This file is indexed.

/usr/lib/python2.7/dist-packages/ffc/representation.py is in python-ffc 1.6.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
"""
Compiler stage 2: Code representation
-------------------------------------

This module computes intermediate representations of forms,
elements and dofmaps. For each UFC function, we extract the
data needed for code generation at a later stage.

The representation should conform strictly to the naming and
order of functions in UFC. Thus, for code generation of the
function "foo", one should only need to use the data stored
in the intermediate representation under the key "foo".
"""

# Copyright (C) 2009-2015 Anders Logg
#
# This file is part of FFC.
#
# FFC is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# FFC is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with FFC. If not, see <http://www.gnu.org/licenses/>.
#
# Modified by Marie E. Rognes 2010
# Modified by Kristian B. Oelgaard 2010
# Modified by Martin Alnaes, 2013-2015
# Modified by Lizao Li 2015

# Python modules
from itertools import chain

# Import UFL
import ufl

# FFC modules
from ffc.utils import compute_permutations, product
from ffc.log import info, error, begin, end, debug_ir, ffc_assert, warning
from ffc.fiatinterface import create_element, reference_cell
from ffc.mixedelement import MixedElement
from ffc.enrichedelement import EnrichedElement, SpaceOfReals
from ffc.fiatinterface import DiscontinuousLagrangeTrace
from ffc.quadratureelement import QuadratureElement
from ffc.cpp import set_float_formatting

# List of supported integral types
ufc_integral_types = ["cell", "exterior_facet", "interior_facet", "vertex", "custom"]

def pick_representation(representation):
    "Return one of the specialized code generation modules from a representation string."
    if representation == "quadrature":
        from ffc import quadrature
        r = quadrature
    elif representation == "tensor":
        from ffc import tensor
        r = tensor
    elif representation == "uflacs":
        from ffc import uflacsrepr
        r = uflacsrepr
    else:
        error("Unknown representation: %s" % str(representation))
    return r

not_implemented = None

def compute_ir(analysis, parameters):
    "Compute intermediate representation."

    begin("Compiler stage 2: Computing intermediate representation")

    # Set code generation parameters
    set_float_formatting(int(parameters["precision"]))

    # Extract data from analysis
    form_datas, elements, element_numbers = analysis

    # Compute representation of elements
    info("Computing representation of %d elements" % len(elements))
    ir_elements = [_compute_element_ir(e, i, element_numbers) \
                       for (i, e) in enumerate(elements)]

    # Compute representation of dofmaps
    info("Computing representation of %d dofmaps" % len(elements))
    ir_dofmaps = [_compute_dofmap_ir(e, i, element_numbers)
                      for (i, e) in enumerate(elements)]

    # Compute and flatten representation of integrals
    info("Computing representation of integrals")
    irs = [_compute_integral_ir(fd, i, element_numbers, parameters) \
               for (i, fd) in enumerate(form_datas)]
    ir_integrals = [ir for ir in chain(*irs) if not ir is None]

    # Compute representation of forms
    info("Computing representation of forms")
    ir_forms = [_compute_form_ir(fd, i, element_numbers) \
                    for (i, fd) in enumerate(form_datas)]

    end()

    return ir_elements, ir_dofmaps, ir_integrals, ir_forms

def _compute_element_ir(ufl_element, element_id, element_numbers):
    "Compute intermediate representation of element."

    # Create FIAT element
    element = create_element(ufl_element)
    domain, = ufl_element.domains() # Assuming single domain
    cellname = domain.cell().cellname()

    # Store id
    ir = {"id": element_id}

    # Compute data for each function
    ir["signature"] = ufl_element.reconstruction_signature()
    ir["cell_shape"] = cellname
    ir["topological_dimension"] = domain.topological_dimension()
    ir["geometric_dimension"] = domain.geometric_dimension()
    ir["space_dimension"] = element.space_dimension()
    ir["value_rank"] = len(ufl_element.value_shape())
    ir["value_dimension"] = ufl_element.value_shape()
    ir["evaluate_basis"] = _evaluate_basis(ufl_element, element)
    ir["evaluate_dof"] = _evaluate_dof(ufl_element, element)
    ir["interpolate_vertex_values"] = _interpolate_vertex_values(ufl_element, element)
    ir["num_sub_elements"] = ufl_element.num_sub_elements()
    ir["create_sub_element"] = _create_sub_foo(ufl_element, element_numbers)

    #debug_ir(ir, "finite_element")

    return ir

def _compute_dofmap_ir(ufl_element, element_id, element_numbers):
    "Compute intermediate representation of dofmap."

