This file is indexed.

/usr/lib/python2.7/dist-packages/ffc/codesnippets.py is in python-ffc 1.6.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
"Code snippets for code generation."

# Copyright (C) 2007-2013 Anders Logg
#
# This file is part of FFC.
#
# FFC is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# FFC is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with FFC. If not, see <http://www.gnu.org/licenses/>.
#
# Modified by Kristian B. Oelgaard 2010-2013
# Modified by Marie Rognes 2007-2012
# Modified by Peter Brune 2009
# Modified by Martin Alnaes, 2013
#
# First added:  2007-02-28
# Last changed: 2014-06-10

# Code snippets

__all__ = ["comment_ufc", "comment_dolfin", "header_h", "header_c", "footer",
           "compute_jacobian", "compute_jacobian_inverse",
           "eval_basis_decl", "eval_basis_init", "eval_basis", "eval_basis_copy",
           "eval_derivs_decl", "eval_derivs_init", "eval_derivs", "eval_derivs_copy"]

__old__ = ["evaluate_f",
           "facet_determinant", "map_onto_physical",
           "fiat_coordinate_map", "transform_snippet",
           "scale_factor", "combinations_snippet",
           "normal_direction",
           "facet_normal", "ip_coordinates", "cell_volume", "circumradius",
           "facet_area", "min_facet_edge_length", "max_facet_edge_length",
           "orientation_snippet"]

__all__ += __old__

comment_ufc = """\
// This code conforms with the UFC specification version %(ufc_version)s
// and was automatically generated by FFC version %(ffc_version)s.
"""

comment_dolfin = """\
// This code conforms with the UFC specification version %(ufc_version)s
// and was automatically generated by FFC version %(ffc_version)s.
//
// This code was generated with the option '-l dolfin' and
// contains DOLFIN-specific wrappers that depend on DOLFIN.
"""

# Code snippets for headers and footers

header_h = """\
#ifndef __%(prefix_upper)s_H
#define __%(prefix_upper)s_H

#include <cmath>
#include <stdexcept>
#include <fstream>
#include <ufc.h>
"""

header_c = """\
#include "%(prefix)s.h"
"""

footer = """\
#endif
"""

# Code snippets for computing Jacobians

_compute_jacobian_interval_1d = """\
// Compute Jacobian
double J%(restriction)s[1];
compute_jacobian_interval_1d(J%(restriction)s, vertex_coordinates%(restriction)s);
"""

_compute_jacobian_interval_2d = """\
// Compute Jacobian
double J%(restriction)s[2];
compute_jacobian_interval_2d(J%(restriction)s, vertex_coordinates%(restriction)s);
"""

_compute_jacobian_interval_3d = """\
// Compute Jacobian
double J%(restriction)s[3];
compute_jacobian_interval_3d(J%(restriction)s, vertex_coordinates%(restriction)s);
"""

_compute_jacobian_triangle_2d = """\
// Compute Jacobian
double J%(restriction)s[4];
compute_jacobian_triangle_2d(J%(restriction)s, vertex_coordinates%(restriction)s);
"""

_compute_jacobian_triangle_3d = """\
// Compute Jacobian
double J%(restriction)s[6];
compute_jacobian_triangle_3d(J%(restriction)s, vertex_coordinates%(restriction)s);
"""

_compute_jacobian_tetrahedron_3d = """\
// Compute Jacobian
double J%(restriction)s[9];
compute_jacobian_tetrahedron_3d(J%(restriction)s, vertex_coordinates%(restriction)s);
"""

compute_jacobian = {1: {1: _compute_jacobian_interval_1d,
                        2: _compute_jacobian_interval_2d,
                        3: _compute_jacobian_interval_3d},
                    2: {2: _compute_jacobian_triangle_2d,
                        3: _compute_jacobian_triangle_3d},
                    3: {3: _compute_jacobian_tetrahedron_3d}}

# Code snippets for computing Jacobian inverses

_compute_jacobian_inverse_interval_1d = """\
// Compute Jacobian inverse and determinant
double K%(restriction)s[1];
double detJ%(restriction)s;
compute_jacobian_inverse_interval_1d(K%(restriction)s, detJ%(restriction)s, J%(restriction)s);
"""

_compute_jacobian_inverse_interval_2d = """\
// Compute Jacobian inverse and determinant
double K%(restriction)s[2];
double detJ%(restriction)s;
compute_jacobian_inverse_interval_2d(K%(restriction)s, detJ%(restriction)s, J%(restriction)s);
"""

_compute_jacobian_inverse_interval_3d = """\
// Compute Jacobian inverse and determinant
double K%(restriction)s[3];
double detJ%(restriction)s;
compute_jacobian_inverse_interval_3d(K%(restriction)s, detJ%(restriction)s, J%(restriction)s);
"""

_compute_jacobian_inverse_triangle_2d = """\
// Compute Jacobian inverse and determinant
double K%(restriction)s[4];
double detJ%(restriction)s;
compute_jacobian_inverse_triangle_2d(K%(restriction)s, detJ%(restriction)s, J%(restriction)s);
"""

_compute_jacobian_inverse_triangle_3d = """\
// Compute Jacobian inverse and determinant
double K%(restriction)s[6];
double detJ%(restriction)s;
compute_jacobian_inverse_triangle_3d(K%(restriction)s, detJ%(restriction)s, J%(restriction)s);
"""

