/usr/lib/python2.7/dist-packages/ffc/codesnippets.py is in python-ffc 1.6.0-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 | "Code snippets for code generation."
# Copyright (C) 2007-2013 Anders Logg
#
# This file is part of FFC.
#
# FFC is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# FFC is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with FFC. If not, see <http://www.gnu.org/licenses/>.
#
# Modified by Kristian B. Oelgaard 2010-2013
# Modified by Marie Rognes 2007-2012
# Modified by Peter Brune 2009
# Modified by Martin Alnaes, 2013
#
# First added: 2007-02-28
# Last changed: 2014-06-10
# Code snippets
__all__ = ["comment_ufc", "comment_dolfin", "header_h", "header_c", "footer",
"compute_jacobian", "compute_jacobian_inverse",
"eval_basis_decl", "eval_basis_init", "eval_basis", "eval_basis_copy",
"eval_derivs_decl", "eval_derivs_init", "eval_derivs", "eval_derivs_copy"]
__old__ = ["evaluate_f",
"facet_determinant", "map_onto_physical",
"fiat_coordinate_map", "transform_snippet",
"scale_factor", "combinations_snippet",
"normal_direction",
"facet_normal", "ip_coordinates", "cell_volume", "circumradius",
"facet_area", "min_facet_edge_length", "max_facet_edge_length",
"orientation_snippet"]
__all__ += __old__
comment_ufc = """\
// This code conforms with the UFC specification version %(ufc_version)s
// and was automatically generated by FFC version %(ffc_version)s.
"""
comment_dolfin = """\
// This code conforms with the UFC specification version %(ufc_version)s
// and was automatically generated by FFC version %(ffc_version)s.
//
// This code was generated with the option '-l dolfin' and
// contains DOLFIN-specific wrappers that depend on DOLFIN.
"""
# Code snippets for headers and footers
header_h = """\
#ifndef __%(prefix_upper)s_H
#define __%(prefix_upper)s_H
#include <cmath>
#include <stdexcept>
#include <fstream>
#include <ufc.h>
"""
header_c = """\
#include "%(prefix)s.h"
"""
footer = """\
#endif
"""
# Code snippets for computing Jacobians
_compute_jacobian_interval_1d = """\
// Compute Jacobian
double J%(restriction)s[1];
compute_jacobian_interval_1d(J%(restriction)s, vertex_coordinates%(restriction)s);
"""
_compute_jacobian_interval_2d = """\
// Compute Jacobian
double J%(restriction)s[2];
compute_jacobian_interval_2d(J%(restriction)s, vertex_coordinates%(restriction)s);
"""
_compute_jacobian_interval_3d = """\
// Compute Jacobian
double J%(restriction)s[3];
compute_jacobian_interval_3d(J%(restriction)s, vertex_coordinates%(restriction)s);
"""
_compute_jacobian_triangle_2d = """\
// Compute Jacobian
double J%(restriction)s[4];
compute_jacobian_triangle_2d(J%(restriction)s, vertex_coordinates%(restriction)s);
"""
_compute_jacobian_triangle_3d = """\
// Compute Jacobian
double J%(restriction)s[6];
compute_jacobian_triangle_3d(J%(restriction)s, vertex_coordinates%(restriction)s);
"""
_compute_jacobian_tetrahedron_3d = """\
// Compute Jacobian
double J%(restriction)s[9];
compute_jacobian_tetrahedron_3d(J%(restriction)s, vertex_coordinates%(restriction)s);
"""
compute_jacobian = {1: {1: _compute_jacobian_interval_1d,
2: _compute_jacobian_interval_2d,
3: _compute_jacobian_interval_3d},
2: {2: _compute_jacobian_triangle_2d,
3: _compute_jacobian_triangle_3d},
3: {3: _compute_jacobian_tetrahedron_3d}}
# Code snippets for computing Jacobian inverses
_compute_jacobian_inverse_interval_1d = """\
// Compute Jacobian inverse and determinant
double K%(restriction)s[1];
double detJ%(restriction)s;
compute_jacobian_inverse_interval_1d(K%(restriction)s, detJ%(restriction)s, J%(restriction)s);
"""
_compute_jacobian_inverse_interval_2d = """\
// Compute Jacobian inverse and determinant
double K%(restriction)s[2];
double detJ%(restriction)s;
compute_jacobian_inverse_interval_2d(K%(restriction)s, detJ%(restriction)s, J%(restriction)s);
"""
_compute_jacobian_inverse_interval_3d = """\
// Compute Jacobian inverse and determinant
double K%(restriction)s[3];
double detJ%(restriction)s;
compute_jacobian_inverse_interval_3d(K%(restriction)s, detJ%(restriction)s, J%(restriction)s);
"""
_compute_jacobian_inverse_triangle_2d = """\
// Compute Jacobian inverse and determinant
double K%(restriction)s[4];
double detJ%(restriction)s;
compute_jacobian_inverse_triangle_2d(K%(restriction)s, detJ%(restriction)s, J%(restriction)s);
"""
_compute_jacobian_inverse_triangle_3d = """\
// Compute Jacobian inverse and determinant
double K%(restriction)s[6];
double detJ%(restriction)s;
compute_jacobian_inverse_triangle_3d(K%(restriction)s, detJ%(restriction)s, J%(restriction)s);
"""
_compute_jacobian_inverse_tetrahedron_3d = """\
// Compute Jacobian inverse and determinant
double K%(restriction)s[9];
double detJ%(restriction)s;
compute_jacobian_inverse_tetrahedron_3d(K%(restriction)s, detJ%(restriction)s, J%(restriction)s);
"""
compute_jacobian_inverse = {1: {1: _compute_jacobian_inverse_interval_1d,
2: _compute_jacobian_inverse_interval_2d,
3: _compute_jacobian_inverse_interval_3d},
2: {2: _compute_jacobian_inverse_triangle_2d,
3: _compute_jacobian_inverse_triangle_3d},
3: {3: _compute_jacobian_inverse_tetrahedron_3d}}
# Code snippet for scale factor
scale_factor = """\