    # Create FIAT element
    element = create_element(ufl_element)
    domain, = ufl_element.domains() # Assuming single domain
    cell = domain.cell()
    cellname = cell.cellname()

    # Precompute repeatedly used items
    num_dofs_per_entity = _num_dofs_per_entity(element)
    facet_dofs = _tabulate_facet_dofs(element, cell)

    # Store id
    ir = {"id": element_id}

    # Compute data for each function
    ir["signature"] = "FFC dofmap for " + ufl_element.reconstruction_signature()
    ir["needs_mesh_entities"] = _needs_mesh_entities(element)
    ir["topological_dimension"] = domain.topological_dimension()
    ir["geometric_dimension"] = domain.geometric_dimension()
    ir["global_dimension"] = _global_dimension(element)
    ir["num_element_dofs"] = element.space_dimension()
    ir["num_facet_dofs"] = len(facet_dofs[0])
    ir["num_entity_dofs"] = num_dofs_per_entity
    ir["tabulate_dofs"] = _tabulate_dofs(element, cell)
    ir["tabulate_facet_dofs"] = facet_dofs
    ir["tabulate_entity_dofs"] = (element.entity_dofs(), num_dofs_per_entity)
    ir["tabulate_coordinates"] = _tabulate_coordinates(ufl_element, element)
    ir["num_sub_dofmaps"] = ufl_element.num_sub_elements()
    ir["create_sub_dofmap"] = _create_sub_foo(ufl_element, element_numbers)

    #debug_ir(ir, "dofmap")

    return ir

def _global_dimension(element):
    "Compute intermediate representation for global_dimension."

    if not isinstance(element, MixedElement):
        if isinstance(element, SpaceOfReals):
            return ([], 1)
        return (_num_dofs_per_entity(element), 0)

    elements = []
    reals = []
    num_reals = 0
    for (i, e) in enumerate(element.elements()):
        if not isinstance(e, SpaceOfReals):
            elements += [e]
        else:
            num_reals += 1
    element = MixedElement(elements)
    return (_num_dofs_per_entity(element), num_reals)

def _needs_mesh_entities(element):
    "Compute intermediate representation for needs_mesh_entities."

    # Note: The dof map for Real elements does not depend on the mesh

    num_dofs_per_entity = _num_dofs_per_entity(element)
    if isinstance(element, SpaceOfReals):
        return [False for d in num_dofs_per_entity]
    else:
        return [d > 0 for d in num_dofs_per_entity]

def _compute_integral_ir(form_data, form_id, element_numbers, parameters):
    "Compute intermediate represention for form integrals."

    irs = []

    # Iterate over integrals
    for itg_data in form_data.integral_data:

        # Select representation
        # TODO: Is it possible to detach this metadata from IntegralData? It's a bit strange from the ufl side.
        r = pick_representation(itg_data.metadata["representation"])

        # Compute representation
        ir = r.compute_integral_ir(itg_data,
                                   form_data,
                                   form_id,
                                   element_numbers,
                                   parameters)

        # Append representation
        irs.append(ir)

    return irs

def _compute_form_ir(form_data, form_id, element_numbers):
    "Compute intermediate representation of form."

