This file is indexed.

/usr/lib/python2.7/dist-packages/ffc/evaluatedof.py is in python-ffc 1.6.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
"""Code generation for evaluate_dof.

This module generates the functions evaluate_dof and evaluate_dofs.
These evaluate the degree of freedom (dof) number i and all degrees of
freedom for an element respectively.

Each dof L is assumed to act on a field f in the following manner:

  L(f) = w_{j, k} f_k(x_j)

where w is a set of weights, j is an index set corresponding to the
number of points involved in the evaluation of the functional, and k
is a multi-index set with rank corresponding to the value rank of the
function f.

For common degrees of freedom such as point evaluations and
directional component evaluations, there is just one point. However,
for various integral moments, the integrals are evaluated using
quadrature. The number of points therefore correspond to the
quadrature points.

The points x_j, weights w_{j, k} and components k are extracted from
FIAT (functional.pt_dict) in the intermediate representation stage.

"""

# Copyright (C) 2009 Marie E. Rognes
#
# This file is part of FFC.
#
# FFC is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# FFC is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with FFC. If not, see <http://www.gnu.org/licenses/>.
#
# Modified by Kristian B. Oelgaard 2010-2011
# Modified by Anders Logg 2013
# Modified by Lizao Li 2015
#
# First added:  2009-xx-yy
# Last changed: 2015-03-20

from ffc.cpp import format, remove_unused
from ffc.utils import pick_first
from ufl.permutation import build_component_numbering

__all__ = ["evaluate_dof_and_dofs", "affine_weights"]

# Prefetch formats:
comment =   format["comment"]
declare =   format["declaration"]
assign =    format["assign"]
component = format["component"]
iadd =      format["iadd"]
inner =     format["inner product"]
add =       format["addition"]
multiply =  format["multiply"]
J =         format["J"]
Jinv =      format["inv(J)"]
detJ =      format["det(J)"](None)
ret =       format["return"]
f_i =       format["argument dof num"]
f_values =  format["argument values"]
f_double =  format["float declaration"]
f_vals =    format["dof vals"]
f_result =  format["dof result"]
f_y =       format["dof physical coordinates"]
f_x =       format["vertex_coordinates"]
f_int =     format["int declaration"]
f_X =       format["dof X"]
f_D =       format["dof D"]
f_W =       format["dof W"]
f_copy =    format["dof copy"]
f_r, f_s =  format["free indices"][:2]
f_loop =    format["generate loop"]

map_onto_physical = format["map onto physical"]

def evaluate_dof_and_dofs(ir):
    "Generate code for evaluate_dof and evaluate_dof."

    # Generate common code
    (reqs, cases) = _generate_common_code(ir)

    # Combine each case with returns for evaluate_dof and switch
    dof_cases = ["%s\n%s" % (c, ret(r)) for (c, r) in cases]
    dof_code = reqs + format["switch"](f_i, dof_cases, ret(format["float"](0.0)))

    # Combine each case with assignments for evaluate_dofs
    dofs_cases = "\n".join("%s\n%s" % (c, format["assign"](component(f_values, i), r))
                           for (i, (c, r)) in enumerate(cases))
    dofs_code = reqs + dofs_cases

    return (dof_code, dofs_code)

def _generate_common_code(ir):

    # Define necessary geometry information based on the ir
    reqs = _required_declarations(ir)

    # Extract variables
    mappings = ir["mappings"]
    offsets  = ir["physical_offsets"]
    gdim = ir["geometric_dimension"]
    tdim = ir["topological_dimension"]

    # Generate bodies for each degree of freedom
    cases = [_generate_body(i, dof, mappings[i], gdim, tdim, offsets[i])
             for (i, dof) in enumerate(ir["dofs"])]

    return (reqs, cases)

def _required_declarations(ir):
    """Generate code for declaring required variables and geometry
    information.
    """
    # Enriched element, no dofs defined
    if not any(ir["dofs"]):
        return ""

    code = []
    gdim = ir["geometric_dimension"]
    tdim = ir["topological_dimension"]