// Set scale factor
const double det = std::abs(detJ);"""
# FIXME: Old stuff below that should be cleaned up or moved to ufc_geometry.h
orientation_snippet = """
// Check orientation
if (cell_orientation%(restriction)s == -1)
throw std::runtime_error("cell orientation must be defined (not -1)");
// (If cell_orientation == 1 = down, multiply det(J) by -1)
else if (cell_orientation%(restriction)s == 1)
detJ%(restriction)s *= -1;
"""
evaluate_f = "f.evaluate(vals, y, c);"
_facet_determinant_1D = """\
// Facet determinant 1D (vertex)
const double det = 1.0;"""
_facet_determinant_2D = """\
// Get vertices on edge
static unsigned int edge_vertices[3][2] = {{1, 2}, {0, 2}, {0, 1}};
const unsigned int v0 = edge_vertices[facet%(restriction)s][0];
const unsigned int v1 = edge_vertices[facet%(restriction)s][1];
// Compute scale factor (length of edge scaled by length of reference interval)
const double dx0 = vertex_coordinates%(restriction)s[2*v1 + 0] - vertex_coordinates%(restriction)s[2*v0 + 0];
const double dx1 = vertex_coordinates%(restriction)s[2*v1 + 1] - vertex_coordinates%(restriction)s[2*v0 + 1];
const double det = std::sqrt(dx0*dx0 + dx1*dx1);
"""
_facet_determinant_2D_1D = """\
// Facet determinant 1D in 2D (vertex)
const double det = 1.0;
"""
_facet_determinant_3D = """\
// Get vertices on face
static unsigned int face_vertices[4][3] = {{1, 2, 3}, {0, 2, 3}, {0, 1, 3}, {0, 1, 2}};
const unsigned int v0 = face_vertices[facet%(restriction)s][0];
const unsigned int v1 = face_vertices[facet%(restriction)s][1];
const unsigned int v2 = face_vertices[facet%(restriction)s][2];
// Compute scale factor (area of face scaled by area of reference triangle)
const double a0 = (vertex_coordinates%(restriction)s[3*v0 + 1]*vertex_coordinates%(restriction)s[3*v1 + 2] + vertex_coordinates%(restriction)s[3*v0 + 2]*vertex_coordinates%(restriction)s[3*v2 + 1] + vertex_coordinates%(restriction)s[3*v1 + 1]*vertex_coordinates%(restriction)s[3*v2 + 2]) - (vertex_coordinates%(restriction)s[3*v2 + 1]*vertex_coordinates%(restriction)s[3*v1 + 2] + vertex_coordinates%(restriction)s[3*v2 + 2]*vertex_coordinates%(restriction)s[3*v0 + 1] + vertex_coordinates%(restriction)s[3*v1 + 1]*vertex_coordinates%(restriction)s[3*v0 + 2]);
const double a1 = (vertex_coordinates%(restriction)s[3*v0 + 2]*vertex_coordinates%(restriction)s[3*v1 + 0] + vertex_coordinates%(restriction)s[3*v0 + 0]*vertex_coordinates%(restriction)s[3*v2 + 2] + vertex_coordinates%(restriction)s[3*v1 + 2]*vertex_coordinates%(restriction)s[3*v2 + 0]) - (vertex_coordinates%(restriction)s[3*v2 + 2]*vertex_coordinates%(restriction)s[3*v1 + 0] + vertex_coordinates%(restriction)s[3*v2 + 0]*vertex_coordinates%(restriction)s[3*v0 + 2] + vertex_coordinates%(restriction)s[3*v1 + 2]*vertex_coordinates%(restriction)s[3*v0 + 0]);
const double a2 = (vertex_coordinates%(restriction)s[3*v0 + 0]*vertex_coordinates%(restriction)s[3*v1 + 1] + vertex_coordinates%(restriction)s[3*v0 + 1]*vertex_coordinates%(restriction)s[3*v2 + 0] + vertex_coordinates%(restriction)s[3*v1 + 0]*vertex_coordinates%(restriction)s[3*v2 + 1]) - (vertex_coordinates%(restriction)s[3*v2 + 0]*vertex_coordinates%(restriction)s[3*v1 + 1] + vertex_coordinates%(restriction)s[3*v2 + 1]*vertex_coordinates%(restriction)s[3*v0 + 0] + vertex_coordinates%(restriction)s[3*v1 + 0]*vertex_coordinates%(restriction)s[3*v0 + 1]);
const double det = std::sqrt(a0*a0 + a1*a1 + a2*a2);
"""
_facet_determinant_3D_2D = """\
// Facet determinant 2D in 3D (edge)
// Get vertices on edge
static unsigned int edge_vertices[3][2] = {{1, 2}, {0, 2}, {0, 1}};
const unsigned int v0 = edge_vertices[facet%(restriction)s][0];
const unsigned int v1 = edge_vertices[facet%(restriction)s][1];
// Compute scale factor (length of edge scaled by length of reference interval)
const double dx0 = vertex_coordinates%(restriction)s[3*v1 + 0] - vertex_coordinates%(restriction)s[3*v0 + 0];
const double dx1 = vertex_coordinates%(restriction)s[3*v1 + 1] - vertex_coordinates%(restriction)s[3*v0 + 1];
const double dx2 = vertex_coordinates%(restriction)s[3*v1 + 2] - vertex_coordinates%(restriction)s[3*v0 + 2];
const double det = std::sqrt(dx0*dx0 + dx1*dx1 + dx2*dx2);
"""
_facet_determinant_3D_1D = """\
// Facet determinant 1D in 3D (vertex)
const double det = 1.0;
"""
_normal_direction_1D = """\
const bool direction = facet%(restriction)s == 0 ? vertex_coordinates%(restriction)s[0] > vertex_coordinates%(restriction)s[1] : vertex_coordinates%(restriction)s[1] > vertex_coordinates%(restriction)s[0];
"""
_normal_direction_2D = """\
const bool direction = dx1*(vertex_coordinates%(restriction)s[2*%(facet)s] - vertex_coordinates%(restriction)s[2*v0]) - dx0*(vertex_coordinates%(restriction)s[2*%(facet)s + 1] - vertex_coordinates%(restriction)s[2*v0 + 1]) < 0;
"""
_normal_direction_3D = """\
const bool direction = a0*(vertex_coordinates%(restriction)s[3*%(facet)s] - vertex_coordinates%(restriction)s[3*v0]) + a1*(vertex_coordinates%(restriction)s[3*%(facet)s + 1] - vertex_coordinates%(restriction)s[3*v0 + 1]) + a2*(vertex_coordinates%(restriction)s[3*%(facet)s + 2] - vertex_coordinates%(restriction)s[3*v0 + 2]) < 0;
"""