    # Store id
    ir = {"id": form_id}

    # Compute common data
    ir["classname"] = "FooForm"
    ir["members"] = not_implemented
    ir["constructor"] = not_implemented
    ir["destructor"] = not_implemented
    ir["signature"] = form_data.original_form.signature()

    ir["rank"] = len(form_data.original_form.arguments())
    ir["num_coefficients"] = len(form_data.reduced_coefficients)
    ir["original_coefficient_positions"] = form_data.original_coefficient_positions

    ir["create_finite_element"] = [element_numbers[e] for e in form_data.elements]
    ir["create_dofmap"] = [element_numbers[e] for e in form_data.elements]

    for integral_type in ufc_integral_types:
        ir["max_%s_subdomain_id" % integral_type] = _max_foo_subdomain_id(integral_type, form_data)
        ir["has_%s_integrals" % integral_type] = _has_foo_integrals(integral_type, form_data)
        ir["create_%s_integral" % integral_type] = _create_foo_integral(integral_type, form_data)
        ir["create_default_%s_integral" % integral_type] = _create_default_foo_integral(integral_type, form_data)

    return ir

#--- Computation of intermediate representation for non-trivial functions ---

# FIXME: Move to FiniteElement/MixedElement
def _value_size(element):
    """Compute value size of element, aka the number of components.

    The value size of a scalar field is 1, the value size of a vector
    field (is the number of components), the value size of a higher
    dimensional tensor field is the product of the value_shape of the
    field. Recall that all mixed elements are flattened.
    """
    shape = element.value_shape()
    if shape == ():
        return 1
    return product(shape)

def _generate_reference_offsets(element, offset=0):
    """Generate offsets: i.e value offset for each basis function
    relative to a reference element representation."""
    offsets = []
    if isinstance(element, MixedElement):
        for e in element.elements():
            offsets += _generate_reference_offsets(e, offset)
            offset += _value_size(e)
    elif isinstance(element, EnrichedElement):
        for e in element.elements():
            offsets += _generate_reference_offsets(e, offset)
    else:
        offsets = [offset]*element.space_dimension()
    return offsets

def _generate_physical_offsets(ufl_element, offset=0):
    """Generate offsets: i.e value offset for each basis function
    relative to a physical element representation."""
    offsets = []

    # Refer to reference if gdim == tdim. This is a hack to support
    # more stuff (in particular restricted elements)
    domain, = ufl_element.domains() # Assuming single domain
    gdim = domain.geometric_dimension()
    tdim = domain.topological_dimension()
    if (gdim == tdim):
        return _generate_reference_offsets(create_element(ufl_element))

    if isinstance(ufl_element, ufl.MixedElement):
        for e in ufl_element.sub_elements():
            offsets += _generate_physical_offsets(e, offset)
            offset += _value_size(e)
    elif isinstance(ufl_element, ufl.EnrichedElement):
        for e in ufl_element._elements:
            offsets += _generate_physical_offsets(e, offset)
    elif isinstance(ufl_element, ufl.FiniteElement):
        element = create_element(ufl_element)
        offsets = [offset]*element.space_dimension()
    else:
        raise NotImplementedError("This element combination is not implemented")
    return offsets

def _evaluate_dof(ufl_element, element):
    "Compute intermediate representation of evaluate_dof."

    # With regard to reference_value_size vs physical_value_size: Note
    # that 'element' is the FFC/FIAT representation of the finite
    # element, while 'ufl_element' is the UFL representation. In
    # particular, UFL only knows about physical dimensions, so the
    # value shape of the 'ufl_element' (which is used to compute the
    # _value_size) will be correspond to the value size in physical
    # space. FIAT however only knows about the reference element, and
    # so the FIAT value shape of the 'element' will be the reference
    # value size. This of course only matters for elements that have
    # different physical and reference value shapes and sizes.

    domain, = ufl_element.domains() # Assuming single domain

    return {"mappings": element.mapping(),
            "reference_value_size": _value_size(element),
            "physical_value_size": _value_size(ufl_element),
            "geometric_dimension": domain.geometric_dimension(),
            "topological_dimension": domain.topological_dimension(),
            "dofs": [L.pt_dict if L else None for L in element.dual_basis()],
            "physical_offsets": _generate_physical_offsets(ufl_element)}

def _extract_elements(element):

    new_elements = []
    if isinstance(element, (MixedElement, EnrichedElement)):
        for e in element.elements():
            new_elements += _extract_elements(e)
    else:
        new_elements.append(element)
    return new_elements

