This file is indexed.

/usr/lib/python2.7/dist-packages/openturns/bayesian.py is in python-openturns 1.5-7build2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
# This file was automatically generated by SWIG (http://www.swig.org).
# Version 2.0.12
#
# Do not make changes to this file unless you know what you are doing--modify
# the SWIG interface file instead.




"""
Bayesian algorithms.
"""


from sys import version_info
if version_info >= (2,6,0):
    def swig_import_helper():
        from os.path import dirname
        import imp
        fp = None
        try:
            fp, pathname, description = imp.find_module('_bayesian', [dirname(__file__)])
        except ImportError:
            import _bayesian
            return _bayesian
        if fp is not None:
            try:
                _mod = imp.load_module('_bayesian', fp, pathname, description)
            finally:
                fp.close()
            return _mod
    _bayesian = swig_import_helper()
    del swig_import_helper
else:
    import _bayesian
del version_info
try:
    _swig_property = property
except NameError:
    pass # Python < 2.2 doesn't have 'property'.
def _swig_setattr_nondynamic(self,class_type,name,value,static=1):
    if (name == "thisown"): return self.this.own(value)
    if (name == "this"):
        if type(value).__name__ == 'SwigPyObject':
            self.__dict__[name] = value
            return
    method = class_type.__swig_setmethods__.get(name,None)
    if method: return method(self,value)
    if (not static):
        self.__dict__[name] = value
    else:
        raise AttributeError("You cannot add attributes to %s" % self)

def _swig_setattr(self,class_type,name,value):
    return _swig_setattr_nondynamic(self,class_type,name,value,0)

def _swig_getattr(self,class_type,name):
    if (name == "thisown"): return self.this.own()
    method = class_type.__swig_getmethods__.get(name,None)
    if method: return method(self)
    raise AttributeError(name)

def _swig_repr(self):
    try: strthis = "proxy of " + self.this.__repr__()
    except: strthis = ""
    return "<%s.%s; %s >" % (self.__class__.__module__, self.__class__.__name__, strthis,)

try:
    _object = object
    _newclass = 1
except AttributeError:
    class _object : pass
    _newclass = 0


class SwigPyIterator(_object):
    __swig_setmethods__ = {}
    __setattr__ = lambda self, name, value: _swig_setattr(self, SwigPyIterator, name, value)
    __swig_getmethods__ = {}
    __getattr__ = lambda self, name: _swig_getattr(self, SwigPyIterator, name)
    def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined - class is abstract")
    __repr__ = _swig_repr
    __swig_destroy__ = _bayesian.delete_SwigPyIterator
    __del__ = lambda self : None;
    def value(self): return _bayesian.SwigPyIterator_value(self)
    def incr(self, n=1): return _bayesian.SwigPyIterator_incr(self, n)
    def decr(self, n=1): return _bayesian.SwigPyIterator_decr(self, n)
    def distance(self, *args): return _bayesian.SwigPyIterator_distance(self, *args)
    def equal(self, *args): return _bayesian.SwigPyIterator_equal(self, *args)
    def copy(self): return _bayesian.SwigPyIterator_copy(self)
    def next(self): return _bayesian.SwigPyIterator_next(self)
    def __next__(self): return _bayesian.SwigPyIterator___next__(self)
    def previous(self): return _bayesian.SwigPyIterator_previous(self)
    def advance(self, *args): return _bayesian.SwigPyIterator_advance(self, *args)
    def __eq__(self, *args): return _bayesian.SwigPyIterator___eq__(self, *args)
    def __ne__(self, *args): return _bayesian.SwigPyIterator___ne__(self, *args)
    def __iadd__(self, *args): return _bayesian.SwigPyIterator___iadd__(self, *args)
    def __isub__(self, *args): return _bayesian.SwigPyIterator___isub__(self, *args)
    def __add__(self, *args): return _bayesian.SwigPyIterator___add__(self, *args)
    def __sub__(self, *args): return _bayesian.SwigPyIterator___sub__(self, *args)
    def __iter__(self): return self
SwigPyIterator_swigregister = _bayesian.SwigPyIterator_swigregister
SwigPyIterator_swigregister(SwigPyIterator)

GCC_VERSION = _bayesian.GCC_VERSION
class TestFailed:
    """TestFailed is used to raise an uniform exception in tests."""

    __type = "TestFailed"

    def __init__(self, reason=""):
        self.reason = reason

    def type(self):
        return TestFailed.__type

    def what(self):
        return self.reason

    def __str__(self):
        return TestFailed.__type + ": " + self.reason

    def __lshift__(self, ch):
        self.reason += ch
        return self

import openturns.base
import openturns.common
import openturns.wrapper
import openturns.typ
import openturns.statistics
import openturns.graph
import openturns.func
import openturns.geom
import openturns.diff
import openturns.optim
import openturns.solver
import openturns.algo
import openturns.experiment
import openturns.model_copula
import openturns.dist_bundle1
import openturns.dist_bundle2
import openturns.randomvector
class CalibrationStrategyImplementation(openturns.common.PersistentObject):
    """
    Calibration strategy.

    Available constructors:
        CalibrationStrategy(*range*)

        CalibrationStrategy(*range=[0.117, 0.468], expansionFactor=1.2, shrinkFactor=0.8, calibrationStep=100*)

    Parameters
    ----------
    range : :class:`~openturns.Interval` of dimension 1 :math:`[m,M]`
        Acceptance rate values for which no update of the *calibration* coefficient
        is performed.
    expansionFactor : float, :math:`e > 1`
        Expansion factor :math:`e` to use to rescale the *calibration* coefficient
        if the latter is too high (greater than the upper bound of range).
    shrinkFactor : float, :math:`0 < s < 1`
        Shrink factor :math:`s` to use to rescale the *calibration* coefficient if
        the latter is too low (smaller than the lower bound of range). If
        *expansionFactor* is specified, *shrinkFactor* must be mentioned too.
    calibrationStep : positive int
        Calibration step corresponding for example to :math:`q` in the description
        of the method
        :meth:`~openturns.RandomWalkMetropolisHastings.getCalibrationStrategyPerComponent`
        of the RandomWalkMetropolisHastings class.

    Notes
    -----
    A CalibrationStrategy can be used by a
    :class:`~openturns.RandomWalkMetropolisHastings` for example (see the
    description of the method
    :meth:`~openturns.RandomWalkMetropolisHastings.getCalibrationStrategyPerComponent`
    ).
    """
    __swig_setmethods__ = {}
    for _s in [openturns.common.PersistentObject]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, CalibrationStrategyImplementation, name, value)
    __swig_getmethods__ = {}
    for _s in [openturns.common.PersistentObject]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, CalibrationStrategyImplementation, name)
    def getClassName(self):
        """
        Accessor to the object's name.

        Returns
        -------
        class_name : str
            The object class name (`object.__class__.__name__`).
        """
        return _bayesian.CalibrationStrategyImplementation_getClassName(self)

    def __repr__(self): return _bayesian.CalibrationStrategyImplementation___repr__(self)
    def setRange(self, *args):
        """
        Set the range.

        Parameters
        ----------
        range : :class:`~openturns.Interval` of dimension 1
            Range :math:`[m,M]` in the description of the method
            :meth:`computeUpdateFactor`.
        """
        return _bayesian.CalibrationStrategyImplementation_setRange(self, *args)

    def getRange(self):
        """
        Get the range.

        Returns
        -------
        range : :class:`~openturns.Interval` of dimension 1
            Range :math:`[m,M]` in the description of the method
            :meth:`computeUpdateFactor`.
        """
        return _bayesian.CalibrationStrategyImplementation_getRange(self)

    def setExpansionFactor(self, *args):
        """
        Set the expansion factor.

        Parameters
        ----------
        expansionFactor : float, :math:`e > 1`
            Expansion factor :math:`e`. See the description of the method
            :meth:`computeUpdateFactor`.
        """
        return _bayesian.CalibrationStrategyImplementation_setExpansionFactor(self, *args)

    def getExpansionFactor(self):
        """
        Get the expansion factor.