# MER: Coding all up in _facet_normal_ND_M_D for now; these are
# therefore empty.
_normal_direction_2D_1D = ""
_normal_direction_3D_2D = ""
_normal_direction_3D_1D = ""
_facet_normal_1D = """
// Facet normals are 1.0 or -1.0: (-1.0) <-- X------X --> (1.0)
const double n%(restriction)s = %(direction)sdirection ? 1.0 : -1.0;"""
_facet_normal_2D = """\
// Compute facet normals from the facet scale factor constants
const double n%(restriction)s0 = %(direction)sdirection ? dx1 / det : -dx1 / det;
const double n%(restriction)s1 = %(direction)sdirection ? -dx0 / det : dx0 / det;"""
_facet_normal_2D_1D = """
// Compute facet normal
double n%(restriction)s0 = 0.0;
double n%(restriction)s1 = 0.0;
if (facet%(restriction)s == 0)
{
n%(restriction)s0 = vertex_coordinates%(restriction)s[0] - vertex_coordinates%(restriction)s[2];
n%(restriction)s1 = vertex_coordinates%(restriction)s[1] - vertex_coordinates%(restriction)s[3];
}
else
{
n%(restriction)s0 = vertex_coordinates%(restriction)s[2] - vertex_coordinates%(restriction)s[0];
n%(restriction)s1 = vertex_coordinates%(restriction)s[3] - vertex_coordinates%(restriction)s[1];
}
const double n%(restriction)s_length = std::sqrt(n%(restriction)s0*n%(restriction)s0 + n%(restriction)s1*n%(restriction)s1);
n%(restriction)s0 /= n%(restriction)s_length;
n%(restriction)s1 /= n%(restriction)s_length;
"""
_facet_normal_3D = """
const double n%(restriction)s0 = %(direction)sdirection ? a0 / det : -a0 / det;
const double n%(restriction)s1 = %(direction)sdirection ? a1 / det : -a1 / det;
const double n%(restriction)s2 = %(direction)sdirection ? a2 / det : -a2 / det;"""
_facet_normal_3D_2D = """
// Compute facet normal for triangles in 3D
const unsigned int vertex%(restriction)s0 = facet%(restriction)s;
// Get coordinates corresponding the vertex opposite this
// static unsigned int edge_vertices[3][2] = {{1, 2}, {0, 2}, {0, 1}};
const unsigned int vertex%(restriction)s1 = edge_vertices[facet%(restriction)s][0];
const unsigned int vertex%(restriction)s2 = edge_vertices[facet%(restriction)s][1];
// Define vectors n = (p2 - p0) and t = normalized (p2 - p1)
double n%(restriction)s0 = vertex_coordinates%(restriction)s[3*vertex%(restriction)s2 + 0] - vertex_coordinates%(restriction)s[3*vertex%(restriction)s0 + 0];
double n%(restriction)s1 = vertex_coordinates%(restriction)s[3*vertex%(restriction)s2 + 1] - vertex_coordinates%(restriction)s[3*vertex%(restriction)s0 + 1];
double n%(restriction)s2 = vertex_coordinates%(restriction)s[3*vertex%(restriction)s2 + 2] - vertex_coordinates%(restriction)s[3*vertex%(restriction)s0 + 2];
double t%(restriction)s0 = vertex_coordinates%(restriction)s[3*vertex%(restriction)s2 + 0] - vertex_coordinates%(restriction)s[3*vertex%(restriction)s1 + 0];
double t%(restriction)s1 = vertex_coordinates%(restriction)s[3*vertex%(restriction)s2 + 1] - vertex_coordinates%(restriction)s[3*vertex%(restriction)s1 + 1];
double t%(restriction)s2 = vertex_coordinates%(restriction)s[3*vertex%(restriction)s2 + 2] - vertex_coordinates%(restriction)s[3*vertex%(restriction)s1 + 2];
const double t%(restriction)s_length = std::sqrt(t%(restriction)s0*t%(restriction)s0 + t%(restriction)s1*t%(restriction)s1 + t%(restriction)s2*t%(restriction)s2);
t%(restriction)s0 /= t%(restriction)s_length;
t%(restriction)s1 /= t%(restriction)s_length;
t%(restriction)s2 /= t%(restriction)s_length;
// Subtract, the projection of (p2 - p0) onto (p2 - p1), from (p2 - p0)
const double ndott%(restriction)s = t%(restriction)s0*n%(restriction)s0 + t%(restriction)s1*n%(restriction)s1 + t%(restriction)s2*n%(restriction)s2;
n%(restriction)s0 -= ndott%(restriction)s*t%(restriction)s0;
n%(restriction)s1 -= ndott%(restriction)s*t%(restriction)s1;
n%(restriction)s2 -= ndott%(restriction)s*t%(restriction)s2;
const double n%(restriction)s_length = std::sqrt(n%(restriction)s0*n%(restriction)s0 + n%(restriction)s1*n%(restriction)s1 + n%(restriction)s2*n%(restriction)s2);
// Normalize
n%(restriction)s0 /= n%(restriction)s_length;
n%(restriction)s1 /= n%(restriction)s_length;
n%(restriction)s2 /= n%(restriction)s_length;
"""