    # Declare variable for storing the result and physical coordinates
    code.append(comment("Declare variables for result of evaluation"))
    code.append(declare(f_double, component(f_vals, ir["physical_value_size"])))
    code.append("")
    code.append(comment("Declare variable for physical coordinates"))
    code.append(declare(f_double, component(f_y, gdim)))
    code.append("")

    # Check whether Jacobians are necessary.
    needs_inverse_jacobian = any(["contravariant piola" in m
                                  for m in ir["mappings"]])
    needs_jacobian = any(["covariant piola" in m for m in ir["mappings"]]) or any(["pullback as metric" in m for m in ir["mappings"]])

    # Check if Jacobians are needed
    if not (needs_jacobian or needs_inverse_jacobian):
        return "\n".join(code)

    # Otherwise declare intermediate result variable
    code.append(declare(f_double, f_result))

    # Add sufficient Jacobian information. Note: same criterion for
    # needing inverse Jacobian as for needing oriented Jacobian
    code.append(format["compute_jacobian"](tdim, gdim))
    if needs_inverse_jacobian:
        code.append("")
        code.append(format["compute_jacobian_inverse"](tdim, gdim))
        code.append("")
        code.append(format["orientation"](tdim, gdim))

    return "\n".join(code)

def _generate_body(i, dof, mapping, gdim, tdim, offset=0, result=f_result):
    "Generate code for a single dof."

    # EnrichedElement is handled by having [None, ..., None] dual basis
    if not dof:
        return (format["exception"]("evaluate_dof(s) for enriched element "
                                    "not implemented."), 0.0)

    points = list(dof.keys())

    # Generate different code if multiple points. (Otherwise ffc
    # compile time blows up.)
    if len(points) > 1:
        code = _generate_multiple_points_body(i, dof, mapping, gdim, tdim,
                                              offset, result)
        return (code, result)

    # Get weights for mapping reference point to physical
    x = points[0]
    w = affine_weights(tdim)(x)

    # Map point onto physical element: y = F_K(x)
    code = []
    for j in range(gdim):
        y = inner(w, [component(f_x(), (k*gdim + j,)) for k in range(tdim + 1)])
        code.append(assign(component(f_y, j), y))

    # Evaluate function at physical point
    code.append(format["evaluate function"])

    # Map function values to the reference element
    F = _change_variables(mapping, gdim, tdim, offset)

    # Simple affine functions deserve special case:
    if len(F) == 1:
        return ("\n".join(code), multiply([dof[x][0][0], F[0]]))

    # Flatten multiindices
    (index_map, _) = build_component_numbering([tdim] * len(dof[x][0][1]),
                                               ())

    # Take inner product between components and weights
    value = add([multiply([w, F[index_map[k]]]) for (w, k) in dof[x]])
    
    # Assign value to result variable
    code.append(assign(result, value))
    return ("\n".join(code), result)


def _generate_multiple_points_body(i, dof, mapping, gdim, tdim,
                                   offset=0, result=f_result):

    "Generate c++ for-loop for multiple points (integral bodies)"

    code = [assign(f_result, 0.0)]
    points = list(dof.keys())
    n = len(points)

    # Get number of tokens per point
    tokens = [dof[x] for x in points]
    len_tokens = pick_first([len(t) for t in tokens])

    # Declare points
    points = format["list"]([format["list"](x) for x in points])
    code += [declare(f_double, component(f_X(i), [n, tdim]),
                     points)]

    # Declare components
    components = [[c[0] for (w, c) in token] for token in tokens]
    components = format["list"]([format["list"](c) for c in components])
    code += [declare(f_int, component(f_D(i), [n, len_tokens]), components)]

    # Declare weights
    weights = [[w for (w, c) in token] for token in tokens]
    weights = format["list"]([format["list"](w) for w in weights])
    code += [declare(f_double, component(f_W(i), [n, len_tokens]), weights)]

    # Declare copy variable:
    code += [declare(f_double, component(f_copy(i), tdim))]

    # Add loop over points
    code += [comment("Loop over points")]

    # Map the points from the reference onto the physical element
    #assert(gdim == tdim), \
    #    "Integral moments not supported for manifolds (yet). Please fix"
    lines_r = [map_onto_physical[tdim][gdim] % {"i": i, "j": f_r}]

