/usr/lib/python2.7/dist-packages/openturns/stattests.py is in python-openturns 1.5-7build2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 | # This file was automatically generated by SWIG (http://www.swig.org).
# Version 2.0.12
#
# Do not make changes to this file unless you know what you are doing--modify
# the SWIG interface file instead.
"""
Statistical tests.
"""
from sys import version_info
if version_info >= (2,6,0):
def swig_import_helper():
from os.path import dirname
import imp
fp = None
try:
fp, pathname, description = imp.find_module('_stattests', [dirname(__file__)])
except ImportError:
import _stattests
return _stattests
if fp is not None:
try:
_mod = imp.load_module('_stattests', fp, pathname, description)
finally:
fp.close()
return _mod
_stattests = swig_import_helper()
del swig_import_helper
else:
import _stattests
del version_info
try:
_swig_property = property
except NameError:
pass # Python < 2.2 doesn't have 'property'.
def _swig_setattr_nondynamic(self,class_type,name,value,static=1):
if (name == "thisown"): return self.this.own(value)
if (name == "this"):
if type(value).__name__ == 'SwigPyObject':
self.__dict__[name] = value
return
method = class_type.__swig_setmethods__.get(name,None)
if method: return method(self,value)
if (not static):
self.__dict__[name] = value
else:
raise AttributeError("You cannot add attributes to %s" % self)
def _swig_setattr(self,class_type,name,value):
return _swig_setattr_nondynamic(self,class_type,name,value,0)
def _swig_getattr(self,class_type,name):
if (name == "thisown"): return self.this.own()
method = class_type.__swig_getmethods__.get(name,None)
if method: return method(self)
raise AttributeError(name)
def _swig_repr(self):
try: strthis = "proxy of " + self.this.__repr__()
except: strthis = ""
return "<%s.%s; %s >" % (self.__class__.__module__, self.__class__.__name__, strthis,)
try:
_object = object
_newclass = 1
except AttributeError:
class _object : pass
_newclass = 0
class SwigPyIterator(_object):
__swig_setmethods__ = {}
__setattr__ = lambda self, name, value: _swig_setattr(self, SwigPyIterator, name, value)
__swig_getmethods__ = {}
__getattr__ = lambda self, name: _swig_getattr(self, SwigPyIterator, name)
def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined - class is abstract")
__repr__ = _swig_repr
__swig_destroy__ = _stattests.delete_SwigPyIterator
__del__ = lambda self : None;
def value(self): return _stattests.SwigPyIterator_value(self)
def incr(self, n=1): return _stattests.SwigPyIterator_incr(self, n)
def decr(self, n=1): return _stattests.SwigPyIterator_decr(self, n)
def distance(self, *args): return _stattests.SwigPyIterator_distance(self, *args)
def equal(self, *args): return _stattests.SwigPyIterator_equal(self, *args)
def copy(self): return _stattests.SwigPyIterator_copy(self)
def next(self): return _stattests.SwigPyIterator_next(self)
def __next__(self): return _stattests.SwigPyIterator___next__(self)
def previous(self): return _stattests.SwigPyIterator_previous(self)
def advance(self, *args): return _stattests.SwigPyIterator_advance(self, *args)
def __eq__(self, *args): return _stattests.SwigPyIterator___eq__(self, *args)
def __ne__(self, *args): return _stattests.SwigPyIterator___ne__(self, *args)
def __iadd__(self, *args): return _stattests.SwigPyIterator___iadd__(self, *args)
def __isub__(self, *args): return _stattests.SwigPyIterator___isub__(self, *args)
def __add__(self, *args): return _stattests.SwigPyIterator___add__(self, *args)
def __sub__(self, *args): return _stattests.SwigPyIterator___sub__(self, *args)
def __iter__(self): return self
SwigPyIterator_swigregister = _stattests.SwigPyIterator_swigregister
SwigPyIterator_swigregister(SwigPyIterator)
GCC_VERSION = _stattests.GCC_VERSION
class TestFailed:
"""TestFailed is used to raise an uniform exception in tests."""
__type = "TestFailed"
def __init__(self, reason=""):
self.reason = reason
def type(self):
return TestFailed.__type
def what(self):
return self.reason
def __str__(self):
return TestFailed.__type + ": " + self.reason
def __lshift__(self, ch):
self.reason += ch
return self
import openturns.base
import openturns.common
import openturns.wrapper
import openturns.typ
import openturns.statistics
import openturns.graph
import openturns.func
import openturns.geom
import openturns.diff
import openturns.optim
import openturns.solver
import openturns.algo
import openturns.experiment
import openturns.model_copula
class VisualTest(_object):
__swig_setmethods__ = {}
__setattr__ = lambda self, name, value: _swig_setattr(self, VisualTest, name, value)
__swig_getmethods__ = {}
__getattr__ = lambda self, name: _swig_getattr(self, VisualTest, name)
def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined")
__repr__ = _swig_repr
__swig_getmethods__["DrawEmpiricalCDF"] = lambda x: _stattests.VisualTest_DrawEmpiricalCDF
if _newclass:DrawEmpiricalCDF = staticmethod(_stattests.VisualTest_DrawEmpiricalCDF)
__swig_getmethods__["DrawHistogram"] = lambda x: _stattests.VisualTest_DrawHistogram
if _newclass:DrawHistogram = staticmethod(_stattests.VisualTest_DrawHistogram)
def DrawQQplot(*args):
"""
Draw a QQ-plot as an OpenTURNS :class:`~openturns.Graph`.
Parameters
----------
sample : :class:`~openturns.NumericalSample`
Tested sample.
tested_quantity : :class:`~openturns.Distribution` or :class:`~openturns.NumericalSample`
Tested model or sample.
n_points : int, if `tested_quantity` is a :class:`~openturns.NumericalSample`
The number of points that is used for interpolating the empirical CDF of
the two samples (with possibly different sizes).
It will default to `DistributionImplementation-DefaultPointNumber` from
the :class:`~openturns.ResourceMap`.