_facet_normal_3D_1D = """
// Compute facet normal
double n%(restriction)s0 = 0.0;
double n%(restriction)s1 = 0.0;
double n%(restriction)s2 = 0.0;
if (facet%(restriction)s == 0)
{
n%(restriction)s0 = vertex_coordinates%(restriction)s[0] - vertex_coordinates%(restriction)s[3];
n%(restriction)s1 = vertex_coordinates%(restriction)s[1] - vertex_coordinates%(restriction)s[4];
n%(restriction)s1 = vertex_coordinates%(restriction)s[2] - vertex_coordinates%(restriction)s[5];
}
else
{
n%(restriction)s0 = vertex_coordinates%(restriction)s[3] - vertex_coordinates%(restriction)s[0];
n%(restriction)s1 = vertex_coordinates%(restriction)s[4] - vertex_coordinates%(restriction)s[1];
n%(restriction)s1 = vertex_coordinates%(restriction)s[5] - vertex_coordinates%(restriction)s[2];
}
const double n%(restriction)s_length = std::sqrt(n%(restriction)s0*n%(restriction)s0 + n%(restriction)s1*n%(restriction)s1 + n%(restriction)s2*n%(restriction)s2);
n%(restriction)s0 /= n%(restriction)s_length;
n%(restriction)s1 /= n%(restriction)s_length;
n%(restriction)s2 /= n%(restriction)s_length;
"""
_cell_volume_1D = """\
// Compute cell volume
const double volume%(restriction)s = std::abs(detJ%(restriction)s);
"""
_cell_volume_2D = """\
// Compute cell volume
const double volume%(restriction)s = std::abs(detJ%(restriction)s)/2.0;
"""
_cell_volume_2D_1D = """\
// Compute cell volume of interval in 2D
const double volume%(restriction)s = std::abs(detJ%(restriction)s);
"""
_cell_volume_3D = """\
// Compute cell volume
const double volume%(restriction)s = std::abs(detJ%(restriction)s)/6.0;
"""
_cell_volume_3D_1D = """\
// Compute cell volume of interval in 3D
const double volume%(restriction)s = std::abs(detJ%(restriction)s);
"""
_cell_volume_3D_2D = """\
// Compute cell volume of triangle in 3D
const double volume%(restriction)s = std::abs(detJ%(restriction)s)/2.0;
"""
_circumradius_1D = """\
// Compute circumradius; in 1D it is equal to half the cell length
const double circumradius%(restriction)s = std::abs(detJ%(restriction)s)/2.0;
"""
_circumradius_2D = """\
// Compute circumradius of triangle in 2D
const double v1v2%(restriction)s = std::sqrt((vertex_coordinates%(restriction)s[4] - vertex_coordinates%(restriction)s[2])*(vertex_coordinates%(restriction)s[4] - vertex_coordinates%(restriction)s[2]) + (vertex_coordinates%(restriction)s[5] - vertex_coordinates%(restriction)s[3])*(vertex_coordinates%(restriction)s[5] - vertex_coordinates%(restriction)s[3]) );
const double v0v2%(restriction)s = std::sqrt(J%(restriction)s[3]*J%(restriction)s[3] + J%(restriction)s[1]*J%(restriction)s[1]);
const double v0v1%(restriction)s = std::sqrt(J%(restriction)s[0]*J%(restriction)s[0] + J%(restriction)s[2]*J%(restriction)s[2]);
const double circumradius%(restriction)s = 0.25*(v1v2%(restriction)s*v0v2%(restriction)s*v0v1%(restriction)s)/(volume%(restriction)s);
"""
_circumradius_2D_1D = """\
// Compute circumradius of interval in 3D (1/2 volume)
const double circumradius%(restriction)s = std::abs(detJ%(restriction)s)/2.0;
"""
_circumradius_3D = """\
// Compute circumradius
const double v1v2%(restriction)s = std::sqrt( (vertex_coordinates%(restriction)s[6] - vertex_coordinates%(restriction)s[3])*(vertex_coordinates%(restriction)s[6] - vertex_coordinates%(restriction)s[3]) + (vertex_coordinates%(restriction)s[7] - vertex_coordinates%(restriction)s[4])*(vertex_coordinates%(restriction)s[7] - vertex_coordinates%(restriction)s[4]) + (vertex_coordinates%(restriction)s[8] - vertex_coordinates%(restriction)s[5])*(vertex_coordinates%(restriction)s[8] - vertex_coordinates%(restriction)s[5]) );
const double v0v2%(restriction)s = std::sqrt(J%(restriction)s[1]*J%(restriction)s[1] + J%(restriction)s[4]*J%(restriction)s[4] + J%(restriction)s[7]*J%(restriction)s[7]);
const double v0v1%(restriction)s = std::sqrt(J%(restriction)s[0]*J%(restriction)s[0] + J%(restriction)s[3]*J%(restriction)s[3] + J%(restriction)s[6]*J%(restriction)s[6]);
const double v0v3%(restriction)s = std::sqrt(J%(restriction)s[2]*J%(restriction)s[2] + J%(restriction)s[5]*J%(restriction)s[5] + J%(restriction)s[8]*J%(restriction)s[8]);