        Returns
        -------
        expansionFactor : float
            Expansion factor :math:`e`. See the description of the method
            :meth:`computeUpdateFactor`.
        """
        return _bayesian.CalibrationStrategyImplementation_getExpansionFactor(self)

    def setShrinkFactor(self, *args):
        """
        Set the shrink factor.

        Parameters
        ----------
        shrinkFactor : float, :math:`0 < s < 1`
            Shrink factor :math:`s` in the description of the method
            :meth:`computeUpdateFactor`.
        """
        return _bayesian.CalibrationStrategyImplementation_setShrinkFactor(self, *args)

    def getShrinkFactor(self):
        """
        Get the shrink factor.

        Returns
        -------
        shrinkFactor : float
            Shrink factor :math:`s` in the description of the method
            :meth:`computeUpdateFactor`.
        """
        return _bayesian.CalibrationStrategyImplementation_getShrinkFactor(self)

    def setCalibrationStep(self, *args):
        """
        Set the calibration step.

        Parameters
        ----------
        step : positive int
            Calibration step corresponding for example to :math:`q` in the description
            of the method
            :meth:`~openturns.RandomWalkMetropolisHastings.getCalibrationStrategyPerComponent`
            of the RandomWalkMetropolisHastings class.
        """
        return _bayesian.CalibrationStrategyImplementation_setCalibrationStep(self, *args)

    def getCalibrationStep(self):
        """
        Get the calibration step.

        Returns
        -------
        step : positive int
            Calibration step corresponding for example to :math:`q` in the description
            of the method
            :meth:`~openturns.RandomWalkMetropolisHastings.getCalibrationStrategyPerComponent`
            of the RandomWalkMetropolisHastings class.
        """
        return _bayesian.CalibrationStrategyImplementation_getCalibrationStep(self)

    def computeUpdateFactor(self, *args):
        """
        Compute the update factor.

        Parameters
        ----------
        rho : float
            Acceptance rate :math:`\\rho` to take into account.

        Returns
        -------
        lambda : float
            Let :math:`\\lambda` be the *calibration* coefficient to update, it gives a
            factor :math:`\\phi(\\rho)` such that :math:`\\phi(\\rho) \\lambda` is the
            updated *calibration* coefficient according to the strategy. The value is
            computed as follows:

        .. math::

            \\phi(\\rho) = \\left\\{
                         \\begin{array}{l}
                             \\displaystyle s  \\quad if \\; \\rho < m \\\\
                             \\displaystyle e  \\quad if \\; \\rho > M \\\\
                             \\displaystyle 1  \\quad otherwise
                         \\end{array}
                         \\right.

        with :math:`s \\in ]0, 1[, e > 1` and :math:`[m,M]` the values given,
        respectively, by the methods :meth:`getShrinkFactor`,
        :meth:`getExpansionFactor` and :meth:`getRange`.

        Examples
        --------
        >>> import openturns as ot
        >>> calibration = ot.CalibrationStrategy(ot.Interval(0.1, 0.4), 1.2, 0.8)
        >>> print(calibration.computeUpdateFactor(0.09))
        0.8
        >>> print(calibration.computeUpdateFactor(0.6))
        1.2
        >>> print(calibration.computeUpdateFactor(0.18))
        1.0
        """
        return _bayesian.CalibrationStrategyImplementation_computeUpdateFactor(self, *args)

    def __init__(self, *args): 
        this = _bayesian.new_CalibrationStrategyImplementation(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _bayesian.delete_CalibrationStrategyImplementation
    __del__ = lambda self : None;
CalibrationStrategyImplementation_swigregister = _bayesian.CalibrationStrategyImplementation_swigregister
CalibrationStrategyImplementation_swigregister(CalibrationStrategyImplementation)

class CalibrationStrategyImplementationTypedInterfaceObject(openturns.common.InterfaceObject):
    __swig_setmethods__ = {}
    for _s in [openturns.common.InterfaceObject]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, CalibrationStrategyImplementationTypedInterfaceObject, name, value)
    __swig_getmethods__ = {}
    for _s in [openturns.common.InterfaceObject]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, CalibrationStrategyImplementationTypedInterfaceObject, name)
    __repr__ = _swig_repr
    def __init__(self, *args): 
        this = _bayesian.new_CalibrationStrategyImplementationTypedInterfaceObject(*args)
        try: self.this.append(this)
        except: self.this = this
    def getImplementation(self, *args):
        """
        Accessor to the underlying implementation.

        Returns
        -------
        impl : Implementation
            The implementation class.
        """
        return _bayesian.CalibrationStrategyImplementationTypedInterfaceObject_getImplementation(self, *args)

    def setName(self, *args):
        """
        Accessor to the object's name.

        Parameters
        ----------
        name : string
            The name of the object.
        """
        return _bayesian.CalibrationStrategyImplementationTypedInterfaceObject_setName(self, *args)

    def getName(self):
        """
        Accessor to the object's name.

        Returns
        -------
        name : string
            The name of the object.
        """
        return _bayesian.CalibrationStrategyImplementationTypedInterfaceObject_getName(self)

    def __eq__(self, *args): return _bayesian.CalibrationStrategyImplementationTypedInterfaceObject___eq__(self, *args)
    __swig_destroy__ = _bayesian.delete_CalibrationStrategyImplementationTypedInterfaceObject
    __del__ = lambda self : None;
CalibrationStrategyImplementationTypedInterfaceObject_swigregister = _bayesian.CalibrationStrategyImplementationTypedInterfaceObject_swigregister
CalibrationStrategyImplementationTypedInterfaceObject_swigregister(CalibrationStrategyImplementationTypedInterfaceObject)

class CalibrationStrategyCollection(_object):
    __swig_setmethods__ = {}
    __setattr__ = lambda self, name, value: _swig_setattr(self, CalibrationStrategyCollection, name, value)
    __swig_getmethods__ = {}
    __getattr__ = lambda self, name: _swig_getattr(self, CalibrationStrategyCollection, name)
    __swig_destroy__ = _bayesian.delete_CalibrationStrategyCollection
    __del__ = lambda self : None;
    def clear(self): return _bayesian.CalibrationStrategyCollection_clear(self)
    def __len__(self): return _bayesian.CalibrationStrategyCollection___len__(self)
    def __eq__(self, *args): return _bayesian.CalibrationStrategyCollection___eq__(self, *args)
    def __contains__(self, *args): return _bayesian.CalibrationStrategyCollection___contains__(self, *args)
    def __getitem__(self, *args): return _bayesian.CalibrationStrategyCollection___getitem__(self, *args)
    def __setitem__(self, *args): return _bayesian.CalibrationStrategyCollection___setitem__(self, *args)
    def __delitem__(self, *args): return _bayesian.CalibrationStrategyCollection___delitem__(self, *args)
    def at(self, *args): return _bayesian.CalibrationStrategyCollection_at(self, *args)
    def add(self, *args): return _bayesian.CalibrationStrategyCollection_add(self, *args)
    def getSize(self): return _bayesian.CalibrationStrategyCollection_getSize(self)
    def resize(self, *args): return _bayesian.CalibrationStrategyCollection_resize(self, *args)
    def isEmpty(self): return _bayesian.CalibrationStrategyCollection_isEmpty(self)
    def __repr__(self): return _bayesian.CalibrationStrategyCollection___repr__(self)
    def __str__(self, offset=""): return _bayesian.CalibrationStrategyCollection___str__(self, offset)
    def __init__(self, *args): 
        this = _bayesian.new_CalibrationStrategyCollection(*args)
        try: self.this.append(this)
        except: self.this = this
CalibrationStrategyCollection_swigregister = _bayesian.CalibrationStrategyCollection_swigregister
CalibrationStrategyCollection_swigregister(CalibrationStrategyCollection)

class CalibrationStrategy(CalibrationStrategyImplementationTypedInterfaceObject):
    """
    Calibration strategy.