# def _num_components(element):
#     """Compute the number of components of element, like _value_size, but
#     does not support tensor elements."""
#     shape = element.value_shape()
#     if shape == ():
#         return 1
#     elif len(shape) == 1:
#         return shape[0]
#     else:
#         error("Tensor valued elements are not supported yet: %d " % shape)

def _evaluate_basis(ufl_element, element):
    "Compute intermediate representation for evaluate_basis."

    domain, = ufl_element.domains() # Assuming single domain
    cellname = domain.cell().cellname()

    # Handle Mixed and EnrichedElements by extracting 'sub' elements.
    elements = _extract_elements(element)
    offsets = _generate_reference_offsets(element) # Must check?
    mappings = element.mapping()

    # This function is evidently not implemented for TensorElements
    for e in elements:
        if (len(e.value_shape()) > 1) and (e.num_sub_elements() != 1):
            return "Function not supported/implemented for TensorElements."

    # Handle QuadratureElement, not supported because the basis is only defined
    # at the dof coordinates where the value is 1, so not very interesting.
    for e in elements:
        if isinstance(e, QuadratureElement):
            return "Function not supported/implemented for QuadratureElement."
        if isinstance(e, DiscontinuousLagrangeTrace):
            return "Function not supported for Trace elements"

    # Initialise data with 'global' values.
    data = {"reference_value_size": _value_size(element),
            "physical_value_size": _value_size(ufl_element),
            "cellname" : cellname,
            "topological_dimension" : domain.topological_dimension(),
            "geometric_dimension" : domain.geometric_dimension(),
            "space_dimension" : element.space_dimension(),
            "needs_oriented": needs_oriented_jacobian(element),
            "max_degree": max([e.degree() for e in elements])
            }

    # Loop element and space dimensions to generate dof data.
    dof = 0
    dof_data = []
    for e in elements:
        for i in range(e.space_dimension()):
            num_components = _value_size(e)
            coefficients = []
            coeffs = e.get_coeffs()

            if (num_components > 1) and (len(e.value_shape()) == 1):
                # Handle coefficients for vector valued basis elements
                # [Raviart-Thomas, Brezzi-Douglas-Marini (BDM)].
                for c in range(num_components):
                    coefficients.append(coeffs[i][c])
            elif (num_components > 1) and (len(e.value_shape()) == 2):
                # Handle coefficients for tensor valued basis elements.
                # [Regge]
                for p in range(e.value_shape()[0]):
                    for q in range(e.value_shape()[1]):
                        coefficients.append(coeffs[i][p][q])
            else:
                coefficients.append(coeffs[i])

            dof_data.append(
              {
              "embedded_degree" : e.degree(),
              "coeffs" : coefficients,
              "num_components" : num_components,
              "dmats" : e.dmats(),
              "mapping" : mappings[dof],
              "offset" : offsets[dof],
              "num_expansion_members": e.get_num_members(e.degree())
              })

            dof += 1

    data["dof_data"] = dof_data

    return data

def _tabulate_coordinates(ufl_element, element):
    "Compute intermediate representation of tabulate_coordinates."

    if uses_integral_moments(element) or not element.dual_basis()[0]:
        return {}

    domain, = ufl_element.domains() # Assuming single domain

    data = {}
    data["tdim"] = domain.topological_dimension()
    data["gdim"] = domain.geometric_dimension()
    data["points"] = [sorted(L.pt_dict.keys())[0] for L in element.dual_basis()]
    return data

def _tabulate_dofs(element, cell):
    "Compute intermediate representation of tabulate_dofs."

    if isinstance(element, SpaceOfReals):
        return None

    # Extract number of entities for each dimension for this cell
    num_entities = cell.num_entities()

    # Extract number of dofs per entity for each element
    elements = all_elements(element)
    num_dofs_per_element = [_num_dofs_per_entity(e) for e in elements]

    # Extract local dof numbers per entity for each element
    all_entity_dofs = [e.entity_dofs() for e in elements]
    dofs_per_element = [[[list(dofs[dim][entity])
                          for entity in sorted(dofs[dim].keys())]
                         for dim in sorted(dofs.keys())]
                        for dofs in all_entity_dofs]