_compute_jacobian_inverse_tetrahedron_3d = """\
// Compute Jacobian inverse and determinant
double K%(restriction)s[9];
double detJ%(restriction)s;
compute_jacobian_inverse_tetrahedron_3d(K%(restriction)s, detJ%(restriction)s, J%(restriction)s);
"""

compute_jacobian_inverse = {1: {1: _compute_jacobian_inverse_interval_1d,
                                2: _compute_jacobian_inverse_interval_2d,
                                3: _compute_jacobian_inverse_interval_3d},
                            2: {2: _compute_jacobian_inverse_triangle_2d,
                                3: _compute_jacobian_inverse_triangle_3d},
                            3: {3: _compute_jacobian_inverse_tetrahedron_3d}}

# Code snippet for scale factor
scale_factor = """\
// Set scale factor
const double det = std::abs(detJ);"""

# FIXME: Old stuff below that should be cleaned up or moved to ufc_geometry.h

orientation_snippet = """
// Check orientation
if (cell_orientation%(restriction)s == -1)
  throw std::runtime_error("cell orientation must be defined (not -1)");
// (If cell_orientation == 1 = down, multiply det(J) by -1)
else if (cell_orientation%(restriction)s == 1)
  detJ%(restriction)s *= -1;
"""

evaluate_f = "f.evaluate(vals, y, c);"

_facet_determinant_1D = """\
// Facet determinant 1D (vertex)
const double det = 1.0;"""

_facet_determinant_2D = """\
// Get vertices on edge
static unsigned int edge_vertices[3][2] = {{1, 2}, {0, 2}, {0, 1}};
const unsigned int v0 = edge_vertices[facet%(restriction)s][0];
const unsigned int v1 = edge_vertices[facet%(restriction)s][1];

// Compute scale factor (length of edge scaled by length of reference interval)
const double dx0 = vertex_coordinates%(restriction)s[2*v1 + 0] - vertex_coordinates%(restriction)s[2*v0 + 0];
const double dx1 = vertex_coordinates%(restriction)s[2*v1 + 1] - vertex_coordinates%(restriction)s[2*v0 + 1];
const double det = std::sqrt(dx0*dx0 + dx1*dx1);
"""

_facet_determinant_2D_1D = """\
// Facet determinant 1D in 2D (vertex)
const double det = 1.0;
"""

_facet_determinant_3D = """\
// Get vertices on face
static unsigned int face_vertices[4][3] = {{1, 2, 3}, {0, 2, 3}, {0, 1, 3}, {0, 1, 2}};
const unsigned int v0 = face_vertices[facet%(restriction)s][0];
const unsigned int v1 = face_vertices[facet%(restriction)s][1];
const unsigned int v2 = face_vertices[facet%(restriction)s][2];

// Compute scale factor (area of face scaled by area of reference triangle)
const double a0 = (vertex_coordinates%(restriction)s[3*v0 + 1]*vertex_coordinates%(restriction)s[3*v1 + 2]  + vertex_coordinates%(restriction)s[3*v0 + 2]*vertex_coordinates%(restriction)s[3*v2 + 1]  + vertex_coordinates%(restriction)s[3*v1 + 1]*vertex_coordinates%(restriction)s[3*v2 + 2]) - (vertex_coordinates%(restriction)s[3*v2 + 1]*vertex_coordinates%(restriction)s[3*v1 + 2] + vertex_coordinates%(restriction)s[3*v2 + 2]*vertex_coordinates%(restriction)s[3*v0 + 1] + vertex_coordinates%(restriction)s[3*v1 + 1]*vertex_coordinates%(restriction)s[3*v0 + 2]);

const double a1 = (vertex_coordinates%(restriction)s[3*v0 + 2]*vertex_coordinates%(restriction)s[3*v1 + 0]  + vertex_coordinates%(restriction)s[3*v0 + 0]*vertex_coordinates%(restriction)s[3*v2 + 2] + vertex_coordinates%(restriction)s[3*v1 + 2]*vertex_coordinates%(restriction)s[3*v2 + 0]) - (vertex_coordinates%(restriction)s[3*v2 + 2]*vertex_coordinates%(restriction)s[3*v1 + 0]  + vertex_coordinates%(restriction)s[3*v2 + 0]*vertex_coordinates%(restriction)s[3*v0 + 2] + vertex_coordinates%(restriction)s[3*v1 + 2]*vertex_coordinates%(restriction)s[3*v0 + 0]);

const double a2 = (vertex_coordinates%(restriction)s[3*v0 + 0]*vertex_coordinates%(restriction)s[3*v1 + 1]  + vertex_coordinates%(restriction)s[3*v0 + 1]*vertex_coordinates%(restriction)s[3*v2 + 0]  + vertex_coordinates%(restriction)s[3*v1 + 0]*vertex_coordinates%(restriction)s[3*v2 + 1]) - (vertex_coordinates%(restriction)s[3*v2 + 0]*vertex_coordinates%(restriction)s[3*v1 + 1]  + vertex_coordinates%(restriction)s[3*v2 + 1]*vertex_coordinates%(restriction)s[3*v0 + 0]  + vertex_coordinates%(restriction)s[3*v1 + 0]*vertex_coordinates%(restriction)s[3*v0 + 1]);

const double det = std::sqrt(a0*a0 + a1*a1 + a2*a2);
"""

_facet_determinant_3D_2D = """\
// Facet determinant 2D in 3D (edge)
// Get vertices on edge
static unsigned int edge_vertices[3][2] = {{1, 2}, {0, 2}, {0, 1}};
const unsigned int v0 = edge_vertices[facet%(restriction)s][0];
const unsigned int v1 = edge_vertices[facet%(restriction)s][1];

// Compute scale factor (length of edge scaled by length of reference interval)
const double dx0 = vertex_coordinates%(restriction)s[3*v1 + 0] - vertex_coordinates%(restriction)s[3*v0 + 0];
const double dx1 = vertex_coordinates%(restriction)s[3*v1 + 1] - vertex_coordinates%(restriction)s[3*v0 + 1];
const double dx2 = vertex_coordinates%(restriction)s[3*v1 + 2] - vertex_coordinates%(restriction)s[3*v0 + 2];
const double det = std::sqrt(dx0*dx0 + dx1*dx1 + dx2*dx2);
"""