Notes
-----
The QQ-plot is a visual fitting test for univariate distributions. It
opposes the sample quantiles to those of the tested quantity (either a
distribution or another sample) by plotting the following points could:
.. math::
\\left(x^{(i)},
\\bullet\\left[\\widehat{F}\\left(x^{(i)}\\right)\\right]
\\right), \\quad i = 1, \\ldots, m
where :math:`\\widehat{F}` denotes the empirical CDF of the (first) tested
sample and :math:`\\bullet` denotes either the quantile function of the tested
distribution or the empirical quantile function of the second tested sample.
If the given sample fits to the tested distribution or sample, then the points
should be close to be aligned (up to the uncertainty associated with the
estimation of the empirical probabilities) with the **first bissector** whose
equation reads:
.. math::
y = x, \\quad x \\in \\Rset
Examples
--------
>>> import openturns as ot
>>> from openturns.viewer import View
Generate a random sample from a Normal distribution:
>>> ot.RandomGenerator.SetSeed(0)
>>> distribution = ot.Weibull(2., .5)
>>> sample = distribution.getSample(30)
>>> sample.setDescription(['Sample'])
Draw a QQ-plot against a given (inferred) distribution:
>>> tested_distribution = ot.WeibullFactory().build(sample)
>>> QQ_plot = ot.VisualTest_DrawQQplot(sample, tested_distribution)
>>> View(QQ_plot).show()
Draw a two-sample QQ-plot:
>>> another_sample = distribution.getSample(50)
>>> another_sample.setDescription(['Another sample'])
>>> QQ_plot = ot.VisualTest_DrawQQplot(sample, another_sample)
>>> View(QQ_plot).show()
"""
return _stattests.VisualTest_DrawQQplot(*args)
if _newclass:DrawQQplot = staticmethod(DrawQQplot)
__swig_getmethods__["DrawQQplot"] = lambda x: DrawQQplot
def DrawHenryLine(*args):
"""
Draw an Henry plot as an OpenTURNS :class:`~openturns.Graph`.
Parameters
----------
sample : :class:`~openturns.NumericalSample` or 2d array, list or tuple
Tested (univariate) sample.
normal_distribution : :class:`~openturns.Normal`, optional
Tested (univariate) normal distribution.
If not given, this will build a :class:`~openturns.Normal` distribution
from the given sample using the :class:`~openturns.NormalFactory`.
Notes
-----
The Henry plot is a visual fitting test for the normal distribution. It
opposes the sample quantiles to those of the standard normal distribution
(the one with zero mean and unit variance) by plotting the following points
could:
.. math::
\\left(x^{(i)},
\\Phi^{-1}\\left[\\widehat{F}\\left(x^{(i)}\\right)\\right]
\\right), \\quad i = 1, \\ldots, m
where :math:`\\widehat{F}` denotes the empirical CDF of the sample and
:math:`\\Phi^{-1}` denotes the quantile function of the standard normal
distribution.
If the given sample fits to the tested normal distribution (with mean
:math:`\\mu` and standard deviation :math:`\\sigma`), then the points should be
close to be aligned (up to the uncertainty associated with the estimation
of the empirical probabilities) on the **Henry line** whose equation reads:
.. math::
y = \\frac{x - \\mu}{\\sigma}, \\quad x \\in \\Rset
The Henry plot is a special case of the more general QQ-plot.
See Also
--------
VisualTest_DrawQQplot, FittingTest_Kolmogorov
Examples
--------
>>> import openturns as ot
>>> from openturns.viewer import View
Generate a random sample from a Normal distribution:
>>> ot.RandomGenerator.SetSeed(0)
>>> distribution = ot.Normal(2., .5)
>>> sample = distribution.getSample(30)
Draw an Henry plot against a given (wrong) Normal distribution:
>>> henry_graph = ot.VisualTest_DrawHenryLine(sample, distribution)
>>> henry_graph.setTitle('Henry plot against given %s' % ot.Normal(3., 1.))
>>> View(henry_graph).show()
Draw an Henry plot against an inferred Normal distribution:
>>> henry_graph = ot.VisualTest_DrawHenryLine(sample)
>>> henry_graph.setTitle('Henry plot against inferred Normal distribution')
>>> View(henry_graph).show()
"""
return _stattests.VisualTest_DrawHenryLine(*args)
if _newclass:DrawHenryLine = staticmethod(DrawHenryLine)
__swig_getmethods__["DrawHenryLine"] = lambda x: DrawHenryLine
__swig_getmethods__["DrawClouds"] = lambda x: _stattests.VisualTest_DrawClouds
if _newclass:DrawClouds = staticmethod(_stattests.VisualTest_DrawClouds)
__swig_getmethods__["DrawLinearModel"] = lambda x: _stattests.VisualTest_DrawLinearModel
if _newclass:DrawLinearModel = staticmethod(_stattests.VisualTest_DrawLinearModel)
__swig_getmethods__["DrawLinearModelResidual"] = lambda x: _stattests.VisualTest_DrawLinearModelResidual
if _newclass:DrawLinearModelResidual = staticmethod(_stattests.VisualTest_DrawLinearModelResidual)
__swig_getmethods__["DrawCobWeb"] = lambda x: _stattests.VisualTest_DrawCobWeb
if _newclass:DrawCobWeb = staticmethod(_stattests.VisualTest_DrawCobWeb)
__swig_getmethods__["DrawKendallPlot"] = lambda x: _stattests.VisualTest_DrawKendallPlot
if _newclass:DrawKendallPlot = staticmethod(_stattests.VisualTest_DrawKendallPlot)
__swig_destroy__ = _stattests.delete_VisualTest
__del__ = lambda self : None;
VisualTest_swigregister = _stattests.VisualTest_swigregister
VisualTest_swigregister(VisualTest)
def VisualTest_DrawEmpiricalCDF(*args):
return _stattests.VisualTest_DrawEmpiricalCDF(*args)
VisualTest_DrawEmpiricalCDF = _stattests.VisualTest_DrawEmpiricalCDF
def VisualTest_DrawHistogram(*args):
return _stattests.VisualTest_DrawHistogram(*args)
VisualTest_DrawHistogram = _stattests.VisualTest_DrawHistogram
def VisualTest_DrawQQplot(*args):
"""
Draw a QQ-plot as an OpenTURNS :class:`~openturns.Graph`.