    Available constructors:
        CalibrationStrategy(*range*)

        CalibrationStrategy(*range=[0.117, 0.468], expansionFactor=1.2, shrinkFactor=0.8, calibrationStep=100*)

    Parameters
    ----------
    range : :class:`~openturns.Interval` of dimension 1 :math:`[m,M]`
        Acceptance rate values for which no update of the *calibration* coefficient
        is performed.
    expansionFactor : float, :math:`e > 1`
        Expansion factor :math:`e` to use to rescale the *calibration* coefficient
        if the latter is too high (greater than the upper bound of range).
    shrinkFactor : float, :math:`0 < s < 1`
        Shrink factor :math:`s` to use to rescale the *calibration* coefficient if
        the latter is too low (smaller than the lower bound of range). If
        *expansionFactor* is specified, *shrinkFactor* must be mentioned too.
    calibrationStep : positive int
        Calibration step corresponding for example to :math:`q` in the description
        of the method
        :meth:`~openturns.RandomWalkMetropolisHastings.getCalibrationStrategyPerComponent`
        of the RandomWalkMetropolisHastings class.

    Notes
    -----
    A CalibrationStrategy can be used by a
    :class:`~openturns.RandomWalkMetropolisHastings` for example (see the
    description of the method
    :meth:`~openturns.RandomWalkMetropolisHastings.getCalibrationStrategyPerComponent`
    ).
    """
    __swig_setmethods__ = {}
    for _s in [CalibrationStrategyImplementationTypedInterfaceObject]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, CalibrationStrategy, name, value)
    __swig_getmethods__ = {}
    for _s in [CalibrationStrategyImplementationTypedInterfaceObject]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, CalibrationStrategy, name)
    __repr__ = _swig_repr
    def getClassName(self):
        """
        Accessor to the object's name.

        Returns
        -------
        class_name : str
            The object class name (`object.__class__.__name__`).
        """
        return _bayesian.CalibrationStrategy_getClassName(self)

    def setRange(self, *args):
        """
        Set the range.

        Parameters
        ----------
        range : :class:`~openturns.Interval` of dimension 1
            Range :math:`[m,M]` in the description of the method
            :meth:`computeUpdateFactor`.
        """
        return _bayesian.CalibrationStrategy_setRange(self, *args)

    def getRange(self):
        """
        Get the range.

        Returns
        -------
        range : :class:`~openturns.Interval` of dimension 1
            Range :math:`[m,M]` in the description of the method
            :meth:`computeUpdateFactor`.
        """
        return _bayesian.CalibrationStrategy_getRange(self)

    def setExpansionFactor(self, *args):
        """
        Set the expansion factor.

        Parameters
        ----------
        expansionFactor : float, :math:`e > 1`
            Expansion factor :math:`e`. See the description of the method
            :meth:`computeUpdateFactor`.
        """
        return _bayesian.CalibrationStrategy_setExpansionFactor(self, *args)

    def getExpansionFactor(self):
        """
        Get the expansion factor.

        Returns
        -------
        expansionFactor : float
            Expansion factor :math:`e`. See the description of the method
            :meth:`computeUpdateFactor`.
        """
        return _bayesian.CalibrationStrategy_getExpansionFactor(self)

    def setShrinkFactor(self, *args):
        """
        Set the shrink factor.

        Parameters
        ----------
        shrinkFactor : float, :math:`0 < s < 1`
            Shrink factor :math:`s` in the description of the method
            :meth:`computeUpdateFactor`.
        """
        return _bayesian.CalibrationStrategy_setShrinkFactor(self, *args)

    def getShrinkFactor(self):
        """
        Get the shrink factor.

        Returns
        -------
        shrinkFactor : float
            Shrink factor :math:`s` in the description of the method
            :meth:`computeUpdateFactor`.
        """
        return _bayesian.CalibrationStrategy_getShrinkFactor(self)

    def setCalibrationStep(self, *args):
        """
        Set the calibration step.

        Parameters
        ----------
        step : positive int
            Calibration step corresponding for example to :math:`q` in the description
            of the method
            :meth:`~openturns.RandomWalkMetropolisHastings.getCalibrationStrategyPerComponent`
            of the RandomWalkMetropolisHastings class.
        """
        return _bayesian.CalibrationStrategy_setCalibrationStep(self, *args)

    def getCalibrationStep(self):
        """
        Get the calibration step.

        Returns
        -------
        step : positive int
            Calibration step corresponding for example to :math:`q` in the description
            of the method
            :meth:`~openturns.RandomWalkMetropolisHastings.getCalibrationStrategyPerComponent`
            of the RandomWalkMetropolisHastings class.
        """
        return _bayesian.CalibrationStrategy_getCalibrationStep(self)

    def computeUpdateFactor(self, *args):
        """
        Compute the update factor.

        Parameters
        ----------
        rho : float
            Acceptance rate :math:`\\rho` to take into account.

        Returns
        -------
        lambda : float
            Let :math:`\\lambda` be the *calibration* coefficient to update, it gives a
            factor :math:`\\phi(\\rho)` such that :math:`\\phi(\\rho) \\lambda` is the
            updated *calibration* coefficient according to the strategy. The value is
            computed as follows:

        .. math::

            \\phi(\\rho) = \\left\\{
                         \\begin{array}{l}
                             \\displaystyle s  \\quad if \\; \\rho < m \\\\
                             \\displaystyle e  \\quad if \\; \\rho > M \\\\
                             \\displaystyle 1  \\quad otherwise
                         \\end{array}
                         \\right.

        with :math:`s \\in ]0, 1[, e > 1` and :math:`[m,M]` the values given,
        respectively, by the methods :meth:`getShrinkFactor`,
        :meth:`getExpansionFactor` and :meth:`getRange`.

        Examples
        --------
        >>> import openturns as ot
        >>> calibration = ot.CalibrationStrategy(ot.Interval(0.1, 0.4), 1.2, 0.8)
        >>> print(calibration.computeUpdateFactor(0.09))
        0.8
        >>> print(calibration.computeUpdateFactor(0.6))
        1.2
        >>> print(calibration.computeUpdateFactor(0.18))
        1.0
        """
        return _bayesian.CalibrationStrategy_computeUpdateFactor(self, *args)

    def __str__(self): return _bayesian.CalibrationStrategy___str__(self)
    def __init__(self, *args): 
        this = _bayesian.new_CalibrationStrategy(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _bayesian.delete_CalibrationStrategy
    __del__ = lambda self : None;
CalibrationStrategy_swigregister = _bayesian.CalibrationStrategy_swigregister
CalibrationStrategy_swigregister(CalibrationStrategy)

class SamplerImplementation(openturns.common.PersistentObject):
    """
    Sampler.

    Available constructors:
        Sampler(*aSampler*)

    Parameters
    ----------
    aSampler : :class:`~openturns.Sampler`
        Particular sampler. By default it is a
        :class:`~openturns.RandomWalkMetropolisHastings`.

    Notes
    -----
    A Sampler is an object whose fundamental ability is to produce samples
    according to a certain distribution.

    See also
    --------
    MCMC, RandomWalkMetropolisHastings

    Examples
    --------
    >>> import openturns as ot
    >>> sampler = ot.Sampler()
    """
    __swig_setmethods__ = {}
    for _s in [openturns.common.PersistentObject]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, SamplerImplementation, name, value)
    __swig_getmethods__ = {}
    for _s in [openturns.common.PersistentObject]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, SamplerImplementation, name)
    def getClassName(self):
        """
        Accessor to the object's name.

        Returns
        -------
        class_name : str
            The object class name (`object.__class__.__name__`).
        """
        return _bayesian.SamplerImplementation_getClassName(self)

    def setVerbose(self, *args):
        """
        Set the verbose mode.

