/usr/lib/python2.7/dist-packages/openturns/uncertainty.py is in python-openturns 1.5-7build2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 | # This file was automatically generated by SWIG (http://www.swig.org).
# Version 2.0.12
#
# Do not make changes to this file unless you know what you are doing--modify
# the SWIG interface file instead.
"""
Probabilistic meta-package.
"""
from sys import version_info
if version_info >= (2,6,0):
def swig_import_helper():
from os.path import dirname
import imp
fp = None
try:
fp, pathname, description = imp.find_module('_uncertainty', [dirname(__file__)])
except ImportError:
import _uncertainty
return _uncertainty
if fp is not None:
try:
_mod = imp.load_module('_uncertainty', fp, pathname, description)
finally:
fp.close()
return _mod
_uncertainty = swig_import_helper()
del swig_import_helper
else:
import _uncertainty
del version_info
try:
_swig_property = property
except NameError:
pass # Python < 2.2 doesn't have 'property'.
def _swig_setattr_nondynamic(self,class_type,name,value,static=1):
if (name == "thisown"): return self.this.own(value)
if (name == "this"):
if type(value).__name__ == 'SwigPyObject':
self.__dict__[name] = value
return
method = class_type.__swig_setmethods__.get(name,None)
if method: return method(self,value)
if (not static):
self.__dict__[name] = value
else:
raise AttributeError("You cannot add attributes to %s" % self)
def _swig_setattr(self,class_type,name,value):
return _swig_setattr_nondynamic(self,class_type,name,value,0)
def _swig_getattr(self,class_type,name):
if (name == "thisown"): return self.this.own()
method = class_type.__swig_getmethods__.get(name,None)
if method: return method(self)
raise AttributeError(name)
def _swig_repr(self):
try: strthis = "proxy of " + self.this.__repr__()
except: strthis = ""
return "<%s.%s; %s >" % (self.__class__.__module__, self.__class__.__name__, strthis,)
try:
_object = object
_newclass = 1
except AttributeError:
class _object : pass
_newclass = 0
class SwigPyIterator(_object):
__swig_setmethods__ = {}
__setattr__ = lambda self, name, value: _swig_setattr(self, SwigPyIterator, name, value)
__swig_getmethods__ = {}
__getattr__ = lambda self, name: _swig_getattr(self, SwigPyIterator, name)
def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined - class is abstract")
__repr__ = _swig_repr
__swig_destroy__ = _uncertainty.delete_SwigPyIterator
__del__ = lambda self : None;
def value(self): return _uncertainty.SwigPyIterator_value(self)
def incr(self, n=1): return _uncertainty.SwigPyIterator_incr(self, n)
def decr(self, n=1): return _uncertainty.SwigPyIterator_decr(self, n)
def distance(self, *args): return _uncertainty.SwigPyIterator_distance(self, *args)
def equal(self, *args): return _uncertainty.SwigPyIterator_equal(self, *args)
def copy(self): return _uncertainty.SwigPyIterator_copy(self)
def next(self): return _uncertainty.SwigPyIterator_next(self)
def __next__(self): return _uncertainty.SwigPyIterator___next__(self)
def previous(self): return _uncertainty.SwigPyIterator_previous(self)
def advance(self, *args): return _uncertainty.SwigPyIterator_advance(self, *args)
def __eq__(self, *args): return _uncertainty.SwigPyIterator___eq__(self, *args)
def __ne__(self, *args): return _uncertainty.SwigPyIterator___ne__(self, *args)
def __iadd__(self, *args): return _uncertainty.SwigPyIterator___iadd__(self, *args)
def __isub__(self, *args): return _uncertainty.SwigPyIterator___isub__(self, *args)
def __add__(self, *args): return _uncertainty.SwigPyIterator___add__(self, *args)
def __sub__(self, *args): return _uncertainty.SwigPyIterator___sub__(self, *args)
def __iter__(self): return self
SwigPyIterator_swigregister = _uncertainty.SwigPyIterator_swigregister
SwigPyIterator_swigregister(SwigPyIterator)
GCC_VERSION = _uncertainty.GCC_VERSION
class TestFailed:
"""TestFailed is used to raise an uniform exception in tests."""