const double v1v3%(restriction)s = std::sqrt( (vertex_coordinates%(restriction)s[9] - vertex_coordinates%(restriction)s[3])*(vertex_coordinates%(restriction)s[9] - vertex_coordinates%(restriction)s[3]) + (vertex_coordinates%(restriction)s[10] - vertex_coordinates%(restriction)s[4])*(vertex_coordinates%(restriction)s[10] - vertex_coordinates%(restriction)s[4]) + (vertex_coordinates%(restriction)s[11] - vertex_coordinates%(restriction)s[5])*(vertex_coordinates%(restriction)s[11] - vertex_coordinates%(restriction)s[5]) );
const double v2v3%(restriction)s = std::sqrt( (vertex_coordinates%(restriction)s[9] - vertex_coordinates%(restriction)s[6])*(vertex_coordinates%(restriction)s[9] - vertex_coordinates%(restriction)s[6]) + (vertex_coordinates%(restriction)s[10] - vertex_coordinates%(restriction)s[7])*(vertex_coordinates%(restriction)s[10] - vertex_coordinates%(restriction)s[7]) + (vertex_coordinates%(restriction)s[11] - vertex_coordinates%(restriction)s[8])*(vertex_coordinates%(restriction)s[11] - vertex_coordinates%(restriction)s[8]) );
const double la%(restriction)s = v1v2%(restriction)s*v0v3%(restriction)s;
const double lb%(restriction)s = v0v2%(restriction)s*v1v3%(restriction)s;
const double lc%(restriction)s = v0v1%(restriction)s*v2v3%(restriction)s;
const double s%(restriction)s = 0.5*(la%(restriction)s+lb%(restriction)s+lc%(restriction)s);
const double area%(restriction)s = std::sqrt(s%(restriction)s*(s%(restriction)s-la%(restriction)s)*(s%(restriction)s-lb%(restriction)s)*(s%(restriction)s-lc%(restriction)s));
const double circumradius%(restriction)s = area%(restriction)s / ( 6.0*volume%(restriction)s );
"""
_circumradius_3D_1D = """\
// Compute circumradius of interval in 3D (1/2 volume)
const double circumradius%(restriction)s = std::abs(detJ%(restriction)s)/2.0;
"""
_circumradius_3D_2D = """\
// Compute circumradius of triangle in 3D
const double v1v2%(restriction)s = std::sqrt( (vertex_coordinates%(restriction)s[6] - vertex_coordinates%(restriction)s[3])*(vertex_coordinates%(restriction)s[6] - vertex_coordinates%(restriction)s[3]) + (vertex_coordinates%(restriction)s[7] - vertex_coordinates%(restriction)s[4])*(vertex_coordinates%(restriction)s[7] - vertex_coordinates%(restriction)s[4]) + (vertex_coordinates%(restriction)s[8] - vertex_coordinates%(restriction)s[5])*(vertex_coordinates%(restriction)s[8] - vertex_coordinates%(restriction)s[5]));
const double v0v2%(restriction)s = std::sqrt( J%(restriction)s[3]*J%(restriction)s[3] + J%(restriction)s[1]*J%(restriction)s[1] + J%(restriction)s[5]*J%(restriction)s[5]);
const double v0v1%(restriction)s = std::sqrt( J%(restriction)s[0]*J%(restriction)s[0] + J%(restriction)s[2]*J%(restriction)s[2] + J%(restriction)s[4]*J%(restriction)s[4]);
const double circumradius%(restriction)s = 0.25*(v1v2%(restriction)s*v0v2%(restriction)s*v0v1%(restriction)s)/(volume%(restriction)s);
"""
_facet_area_1D = """\
// Facet area (FIXME: Should this be 0.0?)
const double facet_area = 1.0;"""
_facet_area_2D = """\
// Facet area
const double facet_area = det;"""
_facet_area_2D_1D = """\
// Facet area
const double facet_area = 1.0;"""
_facet_area_3D = """\
// Facet area (divide by two because 'det' is scaled by area of reference triangle)
const double facet_area = det/2.0;"""
_facet_area_3D_1D = """\
// Facet area
const double facet_area = 1.0;"""
_facet_area_3D_2D = """\
// Facet area
const double facet_area = det;"""
evaluate_basis_dofmap = """\
unsigned int element = 0;
unsigned int tmp = 0;
for (unsigned int j = 0; j < %d; j++)
{
if (tmp + dofs_per_element[j] > i)
{
i -= tmp;
element = element_types[j];
break;
}
else
tmp += dofs_per_element[j];
}"""
_min_facet_edge_length_3D = """\
// Min edge length of facet
double min_facet_edge_length;
compute_min_facet_edge_length_tetrahedron_3d(min_facet_edge_length, facet%(restriction)s, vertex_coordinates%(restriction)s);
"""
_max_facet_edge_length_3D = """\
// Max edge length of facet
double max_facet_edge_length;
compute_max_facet_edge_length_tetrahedron_3d(max_facet_edge_length, facet%(restriction)s, vertex_coordinates%(restriction)s);
"""