    # Check whether we need offset
    multiple_entities =  any([sum(n > 0 for n in num_dofs) - 1
                              for num_dofs in num_dofs_per_element])
    need_offset = len(elements) > 1 or multiple_entities

    num_dofs_per_element = [e.space_dimension() for e in elements]

    # Handle global "elements"
    fakes = [isinstance(e, SpaceOfReals) for e in elements]

    return (dofs_per_element, num_dofs_per_element, num_entities, need_offset, fakes)

def _tabulate_facet_dofs(element, cell):
    "Compute intermediate representation of tabulate_facet_dofs."

    # Compute incidences
    incidence = __compute_incidence(cell.topological_dimension())

    # Get topological dimension
    D = max([pair[0][0] for pair in incidence])

    # Get the number of facets
    num_facets = cell.num_facets()

    # Find out which entities are incident to each facet
    incident = num_facets*[None]
    for facet in range(num_facets):
        incident[facet] = [pair[1] for pair in incidence if incidence[pair] == True and pair[0] == (D - 1, facet)]

    # Make list of dofs
    facet_dofs = []
    entity_dofs = element.entity_dofs()

    for facet in range(num_facets):
        facet_dofs += [[]]
        for dim in entity_dofs:
            for entity in entity_dofs[dim]:
                if (dim, entity) in incident[facet]:
                    facet_dofs[facet] += entity_dofs[dim][entity]
        facet_dofs[facet].sort()
    return facet_dofs

def _interpolate_vertex_values(ufl_element, element):
    "Compute intermediate representation of interpolate_vertex_values."

    # Check for QuadratureElement
    for e in all_elements(element):
        if isinstance(e, QuadratureElement):
            return "Function is not supported/implemented for QuadratureElement."
        if isinstance(e, DiscontinuousLagrangeTrace):
            return "Function is not implemented for DiscontinuousLagrangeTrace."

    domain, = ufl_element.domains() # Assuming single domain
    cellname = domain.cell().cellname()

    ir = {}
    ir["geometric_dimension"] = domain.geometric_dimension()
    ir["topological_dimension"] = domain.topological_dimension()

    # Check whether computing the Jacobian is necessary
    mappings = element.mapping()
    ir["needs_jacobian"] = any("piola" in m for m in mappings) or any("pullback as metric" in m for m in mappings)
    ir["needs_oriented"] = needs_oriented_jacobian(element)

    # See note in _evaluate_dofs
    ir["reference_value_size"] = _value_size(element)
    ir["physical_value_size"] = _value_size(ufl_element)

    # Get vertices of reference cell
    fiat_cell = reference_cell(cellname)
    vertices = fiat_cell.get_vertices()

    # Compute data for each constituent element
    extract = lambda values: values[sorted(values.keys())[0]].transpose()
    all_fiat_elm = all_elements(element)
    ir["element_data"] = [{
                           # See note in _evaluate_dofs
                           "reference_value_size": _value_size(e),
                           "physical_value_size": _value_size(e), # FIXME: Get from corresponding ufl element
                           "basis_values": extract(e.tabulate(0, vertices)),
                           "mapping": e.mapping()[0],
                           "space_dim": e.space_dimension()}
                          for e in all_fiat_elm]

    # FIXME: Temporary hack!
    if len(ir["element_data"]) == 1:
        ir["element_data"][0]["physical_value_size"] = ir["physical_value_size"]

    # Consistency check, related to note in _evaluate_dofs
    # This will fail for e.g. (RT1 x DG0) on a manifold
    if sum(data["physical_value_size"] for data in ir["element_data"]) != ir["physical_value_size"]:
        ir = "Failed to set physical value size correctly for subelements."
    elif sum(data["reference_value_size"] for data in ir["element_data"]) != ir["reference_value_size"]:
        ir = "Failed to set reference value size correctly for subelements."

