs1Pix'][1]]
        yOverlap=[overlap['wcs1Pix'][2], overlap['wcs1Pix'][3]]
        xOverlap.sort()
        yOverlap.sort()
        xMin=int(math.floor(xOverlap[0]-xBorder))
        xMax=int(math.ceil(xOverlap[1]+xBorder))
        yMin=int(math.floor(yOverlap[0]-yBorder))
        yMax=int(math.ceil(yOverlap[1]+yBorder))
        xRemainder=(xMax-xMin) % xPixStep
        yRemainder=(yMax-yMin) % yPixStep
        if xRemainder != 0:
            xMax=xMax+xRemainder
        if yRemainder != 0:
            yMax=yMax+yRemainder
        # Check that we're still within the image boundaries, to be on the safe side
        if xMin < 0:
            xMin=0
        if xMax > im1Data.shape[1]:
            xMax=im1Data.shape[1]
        if yMin < 0:
            yMin=0
        if yMax > im1Data.shape[0]:
            yMax=im1Data.shape[0]
    else:
        xMin=0
        xMax=im1Data.shape[1]
        yMin=0
        yMax=im1Data.shape[0]
    
    for x in range(xMin, xMax, xPixStep):
        for y in range(yMin, yMax, yPixStep):
            RA, dec=im1WCS.pix2wcs(x, y)
            x2, y2=im2WCS.wcs2pix(RA, dec)
            x2=int(round(x2))
            y2=int(round(y2))
            if x2 >= 0 and x2 < im2Data.shape[1] and y2 >= 0 and y2 < im2Data.shape[0]:
                resampledData[y][x]=im2Data[y2][x2]

    # linear interpolation
    if highAccuracy == False:
        for row in range(resampledData.shape[0]):
            vals=resampledData[row, numpy.arange(xMin, xMax, xPixStep)]
            index2data=interpolate.interp1d(numpy.arange(0, vals.shape[0], 1), vals)
            interpedVals=index2data(numpy.arange(0, vals.shape[0]-1, 1.0/xPixStep))
            resampledData[row, xMin:xMin+interpedVals.shape[0]]=interpedVals
        for col in range(resampledData.shape[1]):
            vals=resampledData[numpy.arange(yMin, yMax, yPixStep), col]
            index2data=interpolate.interp1d(numpy.arange(0, vals.shape[0], 1), vals)
            interpedVals=index2data(numpy.arange(0, vals.shape[0]-1, 1.0/yPixStep))
            resampledData[yMin:yMin+interpedVals.shape[0], col]=interpedVals
        
    # Note: should really just copy im1WCS keywords into im2WCS and return that
    # Only a problem if we're using this for anything other than plotting
    return {'data': resampledData, 'wcs': im1WCS.copy()}
    
#---------------------------------------------------------------------------------------------------
def generateContourOverlay(backgroundImageData, backgroundImageWCS, contourImageData, contourImageWCS, \
                            contourLevels, contourSmoothFactor = 0, highAccuracy = False):
    """Rescales an image array to be used as a contour overlay to have the same dimensions as the 
    background image, and generates a set of contour levels. The image array from which the contours 
    are to be generated will be resampled to the same dimensions as the background image data, and 
    can be optionally smoothed using a Gaussian filter. The sigma of the Gaussian filter 
    (contourSmoothFactor) is specified in arcsec.
    
    @type backgroundImageData: numpy array
    @param backgroundImageData: background image data array
    @type backgroundImageWCS: astWCS.WCS
    @param backgroundImageWCS: astWCS.WCS object of the background image data array
    @type contourImageData: numpy array
    @param contourImageData: image data array from which contours are to be generated
    @type contourImageWCS: astWCS.WCS
    @param contourImageWCS: astWCS.WCS object corresponding to contourImageData
    @type contourLevels: list
    @param contourLevels: sets the contour levels - available options:
        - values: contourLevels=[list of values specifying each level]
        - linear spacing: contourLevels=['linear', min level value, max level value, number
        of levels] - can use "min", "max" to automatically set min, max levels from image data
        - log spacing: contourLevels=['log', min level value, max level value, number of
        levels] - can use "min", "max" to automatically set min, max levels from image data
    @type contourSmoothFactor: float
    @param contourSmoothFactor: standard deviation (in arcsec) of Gaussian filter for
    pre-smoothing of contour image data (set to 0 for no smoothing)
    @type highAccuracy: bool
    @param highAccuracy: if True, sample every corresponding pixel in each image; otherwise, sample
        every nth pixel, where n = the ratio of the image scales.
    