Parameters
----------
sample : :class:`~openturns.NumericalSample`
Tested sample.
tested_quantity : :class:`~openturns.Distribution` or :class:`~openturns.NumericalSample`
Tested model or sample.
n_points : int, if `tested_quantity` is a :class:`~openturns.NumericalSample`
The number of points that is used for interpolating the empirical CDF of
the two samples (with possibly different sizes).
It will default to `DistributionImplementation-DefaultPointNumber` from
the :class:`~openturns.ResourceMap`.
Notes
-----
The QQ-plot is a visual fitting test for univariate distributions. It
opposes the sample quantiles to those of the tested quantity (either a
distribution or another sample) by plotting the following points could:
.. math::
\\left(x^{(i)},
\\bullet\\left[\\widehat{F}\\left(x^{(i)}\\right)\\right]
\\right), \\quad i = 1, \\ldots, m
where :math:`\\widehat{F}` denotes the empirical CDF of the (first) tested
sample and :math:`\\bullet` denotes either the quantile function of the tested
distribution or the empirical quantile function of the second tested sample.
If the given sample fits to the tested distribution or sample, then the points
should be close to be aligned (up to the uncertainty associated with the
estimation of the empirical probabilities) with the **first bissector** whose
equation reads:
.. math::
y = x, \\quad x \\in \\Rset
Examples
--------
>>> import openturns as ot
>>> from openturns.viewer import View
Generate a random sample from a Normal distribution:
>>> ot.RandomGenerator.SetSeed(0)
>>> distribution = ot.Weibull(2., .5)
>>> sample = distribution.getSample(30)
>>> sample.setDescription(['Sample'])
Draw a QQ-plot against a given (inferred) distribution:
>>> tested_distribution = ot.WeibullFactory().build(sample)
>>> QQ_plot = ot.VisualTest_DrawQQplot(sample, tested_distribution)
>>> View(QQ_plot).show()
Draw a two-sample QQ-plot:
>>> another_sample = distribution.getSample(50)
>>> another_sample.setDescription(['Another sample'])
>>> QQ_plot = ot.VisualTest_DrawQQplot(sample, another_sample)
>>> View(QQ_plot).show()
"""
return _stattests.VisualTest_DrawQQplot(*args)
def VisualTest_DrawHenryLine(*args):
"""
Draw an Henry plot as an OpenTURNS :class:`~openturns.Graph`.
Parameters
----------
sample : :class:`~openturns.NumericalSample` or 2d array, list or tuple
Tested (univariate) sample.
normal_distribution : :class:`~openturns.Normal`, optional
Tested (univariate) normal distribution.
If not given, this will build a :class:`~openturns.Normal` distribution
from the given sample using the :class:`~openturns.NormalFactory`.
Notes
-----
The Henry plot is a visual fitting test for the normal distribution. It
opposes the sample quantiles to those of the standard normal distribution
(the one with zero mean and unit variance) by plotting the following points
could:
.. math::
\\left(x^{(i)},
\\Phi^{-1}\\left[\\widehat{F}\\left(x^{(i)}\\right)\\right]
\\right), \\quad i = 1, \\ldots, m
where :math:`\\widehat{F}` denotes the empirical CDF of the sample and
:math:`\\Phi^{-1}` denotes the quantile function of the standard normal
distribution.
If the given sample fits to the tested normal distribution (with mean
:math:`\\mu` and standard deviation :math:`\\sigma`), then the points should be
close to be aligned (up to the uncertainty associated with the estimation
of the empirical probabilities) on the **Henry line** whose equation reads:
.. math::
y = \\frac{x - \\mu}{\\sigma}, \\quad x \\in \\Rset
The Henry plot is a special case of the more general QQ-plot.
See Also
--------
VisualTest_DrawQQplot, FittingTest_Kolmogorov
Examples
--------
>>> import openturns as ot
>>> from openturns.viewer import View
Generate a random sample from a Normal distribution:
>>> ot.RandomGenerator.SetSeed(0)
>>> distribution = ot.Normal(2., .5)
>>> sample = distribution.getSample(30)
Draw an Henry plot against a given (wrong) Normal distribution:
>>> henry_graph = ot.VisualTest_DrawHenryLine(sample, distribution)
>>> henry_graph.setTitle('Henry plot against given %s' % ot.Normal(3., 1.))
>>> View(henry_graph).show()
Draw an Henry plot against an inferred Normal distribution:
>>> henry_graph = ot.VisualTest_DrawHenryLine(sample)
>>> henry_graph.setTitle('Henry plot against inferred Normal distribution')
>>> View(henry_graph).show()
"""
return _stattests.VisualTest_DrawHenryLine(*args)
def VisualTest_DrawClouds(*args):
return _stattests.VisualTest_DrawClouds(*args)
VisualTest_DrawClouds = _stattests.VisualTest_DrawClouds
def VisualTest_DrawLinearModel(*args):
return _stattests.VisualTest_DrawLinearModel(*args)
VisualTest_DrawLinearModel = _stattests.VisualTest_DrawLinearModel
def VisualTest_DrawLinearModelResidual(*args):
return _stattests.VisualTest_DrawLinearModelResidual(*args)
VisualTest_DrawLinearModelResidual = _stattests.VisualTest_DrawLinearModelResidual
def VisualTest_DrawCobWeb(*args):
return _stattests.VisualTest_DrawCobWeb(*args)
VisualTest_DrawCobWeb = _stattests.VisualTest_DrawCobWeb
def VisualTest_DrawKendallPlot(*args):
return _stattests.VisualTest_DrawKendallPlot(*args)
VisualTest_DrawKendallPlot = _stattests.VisualTest_DrawKendallPlot
class FittingTest(_object):
__swig_setmethods__ = {}
__setattr__ = lambda self, name, value: _swig_setattr(self, FittingTest, name, value)
__swig_getmethods__ = {}
__getattr__ = lambda self, name: _swig_getattr(self, FittingTest, name)
def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined")
__repr__ = _swig_repr
def BestModelBIC(*args):
"""
Select the best model according to the Bayesian information criterion.