# FIXME: This is dead slow because of all the new calls
# Used in evaluate_basis_derivatives. For second order derivatives in 2D it will
# generate the combinations: [(0, 0), (0, 1), (1, 0), (1, 1)] (i.e., xx, xy, yx, yy)
# which will also be the ordering of derivatives in the return value.
combinations_snippet = """\
// Declare two dimensional array that holds combinations of derivatives and initialise
unsigned int %(combinations)s[%(max_num_derivatives)s][%(max_degree)s];
for (unsigned int row = 0; row < %(max_num_derivatives)s; row++)
{
for (unsigned int col = 0; col < %(max_degree)s; col++)
%(combinations)s[row][col] = 0;
}
// Generate combinations of derivatives
for (unsigned int row = 1; row < %(num_derivatives)s; row++)
{
for (unsigned int num = 0; num < row; num++)
{
for (unsigned int col = %(n)s-1; col+1 > 0; col--)
{
if (%(combinations)s[row][col] + 1 > %(dimension-1)s)
%(combinations)s[row][col] = 0;
else
{
%(combinations)s[row][col] += 1;
break;
}
}
}
}"""
def _transform_snippet(tdim, gdim):
if tdim == gdim:
_t = ""
_g = ""
else:
_t = "_t"
_g = "_g"
# Matricize K_ij -> {K_ij}
matrix = "{{" + "}, {".join([", ".join(["K[%d]" % (t*gdim + g)
for g in range(gdim)])
for t in range(tdim)]) + "}};\n\n"
snippet = """\
// Compute inverse of Jacobian
const double %%(K)s[%d][%d] = %s""" % (tdim, gdim, matrix)
snippet +="""// Declare transformation matrix
// Declare pointer to two dimensional array and initialise
double %%(transform)s[%%(max_g_deriv)s][%%(max_t_deriv)s];
for (unsigned int j = 0; j < %%(num_derivatives)s%(g)s; j++)
{
for (unsigned int k = 0; k < %%(num_derivatives)s%(t)s; k++)
%%(transform)s[j][k] = 1;
}
// Construct transformation matrix
for (unsigned int row = 0; row < %%(num_derivatives)s%(g)s; row++)
{
for (unsigned int col = 0; col < %%(num_derivatives)s%(t)s; col++)
{
for (unsigned int k = 0; k < %%(n)s; k++)
%%(transform)s[row][col] *= %%(K)s[%%(combinations)s%(t)s[col][k]][%%(combinations)s%(g)s[row][k]];
}
}""" % {"t":_t, "g":_g}
return snippet
# Codesnippets used in evaluate_dof
_map_onto_physical_1D = """\
// Evaluate basis functions for affine mapping
const double w0 = 1.0 - X_%(i)d[%(j)s][0];
const double w1 = X_%(i)d[%(j)s][0];
// Compute affine mapping y = F(X)
y[0] = w0*vertex_coordinates[0] + w1*vertex_coordinates[1];"""
_map_onto_physical_2D = """\
// Evaluate basis functions for affine mapping
const double w0 = 1.0 - X_%(i)d[%(j)s][0] - X_%(i)d[%(j)s][1];
const double w1 = X_%(i)d[%(j)s][0];
const double w2 = X_%(i)d[%(j)s][1];
// Compute affine mapping y = F(X)
y[0] = w0*vertex_coordinates[0] + w1*vertex_coordinates[2] + w2*vertex_coordinates[4];
y[1] = w0*vertex_coordinates[1] + w1*vertex_coordinates[3] + w2*vertex_coordinates[5];"""
_map_onto_physical_2D_1D = """\
// Evaluate basis functions for affine mapping
const double w0 = 1.0 - X_%(i)d[%(j)s][0];
const double w1 = X_%(i)d[%(j)s][0];
// Compute affine mapping y = F(X)
y[0] = w0*vertex_coordinates[0] + w1*vertex_coordinates[2];
y[1] = w0*vertex_coordinates[1] + w1*vertex_coordinates[3];"""
_map_onto_physical_3D = """\
// Evaluate basis functions for affine mapping
const double w0 = 1.0 - X_%(i)d[%(j)s][0] - X_%(i)d[%(j)s][1] - X_%(i)d[%(j)s][2];
const double w1 = X_%(i)d[%(j)s][0];
const double w2 = X_%(i)d[%(j)s][1];
const double w3 = X_%(i)d[%(j)s][2];
// Compute affine mapping y = F(X)
y[0] = w0*vertex_coordinates[0] + w1*vertex_coordinates[3] + w2*vertex_coordinates[6] + w3*vertex_coordinates[9];
y[1] = w0*vertex_coordinates[1] + w1*vertex_coordinates[4] + w2*vertex_coordinates[7] + w3*vertex_coordinates[10];
y[2] = w0*vertex_coordinates[2] + w1*vertex_coordinates[5] + w2*vertex_coordinates[8] + w3*vertex_coordinates[11];"""
_map_onto_physical_3D_1D = """\
// Evaluate basis functions for affine mapping
const double w0 = 1.0 - X_%(i)d[%(j)s][0];
const double w1 = X_%(i)d[%(j)s][0];
// Compute affine mapping y = F(X)
y[0] = w0*vertex_coordinates[0] + w1*vertex_coordinates[3];
y[1] = w0*vertex_coordinates[1] + w1*vertex_coordinates[4];
y[2] = w0*vertex_coordinates[2] + w1*vertex_coordinates[5];"""
_map_onto_physical_3D_2D = """\
// Evaluate basis functions for affine mapping