_facet_determinant_3D_1D = """\
// Facet determinant 1D in 3D (vertex)
const double det = 1.0;
"""

_normal_direction_1D = """\
const bool direction = facet%(restriction)s == 0 ? vertex_coordinates%(restriction)s[0] > vertex_coordinates%(restriction)s[1] : vertex_coordinates%(restriction)s[1] > vertex_coordinates%(restriction)s[0];
"""

_normal_direction_2D = """\
const bool direction = dx1*(vertex_coordinates%(restriction)s[2*%(facet)s] - vertex_coordinates%(restriction)s[2*v0]) - dx0*(vertex_coordinates%(restriction)s[2*%(facet)s + 1] - vertex_coordinates%(restriction)s[2*v0 + 1]) < 0;
"""

_normal_direction_3D = """\
const bool direction = a0*(vertex_coordinates%(restriction)s[3*%(facet)s] - vertex_coordinates%(restriction)s[3*v0]) + a1*(vertex_coordinates%(restriction)s[3*%(facet)s + 1] - vertex_coordinates%(restriction)s[3*v0 + 1])  + a2*(vertex_coordinates%(restriction)s[3*%(facet)s + 2] - vertex_coordinates%(restriction)s[3*v0 + 2]) < 0;
"""

# MER: Coding all up in _facet_normal_ND_M_D for now; these are
# therefore empty.
_normal_direction_2D_1D = ""
_normal_direction_3D_2D = ""
_normal_direction_3D_1D = ""

_facet_normal_1D = """
// Facet normals are 1.0 or -1.0:   (-1.0) <-- X------X --> (1.0)
const double n%(restriction)s = %(direction)sdirection ? 1.0 : -1.0;"""

_facet_normal_2D = """\
// Compute facet normals from the facet scale factor constants
const double n%(restriction)s0 = %(direction)sdirection ? dx1 / det : -dx1 / det;
const double n%(restriction)s1 = %(direction)sdirection ? -dx0 / det : dx0 / det;"""

_facet_normal_2D_1D = """
// Compute facet normal
double n%(restriction)s0 = 0.0;
double n%(restriction)s1 = 0.0;
if (facet%(restriction)s == 0)
{
  n%(restriction)s0 = vertex_coordinates%(restriction)s[0] - vertex_coordinates%(restriction)s[2];
  n%(restriction)s1 = vertex_coordinates%(restriction)s[1] - vertex_coordinates%(restriction)s[3];
}
else
{
  n%(restriction)s0 = vertex_coordinates%(restriction)s[2] - vertex_coordinates%(restriction)s[0];
  n%(restriction)s1 = vertex_coordinates%(restriction)s[3] - vertex_coordinates%(restriction)s[1];
}
const double n%(restriction)s_length = std::sqrt(n%(restriction)s0*n%(restriction)s0 + n%(restriction)s1*n%(restriction)s1);
n%(restriction)s0 /= n%(restriction)s_length;
n%(restriction)s1 /= n%(restriction)s_length;
"""

_facet_normal_3D = """
const double n%(restriction)s0 = %(direction)sdirection ? a0 / det : -a0 / det;
const double n%(restriction)s1 = %(direction)sdirection ? a1 / det : -a1 / det;
const double n%(restriction)s2 = %(direction)sdirection ? a2 / det : -a2 / det;"""

_facet_normal_3D_2D = """
// Compute facet normal for triangles in 3D
const unsigned int vertex%(restriction)s0 = facet%(restriction)s;

// Get coordinates corresponding the vertex opposite this
// static unsigned int edge_vertices[3][2] = {{1, 2}, {0, 2}, {0, 1}};
const unsigned int vertex%(restriction)s1 = edge_vertices[facet%(restriction)s][0];
const unsigned int vertex%(restriction)s2 = edge_vertices[facet%(restriction)s][1];

// Define vectors n = (p2 - p0) and t = normalized (p2 - p1)
double n%(restriction)s0 = vertex_coordinates%(restriction)s[3*vertex%(restriction)s2 + 0] - vertex_coordinates%(restriction)s[3*vertex%(restriction)s0 + 0];
double n%(restriction)s1 = vertex_coordinates%(restriction)s[3*vertex%(restriction)s2 + 1] - vertex_coordinates%(restriction)s[3*vertex%(restriction)s0 + 1];
double n%(restriction)s2 = vertex_coordinates%(restriction)s[3*vertex%(restriction)s2 + 2] - vertex_coordinates%(restriction)s[3*vertex%(restriction)s0 + 2];

double t%(restriction)s0 = vertex_coordinates%(restriction)s[3*vertex%(restriction)s2 + 0] - vertex_coordinates%(restriction)s[3*vertex%(restriction)s1 + 0];
double t%(restriction)s1 = vertex_coordinates%(restriction)s[3*vertex%(restriction)s2 + 1] - vertex_coordinates%(restriction)s[3*vertex%(restriction)s1 + 1];
double t%(restriction)s2 = vertex_coordinates%(restriction)s[3*vertex%(restriction)s2 + 2] - vertex_coordinates%(restriction)s[3*vertex%(restriction)s1 + 2];
const double t%(restriction)s_length = std::sqrt(t%(restriction)s0*t%(restriction)s0 + t%(restriction)s1*t%(restriction)s1 + t%(restriction)s2*t%(restriction)s2);
t%(restriction)s0 /= t%(restriction)s_length;
t%(restriction)s1 /= t%(restriction)s_length;
t%(restriction)s2 /= t%(restriction)s_length;