        Parameters
        ----------
        isVerbose : Bool
            The verbose mode is activated if it is *True*, desactivated otherwise.
        """
        return _bayesian.SamplerImplementation_setVerbose(self, *args)

    def getVerbose(self):
        """
        Tell whether the verbose mode is activated or not.

        Returns
        -------
        isVerbose : Bool
            The verbose mode is activated if it is *True*, desactivated otherwise.
        """
        return _bayesian.SamplerImplementation_getVerbose(self)

    def __repr__(self): return _bayesian.SamplerImplementation___repr__(self)
    def getDimension(self):
        """
        Get the dimension of the samples generated.

        Returns
        -------
        dimension : int
            Dimension of the samples that the Sampler can generate.
        """
        return _bayesian.SamplerImplementation_getDimension(self)

    def getRealization(self):
        """
        Return a realization.

        Returns
        -------
        realization : float sequence
            A new realization.
        """
        return _bayesian.SamplerImplementation_getRealization(self)

    def getSample(self, *args):
        """
        Return several realizations.

        Parameters
        ----------
        size : int, :math:`size \\leq 0`
            Number of realizations needed.

        Returns
        -------
        realizations : 2D float sequence
            Sequence composed of *size* new realizations.
        """
        return _bayesian.SamplerImplementation_getSample(self, *args)

    def __init__(self, *args): 
        this = _bayesian.new_SamplerImplementation(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _bayesian.delete_SamplerImplementation
    __del__ = lambda self : None;
SamplerImplementation_swigregister = _bayesian.SamplerImplementation_swigregister
SamplerImplementation_swigregister(SamplerImplementation)

class SamplerImplementationTypedInterfaceObject(openturns.common.InterfaceObject):
    __swig_setmethods__ = {}
    for _s in [openturns.common.InterfaceObject]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, SamplerImplementationTypedInterfaceObject, name, value)
    __swig_getmethods__ = {}
    for _s in [openturns.common.InterfaceObject]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, SamplerImplementationTypedInterfaceObject, name)
    __repr__ = _swig_repr
    def __init__(self, *args): 
        this = _bayesian.new_SamplerImplementationTypedInterfaceObject(*args)
        try: self.this.append(this)
        except: self.this = this
    def getImplementation(self, *args):
        """
        Accessor to the underlying implementation.

        Returns
        -------
        impl : Implementation
            The implementation class.
        """
        return _bayesian.SamplerImplementationTypedInterfaceObject_getImplementation(self, *args)

    def setName(self, *args):
        """
        Accessor to the object's name.

        Parameters
        ----------
        name : string
            The name of the object.
        """
        return _bayesian.SamplerImplementationTypedInterfaceObject_setName(self, *args)

    def getName(self):
        """
        Accessor to the object's name.

        Returns
        -------
        name : string
            The name of the object.
        """
        return _bayesian.SamplerImplementationTypedInterfaceObject_getName(self)

    def __eq__(self, *args): return _bayesian.SamplerImplementationTypedInterfaceObject___eq__(self, *args)
    __swig_destroy__ = _bayesian.delete_SamplerImplementationTypedInterfaceObject
    __del__ = lambda self : None;
SamplerImplementationTypedInterfaceObject_swigregister = _bayesian.SamplerImplementationTypedInterfaceObject_swigregister
SamplerImplementationTypedInterfaceObject_swigregister(SamplerImplementationTypedInterfaceObject)

class Sampler(SamplerImplementationTypedInterfaceObject):
    """
    Sampler.

    Available constructors:
        Sampler(*aSampler*)

    Parameters
    ----------
    aSampler : :class:`~openturns.Sampler`
        Particular sampler. By default it is a
        :class:`~openturns.RandomWalkMetropolisHastings`.

    Notes
    -----
    A Sampler is an object whose fundamental ability is to produce samples
    according to a certain distribution.

    See also
    --------
    MCMC, RandomWalkMetropolisHastings

    Examples
    --------
    >>> import openturns as ot
    >>> sampler = ot.Sampler()
    """
    __swig_setmethods__ = {}
    for _s in [SamplerImplementationTypedInterfaceObject]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, Sampler, name, value)
    __swig_getmethods__ = {}
    for _s in [SamplerImplementationTypedInterfaceObject]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, Sampler, name)
    __repr__ = _swig_repr
    def getClassName(self):
        """
        Accessor to the object's name.

        Returns
        -------
        class_name : str
            The object class name (`object.__class__.__name__`).
        """
        return _bayesian.Sampler_getClassName(self)

    def setVerbose(self, *args):
        """
        Set the verbose mode.

        Parameters
        ----------
        isVerbose : Bool
            The verbose mode is activated if it is *True*, desactivated otherwise.
        """
        return _bayesian.Sampler_setVerbose(self, *args)

    def getVerbose(self):
        """
        Tell whether the verbose mode is activated or not.

        Returns
        -------
        isVerbose : Bool
            The verbose mode is activated if it is *True*, desactivated otherwise.
        """
        return _bayesian.Sampler_getVerbose(self)

    def getDimension(self):
        """
        Get the dimension of the samples generated.

        Returns
        -------
        dimension : int
            Dimension of the samples that the Sampler can generate.
        """
        return _bayesian.Sampler_getDimension(self)

    def getRealization(self):
        """
        Return a realization.

        Returns
        -------
        realization : float sequence
            A new realization.
        """
        return _bayesian.Sampler_getRealization(self)

    def getSample(self, *args):
        """
        Return several realizations.

        Parameters
        ----------
        size : int, :math:`size \\leq 0`
            Number of realizations needed.

        Returns
        -------
        realizations : 2D float sequence
            Sequence composed of *size* new realizations.
        """
        return _bayesian.Sampler_getSample(self, *args)

    def __str__(self): return _bayesian.Sampler___str__(self)
    def __init__(self, *args): 
        this = _bayesian.new_Sampler(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _bayesian.delete_Sampler
    __del__ = lambda self : None;
Sampler_swigregister = _bayesian.Sampler_swigregister
Sampler_swigregister(Sampler)

class MCMC(SamplerImplementation):
    """
    Monte-Carlo Markov Chain.

    Available constructor:
        MCMC(*prior, conditional, observations, initialState*)

        MCMC(*prior, conditional, model, parameters, observations, initialState*)

    Parameters
    ----------
    prior : :class:`~openturns.Distribution`
        Prior distribution of the parameters of the underlying Bayesian statistical
        model.
    conditional : :class:`~openturns.Distribution`
        Required distribution to define the likelihood of the underlying Bayesian
        statistical model.
    model : :class:`~openturns.NumericalMathFunction`
        Function required to define the likelihood.
    observations : 2D float sequence
        Observations required to define the likelihood.
    initialState : float sequence
        Initial state of the Monte-Carlo Markov chain on which the Sampler is
        based.
    parameters : 2D float sequence
        Parameters of the model to be fixed.