Parameters
----------
sample : :class:`~openturns.NumericalSample` or 2d array, list or tuple
Tested sample.
models : list of :class:`~openturns.Distribution` or :class:`~openturns.DistributionFactory`
Tested distributions.
Returns
-------
best_model : :class:`~openturns.Distribution`
The best distribution for the sample according to Bayesian information
criterion.
This may raise a warning if the best model does not perform well.
See Also
--------
FittingTest_BIC
Examples
--------
>>> import openturns as ot
>>> ot.RandomGenerator.SetSeed(0)
>>> distribution = ot.Normal()
>>> sample = distribution.getSample(30)
>>> tested_distributions = [ot.ExponentialFactory(), ot.NormalFactory()]
>>> best_model = ot.FittingTest_BestModelBIC(sample, tested_distributions)
>>> print(best_model)
Normal(mu = -0.0944924, sigma = 0.989808)
"""
return _stattests.FittingTest_BestModelBIC(*args)
if _newclass:BestModelBIC = staticmethod(BestModelBIC)
__swig_getmethods__["BestModelBIC"] = lambda x: BestModelBIC
def BestModelKolmogorov(*args):
"""
Select the best model according to the Kolmogorov goodness-of-fit test.
Parameters
----------
sample : :class:`~openturns.NumericalSample` or 2d array, list or tuple
Tested sample.
models : list of :class:`~openturns.Distribution` or :class:`~openturns.DistributionFactory`
Tested distributions.
Returns
-------
best_model : :class:`~openturns.Distribution`
The best distribution for the sample according to Bayesian information
criterion.
This may raise a warning if the best model does not perform well.
best_result : :class:`~openturns.TestResult`
Best test result.
See Also
--------
FittingTest_Kolmogorov
Examples
--------
>>> import openturns as ot
>>> ot.RandomGenerator.SetSeed(0)
>>> distribution = ot.Normal()
>>> sample = distribution.getSample(30)
>>> tested_distributions = [ot.ExponentialFactory(), ot.NormalFactory()]
>>> best_model, best_result = ot.FittingTest_BestModelKolmogorov(sample, tested_distributions)
>>> print(best_model)
Normal(mu = -0.0944924, sigma = 0.989808)
"""
return _stattests.FittingTest_BestModelKolmogorov(*args)
if _newclass:BestModelKolmogorov = staticmethod(BestModelKolmogorov)
__swig_getmethods__["BestModelKolmogorov"] = lambda x: BestModelKolmogorov
def BestModelChiSquared(*args):
"""
Select the best model according to the :math:`\\chi^2` goodness-of-fit test.
Parameters
----------
sample : :class:`~openturns.NumericalSample` or 2d array, list or tuple
Tested sample.
models : list of :class:`~openturns.Distribution` or :class:`~openturns.DistributionFactory`
Tested distributions.
Returns
-------
best_model : :class:`~openturns.Distribution`
The best distribution for the sample according to Bayesian information
criterion.
This may raise a warning if the best model does not perform well.
best_result : :class:`~openturns.TestResult`
Best test result.
See Also
--------
FittingTest_ChiSquared
Examples
--------
>>> import openturns as ot
>>> ot.RandomGenerator.SetSeed(0)
>>> distribution = ot.Poisson()
>>> sample = distribution.getSample(30)
>>> tested_distributions = [ot.PoissonFactory(), ot.UserDefinedFactory()]
>>> best_model = ot.FittingTest_BestModelBIC(sample, tested_distributions)
>>> print(best_model)
Poisson(lambda = 1.06667)
"""
return _stattests.FittingTest_BestModelChiSquared(*args)
if _newclass:BestModelChiSquared = staticmethod(BestModelChiSquared)
__swig_getmethods__["BestModelChiSquared"] = lambda x: BestModelChiSquared
def BIC(*args):
"""
Compute the Bayesian information criterion.
Parameters
----------
sample : :class:`~openturns.NumericalSample` or 2d array, list or tuple
Tested sample.
model : :class:`~openturns.Distribution` or :class:`~openturns.DistributionFactory`
Tested distribution.
n_parameters : int, :math:`0 \\leq k`, optional
The number of parameters in the distribution that have been estimated from
the sample.
This parameter must not be provided if a :class:`~openturns.DistributionFactory`
was provided as the second argument (it will internally be set to the
number of parameters estimated by the :class:`~openturns.DistributionFactory`).
It can be specified if a :class:`~openturns.Distribution` was provided
as the second argument, but if it is not, it will be set equal to 0.
Returns
-------
BIC : float
The Bayesian information criterion.
Notes
-----
The Bayesian information criterion is defined as follows:
.. math::
{\\rm BIC} = \\frac{1}{m}
\\left(- 2 \\log L(\\vect{x}^{(i)}, i = 1, \\ldots, m)
+ k \\log m\\right)
where :math:`\\log L` denotes the log-likelihood of the sample with respect to
the given distribution, and :math:`k` denotes the number of estimated
parameters in the distribution.
This is used for model selection.
Examples
--------
>>> import openturns as ot
>>> ot.RandomGenerator.SetSeed(0)
>>> distribution = ot.Normal()
>>> sample = distribution.getSample(30)
>>> ot.FittingTest_BIC(sample, distribution)
2.7938693005063415
>>> ot.FittingTest_BIC(sample, distribution, 2)
3.0206157926171517
>>> ot.FittingTest_BIC(sample, ot.NormalFactory())
3.0108025506670955
"""
return _stattests.FittingTest_BIC(*args)
if _newclass:BIC = staticmethod(BIC)
__swig_getmethods__["BIC"] = lambda x: BIC
def Kolmogorov(*args):
"""
Perform a Kolmogorov goodness-of-fit test for 1-d continuous distributions.