// Subtract, the projection of (p2  - p0) onto (p2 - p1), from (p2 - p0)
const double ndott%(restriction)s = t%(restriction)s0*n%(restriction)s0 + t%(restriction)s1*n%(restriction)s1 + t%(restriction)s2*n%(restriction)s2;
n%(restriction)s0 -= ndott%(restriction)s*t%(restriction)s0;
n%(restriction)s1 -= ndott%(restriction)s*t%(restriction)s1;
n%(restriction)s2 -= ndott%(restriction)s*t%(restriction)s2;
const double n%(restriction)s_length = std::sqrt(n%(restriction)s0*n%(restriction)s0 + n%(restriction)s1*n%(restriction)s1 + n%(restriction)s2*n%(restriction)s2);

// Normalize
n%(restriction)s0 /= n%(restriction)s_length;
n%(restriction)s1 /= n%(restriction)s_length;
n%(restriction)s2 /= n%(restriction)s_length;
"""

_facet_normal_3D_1D = """
// Compute facet normal
double n%(restriction)s0 = 0.0;
double n%(restriction)s1 = 0.0;
double n%(restriction)s2 = 0.0;
if (facet%(restriction)s == 0)
{
  n%(restriction)s0 = vertex_coordinates%(restriction)s[0] - vertex_coordinates%(restriction)s[3];
  n%(restriction)s1 = vertex_coordinates%(restriction)s[1] - vertex_coordinates%(restriction)s[4];
  n%(restriction)s1 = vertex_coordinates%(restriction)s[2] - vertex_coordinates%(restriction)s[5];
}
else
{
  n%(restriction)s0 = vertex_coordinates%(restriction)s[3] - vertex_coordinates%(restriction)s[0];
  n%(restriction)s1 = vertex_coordinates%(restriction)s[4] - vertex_coordinates%(restriction)s[1];
  n%(restriction)s1 = vertex_coordinates%(restriction)s[5] - vertex_coordinates%(restriction)s[2];
}
const double n%(restriction)s_length = std::sqrt(n%(restriction)s0*n%(restriction)s0 + n%(restriction)s1*n%(restriction)s1 + n%(restriction)s2*n%(restriction)s2);
n%(restriction)s0 /= n%(restriction)s_length;
n%(restriction)s1 /= n%(restriction)s_length;
n%(restriction)s2 /= n%(restriction)s_length;
"""

_cell_volume_1D = """\
// Compute cell volume
const double volume%(restriction)s = std::abs(detJ%(restriction)s);
"""

_cell_volume_2D = """\
// Compute cell volume
const double volume%(restriction)s = std::abs(detJ%(restriction)s)/2.0;
"""

_cell_volume_2D_1D = """\
// Compute cell volume of interval in 2D
const double volume%(restriction)s = std::abs(detJ%(restriction)s);
"""

_cell_volume_3D = """\
// Compute cell volume
const double volume%(restriction)s = std::abs(detJ%(restriction)s)/6.0;
"""

_cell_volume_3D_1D = """\
// Compute cell volume of interval in 3D
const double volume%(restriction)s = std::abs(detJ%(restriction)s);
"""

_cell_volume_3D_2D = """\
// Compute cell volume of triangle in 3D
const double volume%(restriction)s = std::abs(detJ%(restriction)s)/2.0;
"""

_circumradius_1D = """\
// Compute circumradius; in 1D it is equal to half the cell length
const double circumradius%(restriction)s = std::abs(detJ%(restriction)s)/2.0;
"""

_circumradius_2D = """\
// Compute circumradius of triangle in 2D
const double v1v2%(restriction)s  = std::sqrt((vertex_coordinates%(restriction)s[4] - vertex_coordinates%(restriction)s[2])*(vertex_coordinates%(restriction)s[4] - vertex_coordinates%(restriction)s[2]) + (vertex_coordinates%(restriction)s[5] - vertex_coordinates%(restriction)s[3])*(vertex_coordinates%(restriction)s[5] - vertex_coordinates%(restriction)s[3]) );
const double v0v2%(restriction)s  = std::sqrt(J%(restriction)s[3]*J%(restriction)s[3] + J%(restriction)s[1]*J%(restriction)s[1]);
const double v0v1%(restriction)s  = std::sqrt(J%(restriction)s[0]*J%(restriction)s[0] + J%(restriction)s[2]*J%(restriction)s[2]);
const double circumradius%(restriction)s = 0.25*(v1v2%(restriction)s*v0v2%(restriction)s*v0v1%(restriction)s)/(volume%(restriction)s);
"""

_circumradius_2D_1D = """\
// Compute circumradius of interval in 3D (1/2 volume)
const double circumradius%(restriction)s = std::abs(detJ%(restriction)s)/2.0;
"""