    Notes
    -----
    MCMC provides a implementation of the concept of sampler, using a Monte-Carlo
    Markov Chain (MCMC) algorithm starting from *initialState*. More precisely,
    let :math:`t(.)` be the PDF of its target distribution and :math:`d_{\\theta}`
    its dimension, :math:`\\pi(.)` be the PDF of the *prior* distribution,
    :math:`f(.|\\vect{w})` be the PDF of the *conditional* distribution
    when its parameters are set to :math:`\\vect{w}`, :math:`d_w` be the number of
    scalar parameters of *conditional* distribution (which corresponds to the
    dimension of the above :math:`\\vect{w}`), :math:`g(.)` be the function
    corresponding to model and :math:`(\\vect{y}^1, \\dots, \\vect{y}^n)` be the
    sample *observations* (of size :math:`n`):

    In the first usage, it creates a sampler based on a MCMC algorithm whose target
    distribution is defined by:

    .. _PDF_target_formula:

    .. math::

        t(\\vect{\\theta})
        \\quad \\propto \\quad
        \\underbrace{~\\pi(\\vect{\\theta})~}_{\\mbox{prior}} \\quad
        \\underbrace{~\\prod_{i=1}^n f(\\vect{y}^i|\\vect{\\theta})~}_{\\mbox{likelihood}}


    In the first usage, it creates a sampler based on a MCMC algorithm whose target
    distribution is defined by:

    .. _second_PDF_target_formula:

    .. math::

        t(\\vect{\\theta})
        \\quad \\propto \\quad
        \\underbrace{~\\pi(\\vect{\\theta})~}_{\\mbox{prior}} \\quad
        \\underbrace{~\\prod_{i=1}^n f(\\vect{y}^i|g^i(\\vect{\\theta}))~}_{\\mbox{likelihood}}

    where the :math:`g^i: \\Rset^{d_{\\theta}} \\rightarrow\\Rset^{d_w}`
    (:math:`1\\leq{}i\\leq{}n`) are such that:

    .. math::

        \\begin{array}{rcl}
            g:\\Rset^{d_\\theta} & \\longrightarrow & \\Rset^{n\\,d_w}\\\\
            \\vect{\\theta} & \\longmapsto &
            g(\\vect{\\theta}) = \\Tr{(\\Tr{g^1(\\vect{\\theta})}, \\cdots, \\Tr{g^n(\\vect{\\theta})})}
            \\end{array}

    In fact, the first usage is a particular case of the second.


    The MCMC method implemented in OpenTURNS is the Random Walk Metropolis-Hastings
    algorithm. A sample can be generated only through the MCMC's derived class:
    :class:`~openturns.RandomWalkMetropolisHastings`.
    """
    __swig_setmethods__ = {}
    for _s in [SamplerImplementation]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, MCMC, name, value)
    __swig_getmethods__ = {}
    for _s in [SamplerImplementation]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, MCMC, name)
    def getClassName(self):
        """
        Accessor to the object's name.

        Returns
        -------
        class_name : str
            The object class name (`object.__class__.__name__`).
        """
        return _bayesian.MCMC_getClassName(self)

    def __repr__(self): return _bayesian.MCMC___repr__(self)
    def computeLogLikelihood(self, *args):
        """
        Compute the logarithm of the likelihood w.r.t. observations.

        Parameters
        ----------
        currentState : float sequence
            Current state.

        Returns
        -------
        logLikelihood : float
            Logarithm of the likelihood w.r.t. observations
            :math:`(\\vect{y}^1, \\dots, \\vect{y}^n)`.
        """
        return _bayesian.MCMC_computeLogLikelihood(self, *args)

    def setPrior(self, *args):
        """
        Set the *prior* distribution.

        Parameters
        ----------
        prior : :class:`~openturns.Distribution`
            The prior distribution of the parameter of the underlying Bayesian
            statistical model, whose PDF corresponds to :math:`\\pi` in the equations of
            the :ref:`target distribution's PDF <PDF_target_formula>`.
        """
        return _bayesian.MCMC_setPrior(self, *args)

    def getPrior(self):
        """
        Get the *prior* distribution.

        Returns
        -------
        prior : :class:`~openturns.Distribution`
            The prior distribution of the parameter of the underlying Bayesian
            statistical model, whose PDF corresponds to :math:`\\pi` in the equations of
            the :ref:`target distribution's PDF <PDF_target_formula>`.
        """
        return _bayesian.MCMC_getPrior(self)

    def getConditional(self):
        """
        Get the *conditional* distribution.

        Returns
        -------
        conditional : :class:`~openturns.Distribution`
            Distribution taken into account in the definition of the likelihood, whose
            PDF with parameters :math:`\\vect{w}` corresponds to :math:`f(.|\\vect{w})`
            in the equations of the
            :ref:`target distribution's PDF <PDF_target_formula>`.
        """
        return _bayesian.MCMC_getConditional(self)

    def getModel(self):
        """
        Get the model.

        Returns
        -------
        model : :class:`~openturns.NumericalMathFunction`
            Model take into account in the definition of the likelihood, which
            corresponds to :math:`g`, that is the functions :math:`g^i`
            (:math:`1\\leq i \\leq n`) in the equation of the
            :ref:`target distribution's PDF <second_PDF_target_formula>`.
        """
        return _bayesian.MCMC_getModel(self)

    def setObservations(self, *args):
        """
        Set the observations.

        Parameters
        ----------
        observations : 2D float sequence
            Sample taken into account in the definition of the likelihood, which
            corresponds to the :math:`n`-tuple of the :math:`\\vect{y}^i`
            (:math:`1\\leq i \\leq n`) in the equations of the
            :ref:`target distribution's PDF <PDF_target_formula>`.
        """
        return _bayesian.MCMC_setObservations(self, *args)

    def getObservations(self):
        """
        Get the observations.

        Returns
        -------
        observations : 2D float sequence
            Sample taken into account in the definition of the likelihood, which
            corresponds to the :math:`n`-tuple of the :math:`\\vect{y}^i`
            (:math:`1\\leq i \\leq n`) in equations of the
            :ref:`target distribution's PDF <PDF_target_formula>`.
        """
        return _bayesian.MCMC_getObservations(self)

    def setParameters(self, *args):
        """
        Set the parameters.

        Parameters
        ----------
        parameters : float sequence
            Fixed parameters of the model :math:`g` required to define the likelihood.
        """
        return _bayesian.MCMC_setParameters(self, *args)

    def getParameters(self):
        """
        Get the parameters.

        Returns
        -------
        parameters : float sequence
            Fixed parameters of the model :math:`g` required to define the likelihood.
        """
        return _bayesian.MCMC_getParameters(self)

    def setBurnIn(self, *args):
        """
        Set the length of the burn-in period.

        Parameters
        ----------
        lenght : int
            Length of the burn-in period, that is the number of first iterates of the
            MCMC chain which will be thrown away when generating the sample.
        """
        return _bayesian.MCMC_setBurnIn(self, *args)

    def getBurnIn(self):
        """
        Get the length of the burn-in period.

        Returns
        -------
        lenght : int
            Length of the burn-in period, that is the number of first iterates of the
            MCMC chain which will be thrown away when generating the sample.
        """
        return _bayesian.MCMC_getBurnIn(self)

    def setThinning(self, *args):
        """
        Set the thinning parameter.

        Parameters
        ----------
        thinning : integer, :math:`k \\geq 0`
            Thinning parameter: storing only every :math:`k^{th}` point after the
            burn-in period.

        Notes
        -----
        When generating a sample of size :math:`q`, the number of MCMC iterations
        performed is :math:`l+1+(q-1)k` where :math:`l` is the burn-in period length
        and :math:`k` the thinning parameter.
        """
        return _bayesian.MCMC_setThinning(self, *args)

    def getThinning(self):
        """
        Get the thinning parameter.

        Returns
        -------
        thinning : integer
            Thinning parameter: storing only every :math:`k^{th}` point after the
            burn-in period.

        Notes
        -----
        When generating a sample of size :math:`q`, the number of MCMC iterations
        performed is :math:`l+1+(q-1)k` where :math:`l` is the burn-in period length
        and :math:`k` the thinning parameter.
        """
        return _bayesian.MCMC_getThinning(self)

    def getHistory(self): return _bayesian.MCMC_getHistory(self)
    def setHistory(self, *args): return _bayesian.MCMC_setHistory(self, *args)
    def getDimension(self):
        """
        Get the dimension of the samples generated.

        Returns
        -------
        dimension : int
            Dimension of the samples that the Sampler can generate.
        """
        return _bayesian.MCMC_getDimension(self)

    def __init__(self, *args): 
        this = _bayesian.new_MCMC(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _bayesian.delete_MCMC
    __del__ = lambda self : None;
MCMC_swigregister = _bayesian.MCMC_swigregister
MCMC_swigregister(MCMC)

class RandomWalkMetropolisHastings(MCMC):
    """
    Random Walk Metropolis-Hastings method.

