This file is indexed.

/usr/lib/python2.7/dist-packages/opengm/functionhelper.py is in python-opengm 2.3.6-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
import numpy

from opengmcore._opengmcore import (SparseFunction, 
                                    TruncatedAbsoluteDifferenceFunction,
                                    TruncatedSquaredDifferenceFunction,
                                    PottsFunction, PottsNFunction,
                                    PottsGFunction , PythonFunction,
                                    SparseFunctionVector, 
                                    TruncatedAbsoluteDifferenceFunctionVector,
                                    TruncatedSquaredDifferenceFunctionVector,
                                    PottsFunctionVector, PottsNFunctionVector,
                                    PottsGFunctionVector , PythonFunctionVector,
                                    
                                    )

from opengmcore import value_type,index_type,label_type



def pottsFunctions(shape,valueEqual,valueNotEqual):
  order = len(shape)
  numL0 = numpy.array([int(shape[0])],dtype=label_type)
  numL1 = numpy.array([int(shape[1])],dtype=label_type)

  if order == 2:
    return PottsFunctionVector(numL0,numL1,numpy.require(valueEqual,dtype=value_type),
                                      numpy.require(valueNotEqual,dtype=value_type) )
  elif order > 2:
    raise RuntimeError("not yet implemented")
  elif order < 2:
    raise RuntimeError("len(shape)>=2 is violated")


def relabeledPottsFunctions(shape, relabelings, valueEqual,valueNotEqual, dtype=value_type):
  order = len(shape)
  numL0 = int(shape[0])
  numL1 = int(shape[1])

def differenceFunctions(shape, norm, weight, truncate=None,dtype=value_type):
  order  = len(shape)
  numL0  = int(shape[0])
  numL1  = int(shape[1])
  lMax   = max(numL0,numL1)
  weight = numpy.require(weight,dtype=value_type)
  if truncate is None:
    truncate = numpy.ones(1,dtype=value_typ)*(abs(lMax)**norm)
  else :
    truncate = numpy.require(trunacte=dtype,valueType=value_type)

  if norm == 1 :
    return opengm.TruncatedAbsoluteDifferenceFunctionVector(shape=shape,weigh=weight,truncate=truncate)
  elif norm == 2 :
    return opengm.SquaredAbsoluteDifferenceFunctionVector(shape=shape,weigh=weight,truncate=truncate)
  else :
    return opengm.explicitDifferenceFunction(shape=shape,weigh=weight,truncate=truncate)


def relabeledDifferenceFunctions(shape, relabelings, norm=2, weight=1.0,truncate=None, dtype=value_type):
  order = len(shape)
  numL0 = int(shape[0])
  numL1 = int(shape[1])

def randomFunctions(shape):
  order = len(shape)
  numL0 = int(shape[0])
  numL1 = int(shape[1])

def sparseFunctions(*args,**kwargs):
  order = len(shape)
  numL0 = int(shape[0])
  numL1 = int(shape[1])


def sparseFunction(*args,**kwargs):
  pass

def randomFunction(shape):
    tshape = tuple(x for x in shape)
    return numpy.random.rand(*tshape).astype(value_type)


def pottsFunction(shape, valueEqual=0.0, valueNotEqual=1.0):
    """
    factory function to generate a potts-function

    Args:
      shape : shape of the potts-functions

      valueEqual : value if all labels are valueEqual

      valueNotEqual : value if not all labels are valueEqual

    Returns:

      :class:`opengm.PottsFunction` if ``len(shape) == 2``

      :class:`opengm.PottsNFunction` if ``len(shape) > 2``

    Example: ::

      >>> import opengm
      >>> f = opengm.pottsFunction(shape=[2,2],valueEqual=0.0,valueNotEqual=1.0)
      >>> print "f[0,0]=%.1f" % (f[0,0],)
      f[0,0]=0.0
      >>> print "f[1,0]=%.1f" % (f[1,0],)
      f[1,0]=1.0
      >>> print "f[0,1]=%.1f" % (f[0,1],)
      f[0,1]=1.0
      >>> print "f[1,1]=%.1f" % (f[1,1],)
      f[1,1]=0.0
      >>> f = opengm.pottsFunction(shape=[3,3,3],valueEqual=0.0,valueNotEqual=1.0)
      >>> print "f[0,0,0]=%.1f" % (f[0,0,0],)
      f[0,0,0]=0.0
      >>> print "f[1,0,0]=%.1f" % (f[1,0,0],)
      f[1,0,0]=1.0
      >>> print "f[0,1,0]=%.1f" % (f[0,1,0],)
      f[0,1,0]=1.0
      >>> print "f[1,1,2]=%.1f" % (f[1,1,2],)
      f[1,1,2]=1.0
      >>> print "f[2,2,2]=%.1f" % (f[2,2,2],)
      f[2,2,2]=0.0

    .. seealso::
      :class:`opengm.PottsFunction` ,:class:`opengm.PottsNFunction`
    """
    order = len(shape)
    if(order == 2):
        return PottsFunction(shape, valueEqual, valueNotEqual)
    elif(order > 2):
        return PottsNFunction(shape, valueEqual, valueNotEqual)


def relabeledPottsFunction(shape, relabelings, valueEqual=0.0,
                           valueNotEqual=1.0, dtype=value_type):
    """Factory function to construct a numpy array which encodes a
    potts-function. The labelings on which the potts function is computed are
    given by relabelings