_circumradius_3D = """\
// Compute circumradius
const double v1v2%(restriction)s  = std::sqrt( (vertex_coordinates%(restriction)s[6] - vertex_coordinates%(restriction)s[3])*(vertex_coordinates%(restriction)s[6] - vertex_coordinates%(restriction)s[3]) + (vertex_coordinates%(restriction)s[7] - vertex_coordinates%(restriction)s[4])*(vertex_coordinates%(restriction)s[7] - vertex_coordinates%(restriction)s[4]) + (vertex_coordinates%(restriction)s[8] - vertex_coordinates%(restriction)s[5])*(vertex_coordinates%(restriction)s[8] - vertex_coordinates%(restriction)s[5]) );
const double v0v2%(restriction)s  = std::sqrt(J%(restriction)s[1]*J%(restriction)s[1] + J%(restriction)s[4]*J%(restriction)s[4] + J%(restriction)s[7]*J%(restriction)s[7]);
const double v0v1%(restriction)s  = std::sqrt(J%(restriction)s[0]*J%(restriction)s[0] + J%(restriction)s[3]*J%(restriction)s[3] + J%(restriction)s[6]*J%(restriction)s[6]);
const double v0v3%(restriction)s  = std::sqrt(J%(restriction)s[2]*J%(restriction)s[2] + J%(restriction)s[5]*J%(restriction)s[5] + J%(restriction)s[8]*J%(restriction)s[8]);
const double v1v3%(restriction)s  = std::sqrt( (vertex_coordinates%(restriction)s[9] - vertex_coordinates%(restriction)s[3])*(vertex_coordinates%(restriction)s[9] - vertex_coordinates%(restriction)s[3]) + (vertex_coordinates%(restriction)s[10] - vertex_coordinates%(restriction)s[4])*(vertex_coordinates%(restriction)s[10] - vertex_coordinates%(restriction)s[4]) + (vertex_coordinates%(restriction)s[11] - vertex_coordinates%(restriction)s[5])*(vertex_coordinates%(restriction)s[11] - vertex_coordinates%(restriction)s[5]) );
const double v2v3%(restriction)s  = std::sqrt( (vertex_coordinates%(restriction)s[9] - vertex_coordinates%(restriction)s[6])*(vertex_coordinates%(restriction)s[9] - vertex_coordinates%(restriction)s[6]) + (vertex_coordinates%(restriction)s[10] - vertex_coordinates%(restriction)s[7])*(vertex_coordinates%(restriction)s[10] - vertex_coordinates%(restriction)s[7]) + (vertex_coordinates%(restriction)s[11] - vertex_coordinates%(restriction)s[8])*(vertex_coordinates%(restriction)s[11] - vertex_coordinates%(restriction)s[8]) );
const  double la%(restriction)s   = v1v2%(restriction)s*v0v3%(restriction)s;
const  double lb%(restriction)s   = v0v2%(restriction)s*v1v3%(restriction)s;
const  double lc%(restriction)s   = v0v1%(restriction)s*v2v3%(restriction)s;
const  double s%(restriction)s    = 0.5*(la%(restriction)s+lb%(restriction)s+lc%(restriction)s);
const  double area%(restriction)s = std::sqrt(s%(restriction)s*(s%(restriction)s-la%(restriction)s)*(s%(restriction)s-lb%(restriction)s)*(s%(restriction)s-lc%(restriction)s));
const double circumradius%(restriction)s = area%(restriction)s / ( 6.0*volume%(restriction)s );
"""

_circumradius_3D_1D = """\
// Compute circumradius of interval in 3D (1/2 volume)
const double circumradius%(restriction)s = std::abs(detJ%(restriction)s)/2.0;
"""

_circumradius_3D_2D = """\
// Compute circumradius of triangle in 3D
const double v1v2%(restriction)s  = std::sqrt( (vertex_coordinates%(restriction)s[6] - vertex_coordinates%(restriction)s[3])*(vertex_coordinates%(restriction)s[6] - vertex_coordinates%(restriction)s[3]) + (vertex_coordinates%(restriction)s[7] - vertex_coordinates%(restriction)s[4])*(vertex_coordinates%(restriction)s[7] - vertex_coordinates%(restriction)s[4]) + (vertex_coordinates%(restriction)s[8] - vertex_coordinates%(restriction)s[5])*(vertex_coordinates%(restriction)s[8] - vertex_coordinates%(restriction)s[5]));
const double v0v2%(restriction)s = std::sqrt( J%(restriction)s[3]*J%(restriction)s[3] + J%(restriction)s[1]*J%(restriction)s[1] + J%(restriction)s[5]*J%(restriction)s[5]);
const double v0v1%(restriction)s = std::sqrt( J%(restriction)s[0]*J%(restriction)s[0] + J%(restriction)s[2]*J%(restriction)s[2] + J%(restriction)s[4]*J%(restriction)s[4]);
const double circumradius%(restriction)s = 0.25*(v1v2%(restriction)s*v0v2%(restriction)s*v0v1%(restriction)s)/(volume%(restriction)s);
"""

_facet_area_1D = """\
// Facet area (FIXME: Should this be 0.0?)
const double facet_area = 1.0;"""

_facet_area_2D = """\
// Facet area
const double facet_area = det;"""

_facet_area_2D_1D = """\
// Facet area
const double facet_area = 1.0;"""

_facet_area_3D = """\
// Facet area (divide by two because 'det' is scaled by area of reference triangle)
const double facet_area = det/2.0;"""

_facet_area_3D_1D = """\
// Facet area
const double facet_area = 1.0;"""

_facet_area_3D_2D = """\
// Facet area
const double facet_area = det;"""

evaluate_basis_dofmap = """\
unsigned int element = 0;
unsigned int tmp = 0;
for (unsigned int j = 0; j < %d; j++)
{
  if (tmp +  dofs_per_element[j] > i)
  {
    i -= tmp;
    element = element_types[j];
    break;
  }
  else
    tmp += dofs_per_element[j];
}"""

_min_facet_edge_length_3D = """\
// Min edge length of facet
double min_facet_edge_length;
compute_min_facet_edge_length_tetrahedron_3d(min_facet_edge_length, facet%(restriction)s, vertex_coordinates%(restriction)s);
"""

_max_facet_edge_length_3D = """\
// Max edge length of facet
double max_facet_edge_length;
compute_max_facet_edge_length_tetrahedron_3d(max_facet_edge_length, facet%(restriction)s, vertex_coordinates%(restriction)s);
"""