    Available constructor:
        RandomWalkMetropolisHastings(*prior, conditional, observations, initialState, proposal*)

        RandomWalkMetropolisHastings(*prior, conditional, model, parameters, observations, initialState, proposal*)

    Parameters
    ----------
    prior : :class:`~openturns.Distribution`
        Prior distribution of the parameters of the underlying Bayesian statistical
        model.
    conditional : :class:`~openturns.Distribution`
        Required distribution to define the likelihood of the underlying Bayesian
        statistical model.
    model : :class:`~openturns.NumericalMathFunction`
        Function required to define the likelihood.
    observations : 2D float sequence
        Observations required to define the likelihood.
    initialState : float sequence
        Initial state of the Monte-Carlo Markov chain on which the Sampler is
        based.
    parameters : 2D float sequence
        Parameters of the model to be fixed.
    proposal : list of :class:`~openturns.Distribution`
        Distributions from which the transition kernels of the
        :class:`~openturns.MCMC` are defined, as explained hereafter. In the
        following of this paragraph, :math:`\\delta \\sim p_j` means that the
        realization :math:`\\delta` is obtained according to the :math:`j^{th}`
        Distribution of the list *proposal* of size :math:`d`. The underlying
        MCMC algorithm is a Metropolis-Hastings one which draws candidates (for the
        next state of the chain) using a random walk: from the current state
        :math:`\\vect{\\theta}^k`, the candidate :math:`\\vect{c}^k` for
        :math:`\\vect{\\theta}^{k+1}` can be expressed as
        :math:`\\vect{c}^k = \\vect{\\theta}^k +\\vect{\\delta}^k` where the
        distribution of :math:`\\vect{\\delta}^k` does not depend on
        :math:`\\vect{\\theta}^k`. More precisely, here, during the :math:`k^{th}`
        Metropolis-Hastings iteration, only the :math:`j^{th}` component
        :math:`\\delta_j^k` of :math:`\\vect{\\delta}^k` , with :math:`j=k \\mod d`, is
        not zero and :math:`\\delta_j^k = \\lambda_j^k \\delta^k` where
        :math:`\\lambda_j^k` is a deterministic scalar *calibration* coefficient and
        where :math:`\\delta^k \\sim p_j`. Moreover, :math:`\\lambda_j^k = 1` by default,
        but adaptive strategy based on the acceptance rate of each component can be
        defined using the method :meth:`setCalibrationStrategyPerComponent`.

    Notes
    -----
    A RandomWalkMetropolisHastings enables to carry out :class:`~openturns.MCMC`
    sampling according to the preceding statements. It is important to note that
    sampling one new realization comes to carrying out :math:`d` Metropolis-
    Hastings iterations (such as described above): all of the components of the new
    realization can differ from the corresponding components of the previous
    realization. Besides, the burn-in and thinning parameters do not take into
    consideration the number of MCMC iterations indeed, but the number of sampled
    realizations.

    Examples
    --------
    >>> import openturns as ot
    >>> ot.RandomGenerator.SetSeed(0)
    >>> chainDim = 3
    >>> # Observations
    >>> obsDim = 1
    >>> obsSize = 10
    >>> y = [-9.50794871493506, -3.83296694500105, -2.44545713047953,
    ...      0.0803625289211318, 1.01898069723583, 0.661725805623086,
    ...      -1.57581204592385, -2.95308465670895, -8.8878164296758,
    ...      -13.0812290405651]
    >>> y_obs = ot.NumericalSample(y, obsDim)
    >>> # Parameters
    >>> p = ot.NumericalSample(obsSize, chainDim)
    >>> for i in range(obsSize):
    ...     for j in range(chainDim):
    ...         p[i, j] = (-2 + 5. * i / 9.) ** j
    >>> # Model
    >>> fullModel = ot.NumericalMathFunction(
    ...          ['p1', 'p2', 'p3', 'x1', 'x2', 'x3'], ['z', 'sigma'],
    ...          ['p1*x1+p2*x2+p3*x3', '1.0'])
    >>> model = ot.NumericalMathFunction(fullModel, range(chainDim))
    >>> # Calibration parameters
    >>> calibrationColl = [ot.CalibrationStrategy()]*chainDim
    >>> # Proposal distribution
    >>> proposalColl = [ot.Uniform(-1., 1.)]*chainDim
    >>> # Prior distribution
    >>> sigma0 = [10.]*chainDim
    >>> #  Covariance matrix
    >>> Q0_inv = ot.CorrelationMatrix(chainDim)
    >>> for i in range(chainDim): 
    ...     Q0_inv[i, i] = sigma0[i] * sigma0[i]
    >>> mu0 = [0.]*chainDim
    >>> #  x0 ~ N(mu0, sigma0)
    >>> prior = ot.Normal(mu0, Q0_inv)
    >>> # Conditional distribution y~N(z, 1.0)
    >>> conditional = ot.Normal()
    >>> # Create a metropolis-hastings sampler
    >>> # prior =a distribution of dimension chainDim, the a priori distribution of the parameter
    >>> # conditional =a distribution of dimension 1, the observation error on the output
    >>> # model =the link between the parameters and the output
    >>> # y_obs =noisy observations of the output
    >>> # mu0 =starting point of the chain
    >>> sampler = ot.RandomWalkMetropolisHastings(
    ...     prior, conditional, model, p, y_obs, mu0, proposalColl)
    >>> sampler.setCalibrationStrategyPerComponent(calibrationColl)
    >>> # Get a realization
    >>> print(sampler.getRealization())
    [1.25054,1.32356,-2.15476]
    """
    __swig_setmethods__ = {}
    for _s in [MCMC]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, RandomWalkMetropolisHastings, name, value)
    __swig_getmethods__ = {}
    for _s in [MCMC]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, RandomWalkMetropolisHastings, name)
    def getClassName(self):
        """
        Accessor to the object's name.

        Returns
        -------
        class_name : str
            The object class name (`object.__class__.__name__`).
        """
        return _bayesian.RandomWalkMetropolisHastings_getClassName(self)

    def __repr__(self): return _bayesian.RandomWalkMetropolisHastings___repr__(self)
    def getRealization(self):
        """
        Return a realization.

        Returns
        -------
        realization : float sequence
            A new realization.
        """
        return _bayesian.RandomWalkMetropolisHastings_getRealization(self)

    def setCalibrationStrategy(self, *args):
        """
        Set the calibration strategy.

        Parameters
        ----------
        strategy : :class:`~openturns.CalibrationStrategy`
            Same strategy applied for each component :math:`\\lambda_j^k`.

        See also
        --------
        setCalibrationStrategyPerComponent
        """
        return _bayesian.RandomWalkMetropolisHastings_setCalibrationStrategy(self, *args)

    def setCalibrationStrategyPerComponent(self, *args):
        """
        Set the calibration strategy per component.

        Parameters
        ----------
        strategy : list of :class:`~openturns.CalibrationStrategy`
            A list of CalibrationStrategy *strategy*, whose :math:`j^{th}` component
            :math:`strategy[j]` defines whether and how the :math:`\\lambda_j^k` (see the
            paragraph dedicated to the constructors of the class above) are rescaled,
            on the basis of the last :math:`j^{th}` component acceptance rate
            :math:`\\rho_j^k` . The *calibration* coefficients are rescaled every
            :math:`q\\times d` MCMC iterations with
            :math:`q = strategy[j].getCalibrationStep()`, thus on the basis of the
            acceptances or refusals of the last :math:`q` candidates obtained by only
            changing the :math:`j^{th}` component of the current state:
            :math:`\\lambda_j^k = \\Phi_j (\\rho_j^k)\\lambda_j^{k-qd}` where
            :math:`\\Phi_j(.)` is defined by :math:`strategy[j].computeUpdateFactor()`.
        """
        return _bayesian.RandomWalkMetropolisHastings_setCalibrationStrategyPerComponent(self, *args)

    def getCalibrationStrategyPerComponent(self):
        """
        Get the calibration strategy per component.