Parameters
----------
sample : :class:`~openturns.NumericalSample` or 2d array, list or tuple
Tested sample.
model : :class:`~openturns.Distribution` or :class:`~openturns.DistributionFactory`
Tested distribution.
level : float, :math:`0 \\leq {\\rm level} \\leq 1`, optional
This is the value such that :math:`\\alpha = 1 - {\\rm level}` is the risk of
committing a Type I error, that is an incorrect rejection of a true
null hypothesis.
n_parameters : int, :math:`0 \\leq k`, optional
The number of parameters in the distribution that have been estimated from
the sample.
This parameter must not be provided if a :class:`~openturns.DistributionFactory`
was provided as the second argument (it will internally be set to the
number of parameters estimated by the :class:`~openturns.DistributionFactory`).
It can be specified if a :class:`~openturns.Distribution` was provided
as the second argument, but if it is not, it will be set equal to 0.
Returns
-------
test_result : :class:`~openturns.TestResult`
Test result.
Raises
------
TypeError : If the distribution is not continuous or if the sample is
multivariate.
Notes
-----
The present implementation of the Kolmogorov goodness-of-fit test is
two-sided. This uses an external C implementation of the Kolmogorov cumulative
distribution function by [Simard2010]_.
Examples
--------
>>> import openturns as ot
>>> ot.RandomGenerator.SetSeed(0)
>>> distribution = ot.Normal()
>>> sample = distribution.getSample(30)
>>> ot.FittingTest_Kolmogorov(sample, ot.NormalFactory(), .99)
class=TestResult name=Unnamed type=KolmogorovDistribution binaryQualityMeasure=true p-value threshold=0.01 p-value=0.846896 description=[Normal(mu = -0.0944924, sigma = 0.989808) vs sample Normal]
"""
return _stattests.FittingTest_Kolmogorov(*args)
if _newclass:Kolmogorov = staticmethod(Kolmogorov)
__swig_getmethods__["Kolmogorov"] = lambda x: Kolmogorov
def ChiSquared(*args):
"""
Perform a :math:`\\chi^2` goodness-of-fit test for 1-d discrete distributions.
Parameters
----------
sample : :class:`~openturns.NumericalSample` or 2d array, list or tuple
Tested sample.
model : :class:`~openturns.Distribution` or :class:`~openturns.DistributionFactory`
Tested distribution.
level : float, :math:`0 \\leq {\\rm level} \\leq 1`, optional
This the value such that :math:`\\alpha = 1 - {\\rm level}` is the risk of
committing a Type I error, that is an incorrect rejection of a true
null hypothesis.
n_parameters : int, :math:`0 \\leq k`, optional
The number of parameters in the distribution that have been estimated from
the sample.
This parameter must not be provided if a :class:`~openturns.DistributionFactory`
was provided as the second argument (it will internally be set to the
number of parameters estimated by the :class:`~openturns.DistributionFactory`).
It can be specified if a :class:`~openturns.Distribution` was provided
as the second argument, but if it is not, it will be set equal to 0.
Returns
-------
test_result : :class:`~openturns.TestResult`
Test result.
Raises
------
TypeError : If the distribution is not discrete or if the sample is
multivariate.
Notes
-----
This is an interface to the `chisq.test function from the
'stats' R package <http://stat.ethz.ch/R-manual/R-patched/library/stats/html/chisq.test.html>`_.
Examples
--------
>>> import openturns as ot
>>> ot.RandomGenerator.SetSeed(0)
>>> distribution = ot.Poisson()
>>> sample = distribution.getSample(30)
>>> ot.FittingTest_ChiSquared(sample, ot.PoissonFactory(), .99)
class=TestResult name=Unnamed type=ChiSquaredPoisson binaryQualityMeasure=true p-value threshold=0.01 p-value=0.606136 description=[]
"""
return _stattests.FittingTest_ChiSquared(*args)
if _newclass:ChiSquared = staticmethod(ChiSquared)
__swig_getmethods__["ChiSquared"] = lambda x: ChiSquared
__swig_destroy__ = _stattests.delete_FittingTest
__del__ = lambda self : None;
FittingTest_swigregister = _stattests.FittingTest_swigregister
FittingTest_swigregister(FittingTest)
def FittingTest_BestModelBIC(*args):
"""
Select the best model according to the Bayesian information criterion.
Parameters
----------
sample : :class:`~openturns.NumericalSample` or 2d array, list or tuple
Tested sample.
models : list of :class:`~openturns.Distribution` or :class:`~openturns.DistributionFactory`
Tested distributions.
Returns
-------
best_model : :class:`~openturns.Distribution`
The best distribution for the sample according to Bayesian information
criterion.
This may raise a warning if the best model does not perform well.
See Also
--------
FittingTest_BIC
Examples
--------
>>> import openturns as ot
>>> ot.RandomGenerator.SetSeed(0)
>>> distribution = ot.Normal()
>>> sample = distribution.getSample(30)
>>> tested_distributions = [ot.ExponentialFactory(), ot.NormalFactory()]
>>> best_model = ot.FittingTest_BestModelBIC(sample, tested_distributions)
>>> print(best_model)
Normal(mu = -0.0944924, sigma = 0.989808)
"""
return _stattests.FittingTest_BestModelBIC(*args)
def FittingTest_BestModelKolmogorov(*args):
"""
Select the best model according to the Kolmogorov goodness-of-fit test.
Parameters
----------
sample : :class:`~openturns.NumericalSample` or 2d array, list or tuple
Tested sample.
models : list of :class:`~openturns.Distribution` or :class:`~openturns.DistributionFactory`
Tested distributions.
Returns
-------
best_model : :class:`~openturns.Distribution`
The best distribution for the sample according to Bayesian information
criterion.
This may raise a warning if the best model does not perform well.
best_result : :class:`~openturns.TestResult`
Best test result.