# FIXME: This is dead slow because of all the new calls
# Used in evaluate_basis_derivatives. For second order derivatives in 2D it will
# generate the combinations: [(0, 0), (0, 1), (1, 0), (1, 1)] (i.e., xx, xy, yx, yy)
# which will also be the ordering of derivatives in the return value.
combinations_snippet = """\
// Declare two dimensional array that holds combinations of derivatives and initialise
unsigned int %(combinations)s[%(max_num_derivatives)s][%(max_degree)s];
for (unsigned int row = 0; row < %(max_num_derivatives)s; row++)
{
  for (unsigned int col = 0; col < %(max_degree)s; col++)
    %(combinations)s[row][col] = 0;
}

// Generate combinations of derivatives
for (unsigned int row = 1; row < %(num_derivatives)s; row++)
{
  for (unsigned int num = 0; num < row; num++)
  {
    for (unsigned int col = %(n)s-1; col+1 > 0; col--)
    {
      if (%(combinations)s[row][col] + 1 > %(dimension-1)s)
        %(combinations)s[row][col] = 0;
      else
      {
        %(combinations)s[row][col] += 1;
        break;
      }
    }
  }
}"""

def _transform_snippet(tdim, gdim):

    if tdim == gdim:
        _t = ""
        _g = ""
    else:
        _t = "_t"
        _g = "_g"

    # Matricize K_ij -> {K_ij}
    matrix = "{{" + "}, {".join([", ".join(["K[%d]" % (t*gdim + g)
                                            for g in range(gdim)])
                                 for t in range(tdim)]) + "}};\n\n"
    snippet = """\
// Compute inverse of Jacobian
const double %%(K)s[%d][%d] = %s""" % (tdim, gdim, matrix)

    snippet +="""// Declare transformation matrix
// Declare pointer to two dimensional array and initialise
double %%(transform)s[%%(max_g_deriv)s][%%(max_t_deriv)s];
for (unsigned int j = 0; j < %%(num_derivatives)s%(g)s; j++)
{
  for (unsigned int k = 0; k < %%(num_derivatives)s%(t)s; k++)
    %%(transform)s[j][k] = 1;
}

// Construct transformation matrix
for (unsigned int row = 0; row < %%(num_derivatives)s%(g)s; row++)
{
  for (unsigned int col = 0; col < %%(num_derivatives)s%(t)s; col++)
  {
    for (unsigned int k = 0; k < %%(n)s; k++)
      %%(transform)s[row][col] *= %%(K)s[%%(combinations)s%(t)s[col][k]][%%(combinations)s%(g)s[row][k]];
  }
}""" % {"t":_t, "g":_g}

    return snippet

# Codesnippets used in evaluate_dof
_map_onto_physical_1D = """\
// Evaluate basis functions for affine mapping
const double w0 = 1.0 - X_%(i)d[%(j)s][0];
const double w1 = X_%(i)d[%(j)s][0];

// Compute affine mapping y = F(X)
y[0] = w0*vertex_coordinates[0] + w1*vertex_coordinates[1];"""

_map_onto_physical_2D = """\
// Evaluate basis functions for affine mapping
const double w0 = 1.0 - X_%(i)d[%(j)s][0] - X_%(i)d[%(j)s][1];
const double w1 = X_%(i)d[%(j)s][0];
const double w2 = X_%(i)d[%(j)s][1];

// Compute affine mapping y = F(X)
y[0] = w0*vertex_coordinates[0] + w1*vertex_coordinates[2] + w2*vertex_coordinates[4];
y[1] = w0*vertex_coordinates[1] + w1*vertex_coordinates[3] + w2*vertex_coordinates[5];"""

_map_onto_physical_2D_1D = """\
// Evaluate basis functions for affine mapping
const double w0 = 1.0 - X_%(i)d[%(j)s][0];
const double w1 = X_%(i)d[%(j)s][0];

// Compute affine mapping y = F(X)
y[0] = w0*vertex_coordinates[0] + w1*vertex_coordinates[2];
y[1] = w0*vertex_coordinates[1] + w1*vertex_coordinates[3];"""

_map_onto_physical_3D = """\
// Evaluate basis functions for affine mapping
const double w0 = 1.0 - X_%(i)d[%(j)s][0] - X_%(i)d[%(j)s][1] - X_%(i)d[%(j)s][2];
const double w1 = X_%(i)d[%(j)s][0];
const double w2 = X_%(i)d[%(j)s][1];
const double w3 = X_%(i)d[%(j)s][2];

// Compute affine mapping y = F(X)
y[0] = w0*vertex_coordinates[0] + w1*vertex_coordinates[3] + w2*vertex_coordinates[6] + w3*vertex_coordinates[9];
y[1] = w0*vertex_coordinates[1] + w1*vertex_coordinates[4] + w2*vertex_coordinates[7] + w3*vertex_coordinates[10];
y[2] = w0*vertex_coordinates[2] + w1*vertex_coordinates[5] + w2*vertex_coordinates[8] + w3*vertex_coordinates[11];"""

_map_onto_physical_3D_1D = """\
// Evaluate basis functions for affine mapping
const double w0 = 1.0 - X_%(i)d[%(j)s][0];
const double w1 = X_%(i)d[%(j)s][0];

// Compute affine mapping y = F(X)
y[0] = w0*vertex_coordinates[0] + w1*vertex_coordinates[3];
y[1] = w0*vertex_coordinates[1] + w1*vertex_coordinates[4];
y[2] = w0*vertex_coordinates[2] + w1*vertex_coordinates[5];"""

_map_onto_physical_3D_2D = """\
// Evaluate basis functions for affine mapping
const double w0 = 1.0 - X_%(i)d[%(j)s][0] - X_%(i)d[%(j)s][1];
const double w1 = X_%(i)d[%(j)s][0];
const double w2 = X_%(i)d[%(j)s][1];