        Returns
        -------
        strategy : list of :class:`~openturns.CalibrationStrategy`
            A list of CalibrationStrategy *strategy*, whose :math:`j^{th}` component
            :math:`strategy[j]` defines whether and how the :math:`\\lambda_j^k` (see the
            paragraph dedicated to the constructors of the class above) are rescaled,
            on the basis of the last :math:`j^{th}` component acceptance rate
            :math:`\\rho_j^k` . The *calibration* coefficients are rescaled every
            :math:`q\\times d` MCMC iterations with
            :math:`q = strategy[j].getCalibrationStep()`, thus on the basis of the
            acceptances or refusals of the last :math:`q` candidates obtained by only
            changing the :math:`j^{th}` component of the current state:
            :math:`\\lambda_j^k = \\Phi_j (\\rho_j^k)\\lambda_j^{k-qd}` where
            :math:`\\Phi_j(.)` is defined by :math:`strategy[j].computeUpdateFactor()`.
        """
        return _bayesian.RandomWalkMetropolisHastings_getCalibrationStrategyPerComponent(self)

    def setProposal(self, *args):
        """
        Set the proposal.

        Parameters
        ----------
        proposal : list of :class:`~openturns.Distribution`
            The :math:`d`-tuple of Distributions :math:`p_j (1 \\leq j \\leq d)` from
            which the transition kernels of the random walk Metropolis-Hastings
            algorithm are defined; look at the paragraph dedicated to the constructors
            of the class above.
        """
        return _bayesian.RandomWalkMetropolisHastings_setProposal(self, *args)

    def getProposal(self):
        """
        Get the proposal.

        Returns
        -------
        proposal : list of :class:`~openturns.Distribution`
            The :math:`d`-tuple of Distributions :math:`p_j (1 \\leq j \\leq d)` from
            which the transition kernels of the random walk Metropolis-Hastings
            algorithm are defined; look at the paragraph dedicated to the constructors
            of the class above.
        """
        return _bayesian.RandomWalkMetropolisHastings_getProposal(self)

    def getAcceptanceRate(self):
        """
        Get acceptance rate.

        Returns
        -------
        acceptanceRate : float sequence of dimension :math:`d`
            Sequence whose the :math:`j^{th}` component corresponds to the acceptance
            rate of the candidates :math:`\\vect{c}^k` obtained from a state
            :math:`\\vect{\\theta}^k` by only changing its :math:`j^{th}` component, that
            is to the acceptance rate only relative to the :math:`k^{th}` MCMC
            iterations such that :math:`k \\mod d=j` (see the paragraph dedicated to the
            constructors of the class above). These are global acceptance rates over
            all the MCMC iterations performed.
        """
        return _bayesian.RandomWalkMetropolisHastings_getAcceptanceRate(self)

    def __init__(self, *args): 
        this = _bayesian.new_RandomWalkMetropolisHastings(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _bayesian.delete_RandomWalkMetropolisHastings
    __del__ = lambda self : None;
RandomWalkMetropolisHastings_swigregister = _bayesian.RandomWalkMetropolisHastings_swigregister
RandomWalkMetropolisHastings_swigregister(RandomWalkMetropolisHastings)

class PosteriorRandomVector(openturns.randomvector.RandomVectorImplementation):
    __swig_setmethods__ = {}
    for _s in [openturns.randomvector.RandomVectorImplementation]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, PosteriorRandomVector, name, value)
    __swig_getmethods__ = {}
    for _s in [openturns.randomvector.RandomVectorImplementation]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, PosteriorRandomVector, name)
    def getClassName(self):
        """
        Accessor to the object's name.

        Returns
        -------
        class_name : str
            The object class name (`object.__class__.__name__`).
        """
        return _bayesian.PosteriorRandomVector_getClassName(self)

    def __repr__(self): return _bayesian.PosteriorRandomVector___repr__(self)
    def getSampler(self): return _bayesian.PosteriorRandomVector_getSampler(self)
    def getDimension(self):
        """
        Accessor to the dimension of the RandomVector.

        Returns
        -------
        dimension : positive int
            Dimension of the RandomVector.
        """
        return _bayesian.PosteriorRandomVector_getDimension(self)

    def getRealization(self):
        """
        Compute one realization of the RandomVector.

        Returns
        -------
        aRealization : float sequence
            Sequence of values randomly determined from the RandomVector definition.
            In the case of an event: one realization of the event (considered as a
            Bernoulli variable) which is a boolean value (1 for the realization of the
            event and 0 else).

        See also
        --------
        getSample

        Examples
        --------
        >>> import openturns as ot
        >>> distribution = ot.Normal([0., 0.], [1., 1.], ot.CorrelationMatrix(2))
        >>> randomVector = ot.RandomVector(distribution)
        >>> ot.RandomGenerator.SetSeed(0)
        >>> print(randomVector.getRealization())
        [0.608202,-1.26617]
        >>> print(randomVector.getRealization())
        [-0.438266,1.20548]
        """
        return _bayesian.PosteriorRandomVector_getRealization(self)

    def getSample(self, *args):
        """
        Compute realizations of the RandomVector.

        Parameters
        ----------
        n : int, :math:`n \\geq 0`
            Number of realizations needed.

        Returns
        -------
        realizations : 2D float sequence
            n sequences of values randomly determined from the RandomVector definition.
            In the case of an event: n realizations of the event (considered as a
            Bernoulli variable) which are boolean values (1 for the realization of the
            event and 0 else).

        See also
        --------
        getRealization

        Examples
        --------
        >>> import openturns as ot
        >>> distribution = ot.Normal([0., 0.], [1., 1.], ot.CorrelationMatrix(2))
        >>> randomVector = ot.RandomVector(distribution)
        >>> ot.RandomGenerator.SetSeed(0)
        >>> print(randomVector.getSample(3))
            [ marginal 1 marginal 2 ]
        0 : [  0.608202  -1.26617   ]
        1 : [ -0.438266   1.20548   ]
        2 : [ -2.18139    0.350042  ]
        """
        return _bayesian.PosteriorRandomVector_getSample(self, *args)

    def __init__(self, *args): 
        this = _bayesian.new_PosteriorRandomVector(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _bayesian.delete_PosteriorRandomVector
    __del__ = lambda self : None;
PosteriorRandomVector_swigregister = _bayesian.PosteriorRandomVector_swigregister
PosteriorRandomVector_swigregister(PosteriorRandomVector)

class CalibrationStrategyImplementationPointer(_object):
    __swig_setmethods__ = {}
    __setattr__ = lambda self, name, value: _swig_setattr(self, CalibrationStrategyImplementationPointer, name, value)
    __swig_getmethods__ = {}
    __getattr__ = lambda self, name: _swig_getattr(self, CalibrationStrategyImplementationPointer, name)
    __swig_setmethods__["ptr_"] = _bayesian.CalibrationStrategyImplementationPointer_ptr__set
    __swig_getmethods__["ptr_"] = _bayesian.CalibrationStrategyImplementationPointer_ptr__get
    if _newclass:ptr_ = _swig_property(_bayesian.CalibrationStrategyImplementationPointer_ptr__get, _bayesian.CalibrationStrategyImplementationPointer_ptr__set)
    def __init__(self, *args): 
        this = _bayesian.new_CalibrationStrategyImplementationPointer(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _bayesian.delete_CalibrationStrategyImplementationPointer
    __del__ = lambda self : None;
    def reset(self): return _bayesian.CalibrationStrategyImplementationPointer_reset(self)
    def __ref__(self, *args): return _bayesian.CalibrationStrategyImplementationPointer___ref__(self, *args)
    def __deref__(self): return _bayesian.CalibrationStrategyImplementationPointer___deref__(self)
    def isNull(self): return _bayesian.CalibrationStrategyImplementationPointer_isNull(self)
    def __nonzero__(self):
        return _bayesian.CalibrationStrategyImplementationPointer___nonzero__(self)
    __bool__ = __nonzero__


    def get(self): return _bayesian.CalibrationStrategyImplementationPointer_get(self)
    def getImplementation(self): return _bayesian.CalibrationStrategyImplementationPointer_getImplementation(self)
    def unique(self): return _bayesian.CalibrationStrategyImplementationPointer_unique(self)
    def use_count(self): return _bayesian.CalibrationStrategyImplementationPointer_use_count(self)
    def swap(self, *args): return _bayesian.CalibrationStrategyImplementationPointer_swap(self, *args)
    def getClassName(self):
        """
        Accessor to the object's name.