const double w0 = 1.0 - X_%(i)d[%(j)s][0] - X_%(i)d[%(j)s][1];
const double w1 = X_%(i)d[%(j)s][0];
const double w2 = X_%(i)d[%(j)s][1];
// Compute affine mapping y = F(X)
y[0] = w0*vertex_coordinates[0] + w1*vertex_coordinates[3] + w2*vertex_coordinates[6];
y[1] = w0*vertex_coordinates[1] + w1*vertex_coordinates[4] + w2*vertex_coordinates[7];
y[2] = w0*vertex_coordinates[2] + w1*vertex_coordinates[5] + w2*vertex_coordinates[8];
"""
_ip_coordinates_1D = """\
X%(num_ip)d[0] = %(name)s[%(ip)s][0]*vertex_coordinates%(restriction)s[0] + \
%(name)s[%(ip)s][1]*vertex_coordinates%(restriction)s[1];"""
_ip_coordinates_2D = """\
X%(num_ip)d[0] = %(name)s[%(ip)s][0]*vertex_coordinates%(restriction)s[0] + \
%(name)s[%(ip)s][1]*vertex_coordinates%(restriction)s[2] + %(name)s[%(ip)s][2]*vertex_coordinates%(restriction)s[4];
X%(num_ip)d[1] = %(name)s[%(ip)s][0]*vertex_coordinates%(restriction)s[1] + \
%(name)s[%(ip)s][1]*vertex_coordinates%(restriction)s[3] + %(name)s[%(ip)s][2]*vertex_coordinates%(restriction)s[5];"""
_ip_coordinates_3D = """\
X%(num_ip)d[0] = %(name)s[%(ip)s][0]*vertex_coordinates%(restriction)s[0] + \
%(name)s[%(ip)s][1]*vertex_coordinates%(restriction)s[3] + \
%(name)s[%(ip)s][2]*vertex_coordinates%(restriction)s[6] + \
%(name)s[%(ip)s][3]*vertex_coordinates%(restriction)s[9];
X%(num_ip)d[1] = %(name)s[%(ip)s][0]*vertex_coordinates%(restriction)s[1] + \
%(name)s[%(ip)s][1]*vertex_coordinates%(restriction)s[4] + \
%(name)s[%(ip)s][2]*vertex_coordinates%(restriction)s[7] + \
%(name)s[%(ip)s][3]*vertex_coordinates%(restriction)s[10];
X%(num_ip)d[2] = %(name)s[%(ip)s][0]*vertex_coordinates%(restriction)s[2] + \
%(name)s[%(ip)s][1]*vertex_coordinates%(restriction)s[5] + \
%(name)s[%(ip)s][2]*vertex_coordinates%(restriction)s[8] + \
%(name)s[%(ip)s][3]*vertex_coordinates%(restriction)s[11];"""
# Codesnippets used in evaluatebasis[|derivatives]
_map_coordinates_FIAT_interval = """\
// Get coordinates and map to the reference (FIAT) element
double X = (2.0*x[0] - vertex_coordinates[0] - vertex_coordinates[1]) / J[0];"""
_map_coordinates_FIAT_interval_in_2D = """\
// Get coordinates and map to the reference (FIAT) element
double X = 2*(std::sqrt(std::pow(x[0] - vertex_coordinates[0], 2) + std::pow(x[1] - vertex_coordinates[1], 2)) / detJ) - 1.0;"""
_map_coordinates_FIAT_interval_in_3D = """\
// Get coordinates and map to the reference (FIAT) element
double X = 2*(std::sqrt(std::pow(x[0] - vertex_coordinates[0], 2) + std::pow(x[1] - vertex_coordinates[1], 2) + std::pow(x[2] - vertex_coordinates[2], 2))/ detJ) - 1.0;"""
_map_coordinates_FIAT_triangle = """\
// Compute constants
const double C0 = vertex_coordinates[2] + vertex_coordinates[4];
const double C1 = vertex_coordinates[3] + vertex_coordinates[5];
// Get coordinates and map to the reference (FIAT) element
double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ;
double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ;"""
_map_coordinates_FIAT_triangle_in_3D = """\
const double b0 = vertex_coordinates[0];
const double b1 = vertex_coordinates[1];
const double b2 = vertex_coordinates[2];
// P_FFC = J^dag (p - b), P_FIAT = 2*P_FFC - (1, 1)
double X = 2*(K[0]*(x[0] - b0) + K[1]*(x[1] - b1) + K[2]*(x[2] - b2)) - 1.0;
double Y = 2*(K[3]*(x[0] - b0) + K[4]*(x[1] - b1) + K[5]*(x[2] - b2)) - 1.0;
"""
_map_coordinates_FIAT_tetrahedron = """\
// Compute constants
const double C0 = vertex_coordinates[9] + vertex_coordinates[6] + vertex_coordinates[3] - vertex_coordinates[0];
const double C1 = vertex_coordinates[10] + vertex_coordinates[7] + vertex_coordinates[4] - vertex_coordinates[1];
const double C2 = vertex_coordinates[11] + vertex_coordinates[8] + vertex_coordinates[5] - vertex_coordinates[2];
// Compute subdeterminants
const double d_00 = J[4]*J[8] - J[5]*J[7];
const double d_01 = J[5]*J[6] - J[3]*J[8];
const double d_02 = J[3]*J[7] - J[4]*J[6];
const double d_10 = J[2]*J[7] - J[1]*J[8];
const double d_11 = J[0]*J[8] - J[2]*J[6];
const double d_12 = J[1]*J[6] - J[0]*J[7];
const double d_20 = J[1]*J[5] - J[2]*J[4];
const double d_21 = J[2]*J[3] - J[0]*J[5];
const double d_22 = J[0]*J[4] - J[1]*J[3];