// Compute affine mapping y = F(X)
y[0] = w0*vertex_coordinates[0] + w1*vertex_coordinates[3] + w2*vertex_coordinates[6];
y[1] = w0*vertex_coordinates[1] + w1*vertex_coordinates[4] + w2*vertex_coordinates[7];
y[2] = w0*vertex_coordinates[2] + w1*vertex_coordinates[5] + w2*vertex_coordinates[8];
"""

_ip_coordinates_1D = """\
X%(num_ip)d[0] = %(name)s[%(ip)s][0]*vertex_coordinates%(restriction)s[0] + \
                 %(name)s[%(ip)s][1]*vertex_coordinates%(restriction)s[1];"""

_ip_coordinates_2D = """\
X%(num_ip)d[0] = %(name)s[%(ip)s][0]*vertex_coordinates%(restriction)s[0] + \
                 %(name)s[%(ip)s][1]*vertex_coordinates%(restriction)s[2] + %(name)s[%(ip)s][2]*vertex_coordinates%(restriction)s[4];
X%(num_ip)d[1] = %(name)s[%(ip)s][0]*vertex_coordinates%(restriction)s[1] + \
                 %(name)s[%(ip)s][1]*vertex_coordinates%(restriction)s[3] + %(name)s[%(ip)s][2]*vertex_coordinates%(restriction)s[5];"""

_ip_coordinates_3D = """\
X%(num_ip)d[0] = %(name)s[%(ip)s][0]*vertex_coordinates%(restriction)s[0] + \
                 %(name)s[%(ip)s][1]*vertex_coordinates%(restriction)s[3] + \
                 %(name)s[%(ip)s][2]*vertex_coordinates%(restriction)s[6] + \
                 %(name)s[%(ip)s][3]*vertex_coordinates%(restriction)s[9];
X%(num_ip)d[1] = %(name)s[%(ip)s][0]*vertex_coordinates%(restriction)s[1] + \
                 %(name)s[%(ip)s][1]*vertex_coordinates%(restriction)s[4] + \
                 %(name)s[%(ip)s][2]*vertex_coordinates%(restriction)s[7] + \
                 %(name)s[%(ip)s][3]*vertex_coordinates%(restriction)s[10];
X%(num_ip)d[2] = %(name)s[%(ip)s][0]*vertex_coordinates%(restriction)s[2] + \
                 %(name)s[%(ip)s][1]*vertex_coordinates%(restriction)s[5] + \
                 %(name)s[%(ip)s][2]*vertex_coordinates%(restriction)s[8] + \
                 %(name)s[%(ip)s][3]*vertex_coordinates%(restriction)s[11];"""

# Codesnippets used in evaluatebasis[|derivatives]
_map_coordinates_FIAT_interval = """\
// Get coordinates and map to the reference (FIAT) element
double X = (2.0*x[0] - vertex_coordinates[0] - vertex_coordinates[1]) / J[0];"""

_map_coordinates_FIAT_interval_in_2D = """\
// Get coordinates and map to the reference (FIAT) element
double X = 2*(std::sqrt(std::pow(x[0] - vertex_coordinates[0], 2) + std::pow(x[1] - vertex_coordinates[1], 2)) / detJ) - 1.0;"""

_map_coordinates_FIAT_interval_in_3D = """\
// Get coordinates and map to the reference (FIAT) element
double X = 2*(std::sqrt(std::pow(x[0] - vertex_coordinates[0], 2) + std::pow(x[1] - vertex_coordinates[1], 2) + std::pow(x[2] - vertex_coordinates[2], 2))/ detJ) - 1.0;"""

_map_coordinates_FIAT_triangle = """\
// Compute constants
const double C0 = vertex_coordinates[2] + vertex_coordinates[4];
const double C1 = vertex_coordinates[3] + vertex_coordinates[5];

// Get coordinates and map to the reference (FIAT) element
double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ;
double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ;"""

_map_coordinates_FIAT_triangle_in_3D = """\
const double b0 = vertex_coordinates[0];
const double b1 = vertex_coordinates[1];
const double b2 = vertex_coordinates[2];

// P_FFC = J^dag (p - b), P_FIAT = 2*P_FFC - (1, 1)
double X = 2*(K[0]*(x[0] - b0) + K[1]*(x[1] - b1) + K[2]*(x[2] - b2)) - 1.0;
double Y = 2*(K[3]*(x[0] - b0) + K[4]*(x[1] - b1) + K[5]*(x[2] - b2)) - 1.0;
"""

_map_coordinates_FIAT_tetrahedron = """\
// Compute constants
const double C0 = vertex_coordinates[9]  + vertex_coordinates[6] + vertex_coordinates[3]  - vertex_coordinates[0];
const double C1 = vertex_coordinates[10] + vertex_coordinates[7] + vertex_coordinates[4]  - vertex_coordinates[1];
const double C2 = vertex_coordinates[11] + vertex_coordinates[8] + vertex_coordinates[5]  - vertex_coordinates[2];

// Compute subdeterminants
const double d_00 = J[4]*J[8] - J[5]*J[7];
const double d_01 = J[5]*J[6] - J[3]*J[8];
const double d_02 = J[3]*J[7] - J[4]*J[6];
const double d_10 = J[2]*J[7] - J[1]*J[8];
const double d_11 = J[0]*J[8] - J[2]*J[6];
const double d_12 = J[1]*J[6] - J[0]*J[7];
const double d_20 = J[1]*J[5] - J[2]*J[4];
const double d_21 = J[2]*J[3] - J[0]*J[5];
const double d_22 = J[0]*J[4] - J[1]*J[3];