        Returns
        -------
        class_name : str
            The object class name (`object.__class__.__name__`).
        """
        return _bayesian.CalibrationStrategyImplementationPointer_getClassName(self)

    def __repr__(self): return _bayesian.CalibrationStrategyImplementationPointer___repr__(self)
    def setRange(self, *args):
        """
        Set the range.

        Parameters
        ----------
        range : :class:`~openturns.Interval` of dimension 1
            Range :math:`[m,M]` in the description of the method
            :meth:`computeUpdateFactor`.
        """
        return _bayesian.CalibrationStrategyImplementationPointer_setRange(self, *args)

    def getRange(self):
        """
        Get the range.

        Returns
        -------
        range : :class:`~openturns.Interval` of dimension 1
            Range :math:`[m,M]` in the description of the method
            :meth:`computeUpdateFactor`.
        """
        return _bayesian.CalibrationStrategyImplementationPointer_getRange(self)

    def setExpansionFactor(self, *args):
        """
        Set the expansion factor.

        Parameters
        ----------
        expansionFactor : float, :math:`e > 1`
            Expansion factor :math:`e`. See the description of the method
            :meth:`computeUpdateFactor`.
        """
        return _bayesian.CalibrationStrategyImplementationPointer_setExpansionFactor(self, *args)

    def getExpansionFactor(self):
        """
        Get the expansion factor.

        Returns
        -------
        expansionFactor : float
            Expansion factor :math:`e`. See the description of the method
            :meth:`computeUpdateFactor`.
        """
        return _bayesian.CalibrationStrategyImplementationPointer_getExpansionFactor(self)

    def setShrinkFactor(self, *args):
        """
        Set the shrink factor.

        Parameters
        ----------
        shrinkFactor : float, :math:`0 < s < 1`
            Shrink factor :math:`s` in the description of the method
            :meth:`computeUpdateFactor`.
        """
        return _bayesian.CalibrationStrategyImplementationPointer_setShrinkFactor(self, *args)

    def getShrinkFactor(self):
        """
        Get the shrink factor.

        Returns
        -------
        shrinkFactor : float
            Shrink factor :math:`s` in the description of the method
            :meth:`computeUpdateFactor`.
        """
        return _bayesian.CalibrationStrategyImplementationPointer_getShrinkFactor(self)

    def setCalibrationStep(self, *args):
        """
        Set the calibration step.

        Parameters
        ----------
        step : positive int
            Calibration step corresponding for example to :math:`q` in the description
            of the method
            :meth:`~openturns.RandomWalkMetropolisHastings.getCalibrationStrategyPerComponent`
            of the RandomWalkMetropolisHastings class.
        """
        return _bayesian.CalibrationStrategyImplementationPointer_setCalibrationStep(self, *args)

    def getCalibrationStep(self):
        """
        Get the calibration step.

        Returns
        -------
        step : positive int
            Calibration step corresponding for example to :math:`q` in the description
            of the method
            :meth:`~openturns.RandomWalkMetropolisHastings.getCalibrationStrategyPerComponent`
            of the RandomWalkMetropolisHastings class.
        """
        return _bayesian.CalibrationStrategyImplementationPointer_getCalibrationStep(self)

    def computeUpdateFactor(self, *args):
        """
        Compute the update factor.

        Parameters
        ----------
        rho : float
            Acceptance rate :math:`\\rho` to take into account.

        Returns
        -------
        lambda : float
            Let :math:`\\lambda` be the *calibration* coefficient to update, it gives a
            factor :math:`\\phi(\\rho)` such that :math:`\\phi(\\rho) \\lambda` is the
            updated *calibration* coefficient according to the strategy. The value is
            computed as follows:

        .. math::

            \\phi(\\rho) = \\left\\{
                         \\begin{array}{l}
                             \\displaystyle s  \\quad if \\; \\rho < m \\\\
                             \\displaystyle e  \\quad if \\; \\rho > M \\\\
                             \\displaystyle 1  \\quad otherwise
                         \\end{array}
                         \\right.

        with :math:`s \\in ]0, 1[, e > 1` and :math:`[m,M]` the values given,
        respectively, by the methods :meth:`getShrinkFactor`,
        :meth:`getExpansionFactor` and :meth:`getRange`.

        Examples
        --------
        >>> import openturns as ot
        >>> calibration = ot.CalibrationStrategy(ot.Interval(0.1, 0.4), 1.2, 0.8)
        >>> print(calibration.computeUpdateFactor(0.09))
        0.8
        >>> print(calibration.computeUpdateFactor(0.6))
        1.2
        >>> print(calibration.computeUpdateFactor(0.18))
        1.0
        """
        return _bayesian.CalibrationStrategyImplementationPointer_computeUpdateFactor(self, *args)

    def __eq__(self, *args): return _bayesian.CalibrationStrategyImplementationPointer___eq__(self, *args)
    def __ne__(self, *args): return _bayesian.CalibrationStrategyImplementationPointer___ne__(self, *args)
    def __str__(self, offset=""): return _bayesian.CalibrationStrategyImplementationPointer___str__(self, offset)
    def getId(self):
        """
        Accessor to the object's id.

        Returns
        -------
        id : int
           Internal unique identifier.
        """
        return _bayesian.CalibrationStrategyImplementationPointer_getId(self)

    def setShadowedId(self, *args):
        """
        Accessor to the object's shadowed id.

        Parameters
        ----------
        id : int
            Internal unique identifier.
        """
        return _bayesian.CalibrationStrategyImplementationPointer_setShadowedId(self, *args)

    def getShadowedId(self):
        """
        Accessor to the object's shadowed id.

        Returns
        -------
        id : int
            Internal unique identifier.
        """
        return _bayesian.CalibrationStrategyImplementationPointer_getShadowedId(self)

    def setVisibility(self, *args):
        """
        Accessor to the object's visibility state.

        Parameters
        ----------
        visible : bool
            Visibility flag.
        """
        return _bayesian.CalibrationStrategyImplementationPointer_setVisibility(self, *args)

    def getVisibility(self):
        """
        Accessor to the object's visibility state.

        Returns
        -------
        visible : bool
            Visibility flag.
        """
        return _bayesian.CalibrationStrategyImplementationPointer_getVisibility(self)

    def hasName(self):
        """
        Test if the object is named.

        Returns
        -------
        hasName : bool
            True if the name is not empty.
        """
        return _bayesian.CalibrationStrategyImplementationPointer_hasName(self)

    def hasVisibleName(self):
        """
        Test if the object has a distinghishable name.

        Returns
        -------
        hasVisibleName : bool
            True if the name is not empty and not the default one.
        """
        return _bayesian.CalibrationStrategyImplementationPointer_hasVisibleName(self)

    def getName(self):
        """
        Accessor to the object's name.

        Returns
        -------
        name : string
            The name of the object.
        """
        return _bayesian.CalibrationStrategyImplementationPointer_getName(self)

    def setName(self, *args):
        """
        Accessor to the object's name.

        Parameters
        ----------
        name : string
            The name of the object.
        """
        return _bayesian.CalibrationStrategyImplementationPointer_setName(self, *args)

CalibrationStrategyImplementationPointer_swigregister = _bayesian.CalibrationStrategyImplementationPointer_swigregister
CalibrationStrategyImplementationPointer_swigregister(CalibrationStrategyImplementationPointer)

# This file is compatible with both classic and new-style classes.