    """	
    
    # For compromise between speed and accuracy, scale a copy of the background
    # image down to a scale that is one pixel = 1/5 of a pixel in the contour image
    # But only do this if it has CDij keywords as we know how to scale those
    if ("CD1_1" in backgroundImageWCS.header) == True:
        xScaleFactor=backgroundImageWCS.getXPixelSizeDeg()/(contourImageWCS.getXPixelSizeDeg()/5.0)
        yScaleFactor=backgroundImageWCS.getYPixelSizeDeg()/(contourImageWCS.getYPixelSizeDeg()/5.0)
        scaledBackground=scaleImage(backgroundImageData, backgroundImageWCS, (xScaleFactor, yScaleFactor))
        scaled=resampleToWCS(scaledBackground['data'], scaledBackground['wcs'], 
                                contourImageData, contourImageWCS, highAccuracy = highAccuracy)
        scaledContourData=scaled['data']
        scaledContourWCS=scaled['wcs']
        scaledBackground=True
    else:
        scaled=resampleToWCS(backgroundImageData, backgroundImageWCS, 
                                contourImageData, contourImageWCS, highAccuracy = highAccuracy)
        scaledContourData=scaled['data']
        scaledContourWCS=scaled['wcs']
        scaledBackground=False

    if contourSmoothFactor > 0:
        sigmaPix=(contourSmoothFactor/3600.0)/scaledContourWCS.getPixelSizeDeg()
        scaledContourData=ndimage.gaussian_filter(scaledContourData, sigmaPix)
    
    # Various ways of setting the contour levels
    # If just a list is passed in, use those instead
    if contourLevels[0] == "linear":
        if contourLevels[1] == "min":
            xMin=contourImageData.flatten().min()
        else:
            xMin=float(contourLevels[1])
        if contourLevels[2] == "max":
            xMax=contourImageData.flatten().max()
        else:
            xMax=float(contourLevels[2])        
        nLevels=contourLevels[3]
        xStep=(xMax-xMin)/(nLevels-1)
        cLevels=[]
        for j in range(nLevels+1):
            level=xMin+j*xStep
            cLevels.append(level)
    
    elif contourLevels[0] == "log":
        if contourLevels[1] == "min":
            xMin=contourImageData.flatten().min()
        else:
            xMin=float(contourLevels[1])
        if contourLevels[2] == "max":
            xMax=contourImageData.flatten().max()
        else:
            xMax=float(contourLevels[2])     
        if xMin <= 0.0:
            raise Exception("minimum contour level set to <= 0 and log scaling chosen.")
        xLogMin=math.log10(xMin)
        xLogMax=math.log10(xMax)
        nLevels=contourLevels[3]
        xLogStep=(xLogMax-xLogMin)/(nLevels-1)
        cLevels=[]
        prevLevel=0
        for j in range(nLevels+1):
            level=math.pow(10, xLogMin+j*xLogStep)
            cLevels.append(level)			
        
    else:
        cLevels=contourLevels
    
    # Now blow the contour image data back up to the size of the original image   
    if scaledBackground == True:
        scaledBack=scaleImage(scaledContourData, scaledContourWCS, (1.0/xScaleFactor, 1.0/yScaleFactor))['data']
    else:
        scaledBack=scaledContourData
    
    return {'scaledImage': scaledBack, 'contourLevels': cLevels}
    
#---------------------------------------------------------------------------------------------------
def saveBitmap(outputFileName, imageData, cutLevels, size, colorMapName):
    """Makes a bitmap image from an image array; the image format is specified by the
    filename extension. (e.g. ".jpg" =JPEG, ".png"=PNG).
    
    @type outputFileName: string
    @param outputFileName: filename of output bitmap image
    @type imageData: numpy array
    @param imageData: image data array
    @type cutLevels: list
    @param cutLevels: sets the image scaling - available options:
        - pixel values: cutLevels=[low value, high value].
        - histogram equalisation: cutLevels=["histEq", number of bins ( e.g. 1024)]
        - relative: cutLevels=["relative", cut per cent level (e.g. 99.5)]
        - smart: cutLevels=["smart", cut per cent level (e.g. 99.5)]
    ["smart", 99.5] seems to provide good scaling over a range of different images. 
    @type size: int
    @param size: size of output image in pixels
    @type colorMapName: string
    @param colorMapName: name of a standard matplotlib colormap, e.g. "hot", "cool", "gray"
    etc. (do "help(pylab.colormaps)" in the Python interpreter to see available options)
    
    """		
    
    cut=intensityCutImage(imageData, cutLevels)
    
    # Make plot
    aspectR=float(cut['image'].shape[0])/float(cut['image'].shape[1])
    pylab.figure(figsize=(10,10*aspectR))
    pylab.axes([0,0,1,1])
        
    try:
        colorMap=pylab.cm.get_cmap(colorMapName)
    except AssertionError:
        raise Exception(colorMapName+" is not a defined matplotlib colormap.")
    