// Get coordinates and map to the reference (FIAT) element
double X = (d_00*(2.0*x[0] - C0) + d_10*(2.0*x[1] - C1) + d_20*(2.0*x[2] - C2)) / detJ;
double Y = (d_01*(2.0*x[0] - C0) + d_11*(2.0*x[1] - C1) + d_21*(2.0*x[2] - C2)) / detJ;
double Z = (d_02*(2.0*x[0] - C0) + d_12*(2.0*x[1] - C1) + d_22*(2.0*x[2] - C2)) / detJ;
"""

# Mappings to code snippets used by format These dictionaries accept
# as keys: first the topological dimension, and second the geometric
# dimension

facet_determinant = {1: {1: _facet_determinant_1D,
                         2: _facet_determinant_2D_1D,
                         3: _facet_determinant_3D_1D},
                     2: {2: _facet_determinant_2D,
                         3: _facet_determinant_3D_2D},
                     3: {3: _facet_determinant_3D}}

# Geometry related snippets
map_onto_physical = {1: {1: _map_onto_physical_1D,
                         2: _map_onto_physical_2D_1D,
                         3: _map_onto_physical_3D_1D},
                     2: {2: _map_onto_physical_2D,
                         3: _map_onto_physical_3D_2D},
                     3: {3: _map_onto_physical_3D}}

fiat_coordinate_map = {"interval": {1:_map_coordinates_FIAT_interval,
                                    2:_map_coordinates_FIAT_interval_in_2D,
                                    3:_map_coordinates_FIAT_interval_in_3D},
                       "triangle": {2:_map_coordinates_FIAT_triangle,
                                    3: _map_coordinates_FIAT_triangle_in_3D},
                       "tetrahedron": {3:_map_coordinates_FIAT_tetrahedron}}

transform_snippet = {"interval": {1: _transform_snippet(1, 1),
                                  2: _transform_snippet(1, 2),
                                  3: _transform_snippet(1, 3)},
                     "triangle": {2: _transform_snippet(2, 2),
                                  3: _transform_snippet(2, 3)},
                     "tetrahedron": {3: _transform_snippet(3, 3)}}

ip_coordinates = {1: (3, _ip_coordinates_1D),
                  2: (10, _ip_coordinates_2D),
                  3: (21, _ip_coordinates_3D)}

# FIXME: Rename as in compute_jacobian _compute_foo_<shape>_<n>d

normal_direction = {1: {1: _normal_direction_1D,
                        2: _normal_direction_2D_1D,
                        3: _normal_direction_3D_1D},
                    2: {2: _normal_direction_2D,
                        3: _normal_direction_3D_2D},
                    3: {3: _normal_direction_3D}}

facet_normal = {1: {1: _facet_normal_1D,
                    2: _facet_normal_2D_1D,
                    3: _facet_normal_3D_1D},
                2: {2: _facet_normal_2D,
                    3: _facet_normal_3D_2D},
                3: {3: _facet_normal_3D}}

cell_volume = {1: {1: _cell_volume_1D,
                   2: _cell_volume_2D_1D,
                   3: _cell_volume_3D_1D},
               2: {2: _cell_volume_2D,
                   3: _cell_volume_3D_2D},
               3: {3: _cell_volume_3D}}

circumradius = {1: {1: _circumradius_1D,
                    2: _circumradius_2D_1D,
                    3: _circumradius_3D_1D},
                2: {2: _circumradius_2D,
                    3: _circumradius_3D_2D},
                3: {3: _circumradius_3D}}

facet_area = {1: {1: _facet_area_1D,
                  2: _facet_area_2D_1D,
                  3: _facet_area_3D_1D},
              2: {2: _facet_area_2D,
                  3: _facet_area_3D_2D},
              3: {3: _facet_area_3D}}

min_facet_edge_length = {3: {3: _min_facet_edge_length_3D}}

max_facet_edge_length = {3: {3: _max_facet_edge_length_3D}}

# Code snippets for runtime quadrature (calling evaluate_basis)

eval_basis_decl = """\
std::vector<std::vector<double> > %(table_name)s(num_quadrature_points);"""

eval_basis_init = """\
for (std::size_t ip = 0; ip < num_quadrature_points; ip++)
  %(table_name)s[ip].resize(%(table_size)s);"""

eval_basis = """\
// Get current quadrature point and compute values of basis functions
const double* x = quadrature_points + ip*%(gdim)s;
const double* v = vertex_coordinates + %(vertex_offset)s;
%(form_prefix)s_finite_element_%(element_number)s::_evaluate_basis_all(%(eval_name)s, x, v, cell_orientation);"""

eval_basis_copy = """\
// Copy values to table %(table_name)s
for (std::size_t i = 0; i < %(space_dim)s; i++)
  %(table_name)s[ip][%(table_offset)s + i] = %(eval_name)s[%(eval_stride)s*i + %(eval_offset)s];"""

eval_derivs_decl = """\
std::vector<std::vector<double> > %(table_name)s(num_quadrature_points);"""

eval_derivs_init = """\
for (std::size_t ip = 0; ip < num_quadrature_points; ip++)
  %(table_name)s[ip].resize(%(table_size)s);"""

eval_derivs = """\
// Get current quadrature point and compute values of basis function derivatives
const double* x = quadrature_points + ip*%(gdim)s;
const double* v = vertex_coordinates + %(vertex_offset)s;
%(form_prefix)s_finite_element_%(element_number)s::_evaluate_basis_derivatives_all(%(n)s, %(eval_name)s, x, v, cell_orientation);"""

eval_derivs_copy = """\
// Copy values to table %(table_name)s
for (std::size_t i = 0; i < %(space_dim)s; i++)
  %(table_name)s[ip][%(table_offset)s + i] = %(eval_name)s[%(eval_stride)s*i + %(eval_offset)s];"""