See Also
--------
FittingTest_Kolmogorov
Examples
--------
>>> import openturns as ot
>>> ot.RandomGenerator.SetSeed(0)
>>> distribution = ot.Normal()
>>> sample = distribution.getSample(30)
>>> tested_distributions = [ot.ExponentialFactory(), ot.NormalFactory()]
>>> best_model, best_result = ot.FittingTest_BestModelKolmogorov(sample, tested_distributions)
>>> print(best_model)
Normal(mu = -0.0944924, sigma = 0.989808)
"""
return _stattests.FittingTest_BestModelKolmogorov(*args)
def FittingTest_BestModelChiSquared(*args):
"""
Select the best model according to the :math:`\\chi^2` goodness-of-fit test.
Parameters
----------
sample : :class:`~openturns.NumericalSample` or 2d array, list or tuple
Tested sample.
models : list of :class:`~openturns.Distribution` or :class:`~openturns.DistributionFactory`
Tested distributions.
Returns
-------
best_model : :class:`~openturns.Distribution`
The best distribution for the sample according to Bayesian information
criterion.
This may raise a warning if the best model does not perform well.
best_result : :class:`~openturns.TestResult`
Best test result.
See Also
--------
FittingTest_ChiSquared
Examples
--------
>>> import openturns as ot
>>> ot.RandomGenerator.SetSeed(0)
>>> distribution = ot.Poisson()
>>> sample = distribution.getSample(30)
>>> tested_distributions = [ot.PoissonFactory(), ot.UserDefinedFactory()]
>>> best_model = ot.FittingTest_BestModelBIC(sample, tested_distributions)
>>> print(best_model)
Poisson(lambda = 1.06667)
"""
return _stattests.FittingTest_BestModelChiSquared(*args)
def FittingTest_BIC(*args):
"""
Compute the Bayesian information criterion.
Parameters
----------
sample : :class:`~openturns.NumericalSample` or 2d array, list or tuple
Tested sample.
model : :class:`~openturns.Distribution` or :class:`~openturns.DistributionFactory`
Tested distribution.
n_parameters : int, :math:`0 \\leq k`, optional
The number of parameters in the distribution that have been estimated from
the sample.
This parameter must not be provided if a :class:`~openturns.DistributionFactory`
was provided as the second argument (it will internally be set to the
number of parameters estimated by the :class:`~openturns.DistributionFactory`).
It can be specified if a :class:`~openturns.Distribution` was provided
as the second argument, but if it is not, it will be set equal to 0.
Returns
-------
BIC : float
The Bayesian information criterion.
Notes
-----
The Bayesian information criterion is defined as follows:
.. math::
{\\rm BIC} = \\frac{1}{m}
\\left(- 2 \\log L(\\vect{x}^{(i)}, i = 1, \\ldots, m)
+ k \\log m\\right)
where :math:`\\log L` denotes the log-likelihood of the sample with respect to
the given distribution, and :math:`k` denotes the number of estimated
parameters in the distribution.
This is used for model selection.
Examples
--------
>>> import openturns as ot
>>> ot.RandomGenerator.SetSeed(0)
>>> distribution = ot.Normal()
>>> sample = distribution.getSample(30)
>>> ot.FittingTest_BIC(sample, distribution)
2.7938693005063415
>>> ot.FittingTest_BIC(sample, distribution, 2)
3.0206157926171517
>>> ot.FittingTest_BIC(sample, ot.NormalFactory())
3.0108025506670955
"""
return _stattests.FittingTest_BIC(*args)
def FittingTest_Kolmogorov(*args):
"""
Perform a Kolmogorov goodness-of-fit test for 1-d continuous distributions.
Parameters
----------
sample : :class:`~openturns.NumericalSample` or 2d array, list or tuple
Tested sample.
model : :class:`~openturns.Distribution` or :class:`~openturns.DistributionFactory`
Tested distribution.
level : float, :math:`0 \\leq {\\rm level} \\leq 1`, optional
This is the value such that :math:`\\alpha = 1 - {\\rm level}` is the risk of
committing a Type I error, that is an incorrect rejection of a true
null hypothesis.
n_parameters : int, :math:`0 \\leq k`, optional
The number of parameters in the distribution that have been estimated from
the sample.
This parameter must not be provided if a :class:`~openturns.DistributionFactory`
was provided as the second argument (it will internally be set to the
number of parameters estimated by the :class:`~openturns.DistributionFactory`).
It can be specified if a :class:`~openturns.Distribution` was provided
as the second argument, but if it is not, it will be set equal to 0.
Returns
-------
test_result : :class:`~openturns.TestResult`
Test result.
Raises
------
TypeError : If the distribution is not continuous or if the sample is
multivariate.
Notes
-----
The present implementation of the Kolmogorov goodness-of-fit test is
two-sided. This uses an external C implementation of the Kolmogorov cumulative
distribution function by [Simard2010]_.
Examples
--------
>>> import openturns as ot
>>> ot.RandomGenerator.SetSeed(0)
>>> distribution = ot.Normal()
>>> sample = distribution.getSample(30)
>>> ot.FittingTest_Kolmogorov(sample, ot.NormalFactory(), .99)
class=TestResult name=Unnamed type=KolmogorovDistribution binaryQualityMeasure=true p-value threshold=0.01 p-value=0.846896 description=[Normal(mu = -0.0944924, sigma = 0.989808) vs sample Normal]
"""
return _stattests.FittingTest_Kolmogorov(*args)
def FittingTest_ChiSquared(*args):
"""
Perform a :math:`\\chi^2` goodness-of-fit test for 1-d discrete distributions.
Parameters
----------
sample : :class:`~openturns.NumericalSample` or 2d array, list or tuple
Tested sample.
model : :class:`~openturns.Distribution` or :class:`~openturns.DistributionFactory`
Tested distribution.
level : float, :math:`0 \\leq {\\rm level} \\leq 1`, optional
This the value such that :math:`\\alpha = 1 - {\\rm level}` is the risk of
committing a Type I error, that is an incorrect rejection of a true
null hypothesis.
n_parameters : int, :math:`0 \\leq k`, optional
The number of parameters in the distribution that have been estimated from
the sample.
This parameter must not be provided if a :class:`~openturns.DistributionFactory`
was provided as the second argument (it will internally be set to the
number of parameters estimated by the :class:`~openturns.DistributionFactory`).
It can be specified if a :class:`~openturns.Distribution` was provided
as the second argument, but if it is not, it will be set equal to 0.