    return ir

def _create_sub_foo(ufl_element, element_numbers):
    "Compute intermediate representation of create_sub_element/dofmap."
    return [element_numbers[e] for e in ufl_element.sub_elements()]

def _create_foo_integral(integral_type, form_data):
    "Compute intermediate representation of create_foo_integral."
    return [itg_data.subdomain_id for itg_data in form_data.integral_data
           if itg_data.integral_type == integral_type and isinstance(itg_data.subdomain_id, int)]

def _max_foo_subdomain_id(integral_type, form_data):
    "Compute intermediate representation of max_foo_subdomain_id."
    return form_data.num_sub_domains.get(integral_type, 0) # TODO: Rename in form_data

def _has_foo_integrals(integral_type, form_data):
    "Compute intermediate representation of has_foo_integrals."
    v = (form_data.num_sub_domains.get(integral_type,0) > 0
         or _create_default_foo_integral(integral_type, form_data) is not None)
    return bool(v)

def _create_default_foo_integral(integral_type, form_data):
    "Compute intermediate representation of create_default_foo_integral."
    itg_data = [itg_data for itg_data in form_data.integral_data
                if (itg_data.subdomain_id == "otherwise" and
                    itg_data.integral_type == integral_type)]
    ffc_assert(len(itg_data) in (0,1), "Expecting at most one default integral of each type.")
    return "otherwise" if itg_data else None

#--- Utility functions ---

# FIXME: KBO: This could go somewhere else, like in UFL?
#        MSA: There is probably something related in ufl somewhere,
#        but I don't understand quite what this does.
#        In particular it does not cover sub-sub-elements? Is that a bug?
# Also look at function naming, use single '_' for utility functions.
def all_elements(element):

    if isinstance(element, MixedElement):
        return element.elements()

    return [element]

def _num_dofs_per_entity(element):
    """
    Compute list of integers representing the number of dofs
    associated with a single mesh entity.

    Example: Lagrange of degree 3 on triangle: [1, 2, 1]
    """
    entity_dofs = element.entity_dofs()
    return [len(entity_dofs[e][0]) for e in range(len(entity_dofs.keys()))]

# These two are copied from old ffc
def __compute_incidence(D):
    "Compute which entities are incident with which"

    # Compute the incident vertices for each entity
    sub_simplices = []
    for dim in range(D + 1):
        sub_simplices += [__compute_sub_simplices(D, dim)]

    # Check which entities are incident, d0 --> d1 for d0 >= d1
    incidence = {}
    for d0 in range(0, D + 1):
        for i0 in range(len(sub_simplices[d0])):
            for d1 in range(d0 + 1):
                for i1 in range(len(sub_simplices[d1])):
                    if min([v in sub_simplices[d0][i0] for v in sub_simplices[d1][i1]]) == True:
                        incidence[((d0, i0), (d1, i1))] = True
                    else:
                        incidence[((d0, i0), (d1, i1))] = False

    return incidence

def __compute_sub_simplices(D, d):
    """Compute vertices for all sub simplices of dimension d (code
    taken from Exterior)."""

    # Number of vertices
    num_vertices = D + 1

    # Special cases: d = 0 and d = D
    if d == 0:
        return [[i] for i in range(num_vertices)]
    elif d == D:
        return [list(range(num_vertices))]

    # Compute all permutations of num_vertices - (d + 1)
    permutations = compute_permutations(num_vertices - d - 1, num_vertices)

    # Iterate over sub simplices
    sub_simplices = []
    for i in range(len(permutations)):

        # Pick tuple i among permutations (non-incident vertices)
        remove = permutations[i]

        # Remove vertices, keeping d + 1 vertices
        vertices = [v for v in range(num_vertices) if not v in remove]
        sub_simplices += [vertices]

    return sub_simplices

def uses_integral_moments(element):
    "True if element uses integral moments for its degrees of freedom."

    integrals = set(["IntegralMoment", "FrobeniusIntegralMoment"])
    tags = set([L.get_type_tag() for L in element.dual_basis() if L])
    return len(integrals & tags) > 0

def needs_oriented_jacobian(element):
    # Check whether this element needs an oriented jacobian
    # (only contravariant piolas and pullback as metric seem to need it)
    return ("contravariant piola" in element.mapping() or
            "pullback as metric" in element.mapping())