    Keyword arguments:

       shape : shape / number of of labels of the potts-function

       relabelings : a list of relabelings for the 2 variables

       valueEqual  : value if labels are equal (default : 0.0)

       valueNotEqual : value if labels are not valueEqual (default : 1.0)

       dtype : data type of the numpy array (default : value_type)

    get a potts-function ::

       >>> import opengm
       >>> f=opengm.relabeledPottsFunction(shape=[4,3],relabelings=[[4,2,3,5],[2,4,5]],valueEqual=0.0,valueNotEqual=1.0)
       >>> f[0,0] # relabling => 4,2
       1.0
       >>> f[0,1] # relabling => 4,1
       0.0

    Returns:
       a numpy array with ``dtype`==value_type``

    """
    assert len(shape) == 2
    assert len(relabelings) == 2
    assert len(relabelings[0]) == shape[0]
    assert len(relabelings[1]) == shape[1]
    f = numpy.empty(shape, dtype=dtype)
    f[:] = valueNotEqual
    rl1 = relabelings[0]
    rl2 = relabelings[1]
    for x in range(shape[0]):
        for y in range(shape[1]):
            if(rl1[x] == rl2[y]):
                f[x, y] = valueEqual

    return f


def differenceFunction(shape, norm=2, weight=1.0, truncate=None,
                       dtype=value_type):
    """Factory function to construct a numpy array which encodes a
    difference-function.  The difference can be of any norm (1,2,...) and can
    be truncated or untruncated.

    Keyword arguments:

    shape -- shape / number of of labels of the potts-function

    weight  -- weight which is multiplied to the norm

    truncate -- truncate all values where the norm is bigger than truncate

    dtype -- data type of the numpy array

    Example: ::
       >>> import opengm
       >>> f=opengm.differenceFunction([2,4],weight=0.5,truncate=5)

    """
    assert len(shape) == 2
    if norm == 1:
        if truncate is None:
            # BUG: undefined function
            return TruncatedAbsoluteDifferenceFunction(shape,truncate=float(max(shape[0],shape[1])), weight=float(weight))
        else:
            return TruncatedAbsoluteDifferenceFunction(shape, truncate=float(truncate), weight=float(weight))
    elif norm == 2:
        if truncate is None:
            return TruncatedSquaredDifferenceFunction(shape,truncate=float( max(shape[0],shape[1])**2), weight=float(weight))
        else:
            return TruncatedSquaredDifferenceFunction(shape, truncate=float(truncate), weight=float(weight))
    else:
        f = numpy.empty(shape, dtype=dtype)
        if shape[0] < shape[1]:
            yVal = numpy.arange(0, shape[1])
            for x in range(shape[0]):
                f[x, :] = (numpy.abs(x - yVal) ** norm)
        else:
            xVal = numpy.arange(0, shape[0])
            for y in range(shape[1]):
                f[:, y] = (numpy.abs(xVal - y) ** norm)
        if truncate is not None:
            f[numpy.where(f > truncate)] = truncate
        f *= weight
        return f


def relabeledDifferenceFunction(shape, relabelings, norm=2, weight=1.0,
                                truncate=None, dtype=value_type):
    """Factory function to construct a numpy array which encodes a
    difference-function.  The difference can be of any norm (1,2,...) and can
    be truncated or untruncated.  The labelings on which the potts function is
    computed are given by relabelings

    Keyword arguments:

    shape -- shape / number of of labels of the potts-function

    weight  -- weight which is multiplied to the norm

    truncate -- truncate all values where the norm is bigger than truncate

    dtype -- data type of the numpy array

    get a truncated squared difference function ::
       >>> import opengm
       >>> f=opengm.relabeledDifferenceFunction([2,4],[[1,2],[2,3,4,5]],weight=0.5,truncate=5)
    """
    assert len(shape) == 2
    f = numpy.empty(shape, dtype=dtype)
    if shape[0] < shape[1]:
        rl1 = relabelings[0]
        yVal = numpy.array(relabelings[1])
        for x in range(shape[0]):
            f[x, :] = (numpy.abs(rl1[x] - yVal) ** norm)
    else:
        rl2 = relabelings[1]
        xVal = numpy.array(relabelings[2])
        for y in range(shape[1]):
            f[:, y] = (numpy.abs(xVal - rl2[y]) ** norm)
    if truncate is not None:
        f[numpy.where(f > truncate)] = truncate
    f *= weight
    return f




def labelSumFunction(shape,allowedLabelSum,valueForbidden=1.0,valueAllowed=0.0):
    ranges=[]
    for s in shape:
        ranges.append(numpy.arange(s))

    mgRes = numpy.meshgrid(*ranges)
    f     = numpy.zeros(shape=shape,dtype=value_type)

    for r in mgRes:
        f+=r

    whereAllowed = numpy.where(f==allowedLabelSum)
    f[:]            = valueForbidden
    f[whereAllowed] = valueAllowed

    return f










if __name__ == "__main__":
    import doctest
    doctest.testmod()