    if cutLevels[0]=="histEq":
        pylab.imshow(cut['image'],  interpolation="bilinear", origin='lower', cmap=colorMap)
    
    else:
        pylab.imshow(cut['image'],  interpolation="bilinear",  norm=cut['norm'], origin='lower',
            cmap=colorMap)

    pylab.axis("off")
    
    pylab.savefig("out_astImages.png")	
    pylab.close("all")
    
    try:
        from PIL import Image
    except:
        raise Exception("astImages.saveBitmap requires the Python Imaging Library to be installed.")
    im=Image.open("out_astImages.png")
    im.thumbnail((int(size),int(size)))
    im.save(outputFileName)
    
    os.remove("out_astImages.png")

#---------------------------------------------------------------------------------------------------
def saveContourOverlayBitmap(outputFileName, backgroundImageData, backgroundImageWCS, cutLevels, \
                                size, colorMapName, contourImageData, contourImageWCS, \
                                contourSmoothFactor, contourLevels, contourColor, contourWidth):
    """Makes a bitmap image from an image array, with a set of contours generated from a
    second image array overlaid. The image format is specified by the file extension
    (e.g. ".jpg"=JPEG, ".png"=PNG). The image array from which the contours are to be generated
    can optionally be pre-smoothed using a Gaussian filter. 
    
    @type outputFileName: string
    @param outputFileName: filename of output bitmap image
    @type backgroundImageData: numpy array
    @param backgroundImageData: background image data array
    @type backgroundImageWCS: astWCS.WCS
    @param backgroundImageWCS: astWCS.WCS object of the background image data array
    @type cutLevels: list
    @param cutLevels: sets the image scaling - available options:
        - pixel values: cutLevels=[low value, high value].
        - histogram equalisation: cutLevels=["histEq", number of bins ( e.g. 1024)]
        - relative: cutLevels=["relative", cut per cent level (e.g. 99.5)]
        - smart: cutLevels=["smart", cut per cent level (e.g. 99.5)]
    ["smart", 99.5] seems to provide good scaling over a range of different images. 
    @type size: int
    @param size: size of output image in pixels
    @type colorMapName: string
    @param colorMapName: name of a standard matplotlib colormap, e.g. "hot", "cool", "gray"
    etc. (do "help(pylab.colormaps)" in the Python interpreter to see available options)
    @type contourImageData: numpy array
    @param contourImageData: image data array from which contours are to be generated
    @type contourImageWCS: astWCS.WCS
    @param contourImageWCS: astWCS.WCS object corresponding to contourImageData
    @type contourSmoothFactor: float
    @param contourSmoothFactor: standard deviation (in pixels) of Gaussian filter for
    pre-smoothing of contour image data (set to 0 for no smoothing)
    @type contourLevels: list
    @param contourLevels: sets the contour levels - available options:
        - values: contourLevels=[list of values specifying each level]
        - linear spacing: contourLevels=['linear', min level value, max level value, number
        of levels] - can use "min", "max" to automatically set min, max levels from image data
        - log spacing: contourLevels=['log', min level value, max level value, number of
        levels] - can use "min", "max" to automatically set min, max levels from image data
    @type contourColor: string
    @param contourColor: color of the overlaid contours, specified by the name of a standard
    matplotlib color, e.g., "black", "white", "cyan"
    etc. (do "help(pylab.colors)" in the Python interpreter to see available options)
    @type contourWidth: int
    @param contourWidth: width of the overlaid contours
    
    """	
    
    cut=intensityCutImage(backgroundImageData, cutLevels)
    
    # Make plot of just the background image
    aspectR=float(cut['image'].shape[0])/float(cut['image'].shape[1])
    pylab.figure(figsize=(10,10*aspectR))
    pylab.axes([0,0,1,1])
        
    try:
        colorMap=pylab.cm.get_cmap(colorMapName)
    except AssertionError:
        raise Exception(colorMapName+" is not a defined matplotlib colormap.")
    
    if cutLevels[0]=="histEq":
        pylab.imshow(cut['image'],  interpolation="bilinear", origin='lower', cmap=colorMap)
    
    else:
        pylab.imshow(cut['image'],  interpolation="bilinear",  norm=cut['norm'], origin='lower',
            cmap=colorMap)

    pylab.axis("off")

    # Add the contours
    contourData=generateContourOverlay(backgroundImageData, backgroundImageWCS, contourImageData, \
                                        contourImageWCS, contourLevels, contourSmoothFactor)
    
    pylab.contour(contourData['scaledImage'], contourData['contourLevels'], colors=contourColor,
        linewidths=contourWidth)	
            
    pylab.savefig("out_astImages.png")	
    pylab.close("all")
    
    try:
        from PIL import Image
    except:
        raise Exception("astImages.saveContourOverlayBitmap requires the Python Imaging Library to be installed")
    
    im=Image.open("out_astImages.png")
    im.thumbnail((int(size),int(size)))
    im.save(outputFileName)
        
    os.remove("out_astImages.png")
    
#---------------------------------------------------------------------------------------------------
def saveFITS(outputFileName, imageData, imageWCS = None):
    """Writes an image array to a new .fits file.
    