// Get coordinates and map to the reference (FIAT) element
double X = (d_00*(2.0*x[0] - C0) + d_10*(2.0*x[1] - C1) + d_20*(2.0*x[2] - C2)) / detJ;
double Y = (d_01*(2.0*x[0] - C0) + d_11*(2.0*x[1] - C1) + d_21*(2.0*x[2] - C2)) / detJ;
double Z = (d_02*(2.0*x[0] - C0) + d_12*(2.0*x[1] - C1) + d_22*(2.0*x[2] - C2)) / detJ;
"""
# Mappings to code snippets used by format These dictionaries accept
# as keys: first the topological dimension, and second the geometric
# dimension
facet_determinant = {1: {1: _facet_determinant_1D,
2: _facet_determinant_2D_1D,
3: _facet_determinant_3D_1D},
2: {2: _facet_determinant_2D,
3: _facet_determinant_3D_2D},
3: {3: _facet_determinant_3D}}
# Geometry related snippets
map_onto_physical = {1: {1: _map_onto_physical_1D,
2: _map_onto_physical_2D_1D,
3: _map_onto_physical_3D_1D},
2: {2: _map_onto_physical_2D,
3: _map_onto_physical_3D_2D},
3: {3: _map_onto_physical_3D}}
fiat_coordinate_map = {"interval": {1:_map_coordinates_FIAT_interval,
2:_map_coordinates_FIAT_interval_in_2D,
3:_map_coordinates_FIAT_interval_in_3D},
"triangle": {2:_map_coordinates_FIAT_triangle,
3: _map_coordinates_FIAT_triangle_in_3D},
"tetrahedron": {3:_map_coordinates_FIAT_tetrahedron}}
transform_snippet = {"interval": {1: _transform_snippet(1, 1),
2: _transform_snippet(1, 2),
3: _transform_snippet(1, 3)},
"triangle": {2: _transform_snippet(2, 2),
3: _transform_snippet(2, 3)},
"tetrahedron": {3: _transform_snippet(3, 3)}}
ip_coordinates = {1: (3, _ip_coordinates_1D),
2: (10, _ip_coordinates_2D),
3: (21, _ip_coordinates_3D)}
# FIXME: Rename as in compute_jacobian _compute_foo_<shape>_<n>d
normal_direction = {1: {1: _normal_direction_1D,
2: _normal_direction_2D_1D,
3: _normal_direction_3D_1D},
2: {2: _normal_direction_2D,
3: _normal_direction_3D_2D},
3: {3: _normal_direction_3D}}
facet_normal = {1: {1: _facet_normal_1D,
2: _facet_normal_2D_1D,
3: _facet_normal_3D_1D},
2: {2: _facet_normal_2D,
3: _facet_normal_3D_2D},
3: {3: _facet_normal_3D}}
cell_volume = {1: {1: _cell_volume_1D,
2: _cell_volume_2D_1D,
3: _cell_volume_3D_1D},
2: {2: _cell_volume_2D,
3: _cell_volume_3D_2D},
3: {3: _cell_volume_3D}}
circumradius = {1: {1: _circumradius_1D,
2: _circumradius_2D_1D,
3: _circumradius_3D_1D},
2: {2: _circumradius_2D,
3: _circumradius_3D_2D},
3: {3: _circumradius_3D}}
facet_area = {1: {1: _facet_area_1D,
2: _facet_area_2D_1D,
3: _facet_area_3D_1D},
2: {2: _facet_area_2D,
3: _facet_area_3D_2D},
3: {3: _facet_area_3D}}
min_facet_edge_length = {3: {3: _min_facet_edge_length_3D}}
max_facet_edge_length = {3: {3: _max_facet_edge_length_3D}}
# Code snippets for runtime quadrature (calling evaluate_basis)
eval_basis_decl = """\
std::vector<std::vector<double> > %(table_name)s(num_quadrature_points);"""
eval_basis_init = """\
for (std::size_t ip = 0; ip < num_quadrature_points; ip++)
%(table_name)s[ip].resize(%(table_size)s);"""
eval_basis = """\
// Get current quadrature point and compute values of basis functions
const double* x = quadrature_points + ip*%(gdim)s;
const double* v = vertex_coordinates + %(vertex_offset)s;
%(form_prefix)s_finite_element_%(element_number)s::_evaluate_basis_all(%(eval_name)s, x, v, cell_orientation);"""
eval_basis_copy = """\
// Copy values to table %(table_name)s
for (std::size_t i = 0; i < %(space_dim)s; i++)
%(table_name)s[ip][%(table_offset)s + i] = %(eval_name)s[%(eval_stride)s*i + %(eval_offset)s];"""
eval_derivs_decl = """\
std::vector<std::vector<double> > %(table_name)s(num_quadrature_points);"""
eval_derivs_init = """\
for (std::size_t ip = 0; ip < num_quadrature_points; ip++)
%(table_name)s[ip].resize(%(table_size)s);"""
eval_derivs = """\
// Get current quadrature point and compute values of basis function derivatives
const double* x = quadrature_points + ip*%(gdim)s;
const double* v = vertex_coordinates + %(vertex_offset)s;
%(form_prefix)s_finite_element_%(element_number)s::_evaluate_basis_derivatives_all(%(n)s, %(eval_name)s, x, v, cell_orientation);"""
eval_derivs_copy = """\
// Copy values to table %(table_name)s
for (std::size_t i = 0; i < %(space_dim)s; i++)
%(table_name)s[ip][%(table_offset)s + i] = %(eval_name)s[%(eval_stride)s*i + %(eval_offset)s];"""
|