Returns
-------
test_result : :class:`~openturns.TestResult`
Test result.
Raises
------
TypeError : If the distribution is not discrete or if the sample is
multivariate.
Notes
-----
This is an interface to the `chisq.test function from the
'stats' R package <http://stat.ethz.ch/R-manual/R-patched/library/stats/html/chisq.test.html>`_.
Examples
--------
>>> import openturns as ot
>>> ot.RandomGenerator.SetSeed(0)
>>> distribution = ot.Poisson()
>>> sample = distribution.getSample(30)
>>> ot.FittingTest_ChiSquared(sample, ot.PoissonFactory(), .99)
class=TestResult name=Unnamed type=ChiSquaredPoisson binaryQualityMeasure=true p-value threshold=0.01 p-value=0.606136 description=[]
"""
return _stattests.FittingTest_ChiSquared(*args)
class HypothesisTest(_object):
__swig_setmethods__ = {}
__setattr__ = lambda self, name, value: _swig_setattr(self, HypothesisTest, name, value)
__swig_getmethods__ = {}
__getattr__ = lambda self, name: _swig_getattr(self, HypothesisTest, name)
def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined")
__repr__ = _swig_repr
__swig_getmethods__["ChiSquared"] = lambda x: _stattests.HypothesisTest_ChiSquared
if _newclass:ChiSquared = staticmethod(_stattests.HypothesisTest_ChiSquared)
__swig_getmethods__["Pearson"] = lambda x: _stattests.HypothesisTest_Pearson
if _newclass:Pearson = staticmethod(_stattests.HypothesisTest_Pearson)
__swig_getmethods__["Smirnov"] = lambda x: _stattests.HypothesisTest_Smirnov
if _newclass:Smirnov = staticmethod(_stattests.HypothesisTest_Smirnov)
__swig_getmethods__["Spearman"] = lambda x: _stattests.HypothesisTest_Spearman
if _newclass:Spearman = staticmethod(_stattests.HypothesisTest_Spearman)
__swig_getmethods__["PartialPearson"] = lambda x: _stattests.HypothesisTest_PartialPearson
if _newclass:PartialPearson = staticmethod(_stattests.HypothesisTest_PartialPearson)
__swig_getmethods__["PartialRegression"] = lambda x: _stattests.HypothesisTest_PartialRegression
if _newclass:PartialRegression = staticmethod(_stattests.HypothesisTest_PartialRegression)
__swig_getmethods__["PartialSpearman"] = lambda x: _stattests.HypothesisTest_PartialSpearman
if _newclass:PartialSpearman = staticmethod(_stattests.HypothesisTest_PartialSpearman)
__swig_getmethods__["FullPearson"] = lambda x: _stattests.HypothesisTest_FullPearson
if _newclass:FullPearson = staticmethod(_stattests.HypothesisTest_FullPearson)
__swig_getmethods__["FullRegression"] = lambda x: _stattests.HypothesisTest_FullRegression
if _newclass:FullRegression = staticmethod(_stattests.HypothesisTest_FullRegression)
__swig_getmethods__["FullSpearman"] = lambda x: _stattests.HypothesisTest_FullSpearman
if _newclass:FullSpearman = staticmethod(_stattests.HypothesisTest_FullSpearman)
__swig_destroy__ = _stattests.delete_HypothesisTest
__del__ = lambda self : None;
HypothesisTest_swigregister = _stattests.HypothesisTest_swigregister
HypothesisTest_swigregister(HypothesisTest)
def HypothesisTest_ChiSquared(*args):
return _stattests.HypothesisTest_ChiSquared(*args)
HypothesisTest_ChiSquared = _stattests.HypothesisTest_ChiSquared
def HypothesisTest_Pearson(*args):
return _stattests.HypothesisTest_Pearson(*args)
HypothesisTest_Pearson = _stattests.HypothesisTest_Pearson
def HypothesisTest_Smirnov(*args):
return _stattests.HypothesisTest_Smirnov(*args)
HypothesisTest_Smirnov = _stattests.HypothesisTest_Smirnov
def HypothesisTest_Spearman(*args):
return _stattests.HypothesisTest_Spearman(*args)
HypothesisTest_Spearman = _stattests.HypothesisTest_Spearman
def HypothesisTest_PartialPearson(*args):
return _stattests.HypothesisTest_PartialPearson(*args)
HypothesisTest_PartialPearson = _stattests.HypothesisTest_PartialPearson
def HypothesisTest_PartialRegression(*args):
return _stattests.HypothesisTest_PartialRegression(*args)
HypothesisTest_PartialRegression = _stattests.HypothesisTest_PartialRegression
def HypothesisTest_PartialSpearman(*args):
return _stattests.HypothesisTest_PartialSpearman(*args)
HypothesisTest_PartialSpearman = _stattests.HypothesisTest_PartialSpearman
def HypothesisTest_FullPearson(*args):
return _stattests.HypothesisTest_FullPearson(*args)
HypothesisTest_FullPearson = _stattests.HypothesisTest_FullPearson
def HypothesisTest_FullRegression(*args):
return _stattests.HypothesisTest_FullRegression(*args)
HypothesisTest_FullRegression = _stattests.HypothesisTest_FullRegression
def HypothesisTest_FullSpearman(*args):
return _stattests.HypothesisTest_FullSpearman(*args)
HypothesisTest_FullSpearman = _stattests.HypothesisTest_FullSpearman
class LinearModelTest(_object):
__swig_setmethods__ = {}
__setattr__ = lambda self, name, value: _swig_setattr(self, LinearModelTest, name, value)
__swig_getmethods__ = {}
__getattr__ = lambda self, name: _swig_getattr(self, LinearModelTest, name)
def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined")
__repr__ = _swig_repr
__swig_getmethods__["LinearModelAdjustedRSquared"] = lambda x: _stattests.LinearModelTest_LinearModelAdjustedRSquared
if _newclass:LinearModelAdjustedRSquared = staticmethod(_stattests.LinearModelTest_LinearModelAdjustedRSquared)
__swig_getmethods__["LinearModelFisher"] = lambda x: _stattests.LinearModelTest_LinearModelFisher
if _newclass:LinearModelFisher = staticmethod(_stattests.LinearModelTest_LinearModelFisher)