    @type outputFileName: string
    @param outputFileName: filename of output FITS image
    @type imageData: numpy array
    @param imageData: image data array
    @type imageWCS: astWCS.WCS object
    @param imageWCS: image WCS object
    
    @note: If imageWCS=None, the FITS image will be written with a rudimentary header containing
    no meta data.
    
    """
    
    if os.path.exists(outputFileName):
        os.remove(outputFileName)
        
    newImg=pyfits.HDUList()
    
    if imageWCS!=None:
        hdu=pyfits.PrimaryHDU(None, imageWCS.header)
    else:
        hdu=pyfits.PrimaryHDU(None, None)
    
    hdu.data=imageData
    newImg.append(hdu)
    newImg.writeto(outputFileName)
    newImg.close()
    
#---------------------------------------------------------------------------------------------------
def histEq(inputArray, numBins):
    """Performs histogram equalisation of the input numpy array.
    
    @type inputArray: numpy array
    @param inputArray: image data array
    @type numBins: int
    @param numBins: number of bins in which to perform the operation (e.g. 1024)
    @rtype: numpy array
    @return: image data array
    
    """
    
    imageData=inputArray
    
    # histogram equalisation: we want an equal number of pixels in each intensity range
    sortedDataIntensities=numpy.sort(numpy.ravel(imageData))	
    median=numpy.median(sortedDataIntensities)
    
    # Make cumulative histogram of data values, simple min-max used to set bin sizes and range
    dataCumHist=numpy.zeros(numBins)
    minIntensity=sortedDataIntensities.min()	
    maxIntensity=sortedDataIntensities.max()
    histRange=maxIntensity-minIntensity
    binWidth=histRange/float(numBins-1)
    for i in range(len(sortedDataIntensities)):
        binNumber=int(math.ceil((sortedDataIntensities[i]-minIntensity)/binWidth))
        addArray=numpy.zeros(numBins)
        onesArray=numpy.ones(numBins-binNumber)
        onesRange=list(range(binNumber, numBins))
        numpy.put(addArray, onesRange, onesArray)
        dataCumHist=dataCumHist+addArray
                
    # Make ideal cumulative histogram
    idealValue=dataCumHist.max()/float(numBins)
    idealCumHist=numpy.arange(idealValue, dataCumHist.max()+idealValue, idealValue)
    
    # Map the data to the ideal
    for y in range(imageData.shape[0]):
        for x in range(imageData.shape[1]):
            # Get index corresponding to dataIntensity
            intensityBin=int(math.ceil((imageData[y][x]-minIntensity)/binWidth))
            
            # Guard against rounding errors (happens rarely I think)
            if intensityBin<0:
                intensityBin=0
            if intensityBin>len(dataCumHist)-1:
                intensityBin=len(dataCumHist)-1
        
            # Get the cumulative frequency corresponding intensity level in the data
            dataCumFreq=dataCumHist[intensityBin]
            
            # Get the index of the corresponding ideal cumulative frequency
            idealBin=numpy.searchsorted(idealCumHist, dataCumFreq)
            idealIntensity=(idealBin*binWidth)+minIntensity
            imageData[y][x]=idealIntensity	
        
    return imageData

#---------------------------------------------------------------------------------------------------
def normalise(inputArray, clipMinMax):
    """Clips the inputArray in intensity and normalises the array such that minimum and maximum
    values are 0, 1. Clip in intensity is specified by clipMinMax, a list in the format 
    [clipMin, clipMax]
    
    Used for normalising image arrays so that they can be turned into RGB arrays that matplotlib
    can plot (see L{astPlots.ImagePlot}).
    
    @type inputArray: numpy array
    @param inputArray: image data array
    @type clipMinMax: list
    @param clipMinMax: [minimum value of clipped array, maximum value of clipped array]
    @rtype: numpy array
    @return: normalised array with minimum value 0, maximum value 1

    """
    clipped=inputArray.clip(clipMinMax[0], clipMinMax[1])
    slope=1.0/(clipMinMax[1]-clipMinMax[0])
    intercept=-clipMinMax[0]*slope
    clipped=clipped*slope+intercept
    
    return clipped