    # Evaluate function at physical point
    lines_r.append(comment("Evaluate function at physical point"))
    lines_r.append(format["evaluate function"])

    # Map function values to the reference element
    lines_r.append(comment("Map function to reference element"))
    F = _change_variables(mapping, gdim, tdim, offset)
    lines_r += [assign(component(f_copy(i), k), F_k)
                for (k, F_k) in enumerate(F)]

    # Add loop over directional components
    lines_r.append(comment("Loop over directions"))
    value = multiply([component(f_copy(i),
                                component(f_D(i), (f_r, f_s))),
                      component(f_W(i), (f_r, f_s))])
    # Add value from this point to total result
    lines_s = [iadd(f_result, value)]

    # Generate loop over s and add to r.
    loop_vars_s = [(f_s, 0, len_tokens)]
    lines_r += f_loop(lines_s, loop_vars_s)

    # Generate loop over r and add to code.
    loop_vars_r = [(f_r, 0, n)]
    code += f_loop(lines_r, loop_vars_r)

    code = "\n".join(code)
    return code

def _change_variables(mapping, gdim, tdim, offset):
    """Generate code for mapping function values according to
    'mapping' and offset.

    The basics of how to map a field from a physical to the reference
    domain. (For the inverse approach -- see interpolatevertexvalues)

    Let g be a field defined on a physical domain T with physical
    coordinates x. Let T_0 be a reference domain with coordinates
    X. Assume that F: T_0 -> T such that

      x = F(X)

    Let J be the Jacobian of F, i.e J = dx/dX and let K denote the
    inverse of the Jacobian K = J^{-1}. Then we (currently) have the
    following four types of mappings:

    'affine' mapping for g:

      G(X) = g(x)

    For vector fields g:

    'contravariant piola' mapping for g:

      G(X) = det(J) K g(x)   i.e  G_i(X) = det(J) K_ij g_j(x)

    'covariant piola' mapping for g:

      G(X) = J^T g(x)          i.e  G_i(X) = J^T_ij g(x) = J_ji g_j(x)

    'pullback as metric' mapping for g:

      G(X) = J^T g(x) J     i.e. G_il(X) = J_ji g_jk(x) J_kl
    """

    # meg: Various mappings must be handled both here and in
    # interpolate_vertex_values. Could this be abstracted out?

    if mapping == "affine":
        return [component(f_vals, offset)]

    elif mapping == "contravariant piola":
        # Map each component from physical to reference using inverse
        # contravariant piola
        values = []
        for i in range(tdim):
            inv_jacobian_row = [Jinv(i, j, tdim, gdim) for j in range(gdim)]
            components = [component(f_vals, j + offset) for j in range(gdim)]
            values += [multiply([detJ, inner(inv_jacobian_row, components)])]
        return values

    elif mapping == "covariant piola":
        # Map each component from physical to reference using inverse
        # covariant piola
        values = []
        for i in range(tdim):
            jacobian_column = [J(j, i, gdim, tdim) for j in range(gdim)]
            components = [component(f_vals, j + offset) for j in range(gdim)]
            values += [inner(jacobian_column, components)]
        return values

    elif mapping == "pullback as metric":
        # physical to reference pullback as a metric
        values = []
        for i in range(tdim):
            for l in range(tdim):
                values += [inner(
                    [inner([J(j, i, gdim, tdim) for j in range(gdim)],
                           [component(f_vals, j * tdim + k + offset)
                            for j in range(gdim)]) for k in range(gdim)],
                    [J(k, l, gdim, tdim) for k in range(gdim)])]
        return values
    
    else:
        raise Exception("The mapping (%s) is not allowed" % mapping)

    return code

def affine_weights(dim):
    "Compute coefficents for mapping from reference to physical element"

    if dim == 1:
        return lambda x: (1.0 - x[0], x[0])
    elif dim == 2:
        return lambda x: (1.0 - x[0] - x[1], x[0], x[1])
    elif dim == 3:
        return lambda x: (1.0 - x[0] - x[1] - x[2], x[0], x[1], x[2])