__type = "TestFailed"
def __init__(self, reason=""):
self.reason = reason
def type(self):
return TestFailed.__type
def what(self):
return self.reason
def __str__(self):
return TestFailed.__type + ": " + self.reason
def __lshift__(self, ch):
self.reason += ch
return self
import openturns.base
import openturns.common
import openturns.wrapper
import openturns.typ
import openturns.statistics
import openturns.graph
import openturns.func
import openturns.geom
import openturns.diff
import openturns.optim
import openturns.solver
import openturns.algo
import openturns.experiment
import openturns.model_copula
import openturns.randomvector
import openturns.dist_bundle1
import openturns.dist_bundle2
import openturns.weightedexperiment
import openturns.classification
import openturns.orthogonalbasis
import openturns.metamodel
class QuadraticCumul(openturns.common.PersistentObject):
__swig_setmethods__ = {}
for _s in [openturns.common.PersistentObject]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
__setattr__ = lambda self, name, value: _swig_setattr(self, QuadraticCumul, name, value)
__swig_getmethods__ = {}
for _s in [openturns.common.PersistentObject]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
__getattr__ = lambda self, name: _swig_getattr(self, QuadraticCumul, name)
def getClassName(self):
"""
Accessor to the object's name.
Returns
-------
class_name : str
The object class name (`object.__class__.__name__`).
"""
return _uncertainty.QuadraticCumul_getClassName(self)
def __repr__(self): return _uncertainty.QuadraticCumul___repr__(self)
def getLimitStateVariable(self): return _uncertainty.QuadraticCumul_getLimitStateVariable(self)
def getMeanFirstOrder(self): return _uncertainty.QuadraticCumul_getMeanFirstOrder(self)
def getMeanSecondOrder(self): return _uncertainty.QuadraticCumul_getMeanSecondOrder(self)
def getCovariance(self): return _uncertainty.QuadraticCumul_getCovariance(self)
def getValueAtMean(self): return _uncertainty.QuadraticCumul_getValueAtMean(self)
def getGradientAtMean(self): return _uncertainty.QuadraticCumul_getGradientAtMean(self)
def getHessianAtMean(self): return _uncertainty.QuadraticCumul_getHessianAtMean(self)
def getImportanceFactors(self): return _uncertainty.QuadraticCumul_getImportanceFactors(self)
def drawImportanceFactors(self): return _uncertainty.QuadraticCumul_drawImportanceFactors(self)
def __init__(self, *args):
this = _uncertainty.new_QuadraticCumul(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _uncertainty.delete_QuadraticCumul
__del__ = lambda self : None;
QuadraticCumul_swigregister = _uncertainty.QuadraticCumul_swigregister
QuadraticCumul_swigregister(QuadraticCumul)
class ANCOVA(_object):
"""
ANalysis of COVAriance method (ANCOVA).
Available constructor:
ANCOVA(*functionalChaosResult, correlatedInput*)
Parameters
----------
functionalChaosResult : :class:`~openturns.FunctionalChaosResult`
Functional chaos result approximating the model response with
uncorrelated inputs.
correlatedInput : 2D float sequence
Correlated inputs used to compute the real values of the output.
Its dimension must be equal to the number of inputs of the model.
Notes
-----
ANCOVA, a variance-based method described in [Caniou2012]_, is a generalization
of the ANOVA (ANalysis Of VAriance) decomposition for models with correlated
input parameters.