__swig_getmethods__["LinearModelResidualMean"] = lambda x: _stattests.LinearModelTest_LinearModelResidualMean
if _newclass:LinearModelResidualMean = staticmethod(_stattests.LinearModelTest_LinearModelResidualMean)
__swig_getmethods__["LinearModelRSquared"] = lambda x: _stattests.LinearModelTest_LinearModelRSquared
if _newclass:LinearModelRSquared = staticmethod(_stattests.LinearModelTest_LinearModelRSquared)
__swig_destroy__ = _stattests.delete_LinearModelTest
__del__ = lambda self : None;
LinearModelTest_swigregister = _stattests.LinearModelTest_swigregister
LinearModelTest_swigregister(LinearModelTest)
def LinearModelTest_LinearModelAdjustedRSquared(*args):
return _stattests.LinearModelTest_LinearModelAdjustedRSquared(*args)
LinearModelTest_LinearModelAdjustedRSquared = _stattests.LinearModelTest_LinearModelAdjustedRSquared
def LinearModelTest_LinearModelFisher(*args):
return _stattests.LinearModelTest_LinearModelFisher(*args)
LinearModelTest_LinearModelFisher = _stattests.LinearModelTest_LinearModelFisher
def LinearModelTest_LinearModelResidualMean(*args):
return _stattests.LinearModelTest_LinearModelResidualMean(*args)
LinearModelTest_LinearModelResidualMean = _stattests.LinearModelTest_LinearModelResidualMean
def LinearModelTest_LinearModelRSquared(*args):
return _stattests.LinearModelTest_LinearModelRSquared(*args)
LinearModelTest_LinearModelRSquared = _stattests.LinearModelTest_LinearModelRSquared
class NormalityTest(_object):
__swig_setmethods__ = {}
__setattr__ = lambda self, name, value: _swig_setattr(self, NormalityTest, name, value)
__swig_getmethods__ = {}
__getattr__ = lambda self, name: _swig_getattr(self, NormalityTest, name)
def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined")
__repr__ = _swig_repr
__swig_getmethods__["AndersonDarlingNormal"] = lambda x: _stattests.NormalityTest_AndersonDarlingNormal
if _newclass:AndersonDarlingNormal = staticmethod(_stattests.NormalityTest_AndersonDarlingNormal)
__swig_getmethods__["CramerVonMisesNormal"] = lambda x: _stattests.NormalityTest_CramerVonMisesNormal
if _newclass:CramerVonMisesNormal = staticmethod(_stattests.NormalityTest_CramerVonMisesNormal)
__swig_destroy__ = _stattests.delete_NormalityTest
__del__ = lambda self : None;
NormalityTest_swigregister = _stattests.NormalityTest_swigregister
NormalityTest_swigregister(NormalityTest)
def NormalityTest_AndersonDarlingNormal(*args):
return _stattests.NormalityTest_AndersonDarlingNormal(*args)
NormalityTest_AndersonDarlingNormal = _stattests.NormalityTest_AndersonDarlingNormal
def NormalityTest_CramerVonMisesNormal(*args):
return _stattests.NormalityTest_CramerVonMisesNormal(*args)
NormalityTest_CramerVonMisesNormal = _stattests.NormalityTest_CramerVonMisesNormal
class DickeyFullerTest(openturns.common.PersistentObject):
__swig_setmethods__ = {}
for _s in [openturns.common.PersistentObject]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
__setattr__ = lambda self, name, value: _swig_setattr(self, DickeyFullerTest, name, value)
__swig_getmethods__ = {}
for _s in [openturns.common.PersistentObject]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
__getattr__ = lambda self, name: _swig_getattr(self, DickeyFullerTest, name)
__repr__ = _swig_repr
def getClassName(self):
"""
Accessor to the object's name.
Returns
-------
class_name : str
The object class name (`object.__class__.__name__`).
"""
return _stattests.DickeyFullerTest_getClassName(self)
def testUnitRootInDriftAndLinearTrendModel(self, level=0.95): return _stattests.DickeyFullerTest_testUnitRootInDriftAndLinearTrendModel(self, level)
def testUnitRootInDriftModel(self, level=0.95): return _stattests.DickeyFullerTest_testUnitRootInDriftModel(self, level)
def testUnitRootInAR1Model(self, level=0.95): return _stattests.DickeyFullerTest_testUnitRootInAR1Model(self, level)
def runStrategy(self, level=0.95): return _stattests.DickeyFullerTest_runStrategy(self, level)
def testUnitRootAndNoLinearTrendInDriftAndLinearTrendModel(self, level=0.95): return _stattests.DickeyFullerTest_testUnitRootAndNoLinearTrendInDriftAndLinearTrendModel(self, level)
def testNoUnitRootAndNoLinearTrendInDriftAndLinearTrendModel(self, level=0.95): return _stattests.DickeyFullerTest_testNoUnitRootAndNoLinearTrendInDriftAndLinearTrendModel(self, level)
def testUnitRootAndNoDriftInDriftModel(self, level=0.95): return _stattests.DickeyFullerTest_testUnitRootAndNoDriftInDriftModel(self, level)
def testNoUnitRootAndNoDriftInDriftModel(self, level=0.95): return _stattests.DickeyFullerTest_testNoUnitRootAndNoDriftInDriftModel(self, level)
def setVerbose(self, *args): return _stattests.DickeyFullerTest_setVerbose(self, *args)
def getVerbose(self): return _stattests.DickeyFullerTest_getVerbose(self)
def __init__(self, *args):
this = _stattests.new_DickeyFullerTest(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _stattests.delete_DickeyFullerTest
__del__ = lambda self : None;
DickeyFullerTest_swigregister = _stattests.DickeyFullerTest_swigregister
DickeyFullerTest_swigregister(DickeyFullerTest)
# This file is compatible with both classic and new-style classes.
|