Let us consider a model :math:`Y = h(\\vect{X})` without making any hypothesis
on the dependence structure of :math:`\\vect{X} = \\{X^1, \\ldots, X^{n_X} \\}`, a
n_X-dimensional random vector. The covariance decomposition requires a functional
decomposition of the model. Thus the model response :math:`Y` is expanded as a
sum of functions of increasing dimension as follows:
.. math::
:label: model
h(\\vect{X}) = h_0 + \\sum_{u\\subseteq\\{1,\\dots,n_X\\}} h_u(X_u)
:math:`h_0` is the mean of :math:`Y`. Each function :math:`h_u` represents,
for any non empty set :math:`u\\subseteq\\{1, \\dots, n_X\\}`, the combined
contribution of the variables :math:`X_u` to :math:`Y`.
Using the properties of the covariance, the variance of :math:`Y` can be
decomposed into a variance part and a covariance part as follows:
.. math::
Var[Y]&= Cov\\left[h_0 + \\sum_{u\\subseteq\\{1,\\dots,n_X\\}} h_u(X_u), h_0 + \\sum_{u\\subseteq\\{1,\\dots,n_X\\}} h_u(X_u)\\right] \\\\
&= \\sum_{u\\subseteq\\{1,\\dots,n_X\\}} \\left[Var[h_u(X_u)] + Cov[h_u(X_u), \\sum_{v\\subseteq\\{1,\\dots,n_X\\}, v\\cap u=\\varnothing} h_v(X_v)]\\right]
This variance formula enables to define each total part of variance of
:math:`Y` due to :math:`X_u`, :math:`S_u`, as the sum of a *physical*
(or *uncorrelated*) part and a *correlated* part such as:
.. math::
S_u = \\frac{Cov[Y, h_u(X_u)]} {Var[Y]} = S_u^U + S_u^C
where :math:`S_u^U` is the uncorrelated part of variance of Y due to :math:`X_u`:
.. math::
S_u^U = \\frac{Var[h_u(X_u)]} {Var[Y]}
and :math:`S_u^C` is the contribution of the correlation of :math:`X_u` with the
other parameters:
.. math::
S_u^C = \\frac{Cov\\left[h_u(X_u), \\displaystyle \\sum_{v\\subseteq\\{1,\\dots,n_X\\}, v\\cap u=\\varnothing} h_v(X_v)\\right]}
{Var[Y]}
As the computational cost of the indices with the numerical model :math:`h`
can be very high, [Caniou2012]_ suggests to approximate the model response with
a polynomial chaos expansion:
.. math::
Y \\simeq \\hat{h} = \\sum_{j=0}^{P-1} \\alpha_j \\Psi_j(x)
However, for the sake of computational simplicity, the latter is constructed
considering *independent* components :math:`\\{X^1,\\dots,X^{n_X}\\}`. Thus the
chaos basis is not orthogonal with respect to the correlated inputs under
consideration, and it is only used as a metamodel to generate approximated
evaluations of the model response and its summands :eq:`model`.
The next step consists in identifying the component functions. For instance, for
:math:`u = \\{1\\}`:
.. math::
h_1(X_1) = \\sum_{\\alpha | \\alpha_1 \\neq 0, \\alpha_{i \\neq 1} = 0} y_{\\alpha} \\Psi_{\\alpha}(\\vect{X})
where :math:`\\alpha` is a set of degrees associated to the :math:`n_X` univariate
polynomial :math:`\\psi_i^{\\alpha_i}(X_i)`.
Then the model response :math:`Y` is evaluated using a sample
:math:`X=\\{x_k, k=1,\\dots,N\\}` of the correlated joint distribution. Finally,
the several indices are computed using the model response and its component
functions that have been identified on the polynomial chaos.
Examples
--------
>>> import openturns as ot
>>> ot.RandomGenerator.SetSeed(0)
>>> # Model and distribution definition
>>> model = ot.NumericalMathFunction(['X1','X2'], ['Y'], ['4.*X1 + 5.*X2'])
>>> distribution = ot.ComposedDistribution([ot.Normal()] * 2)
>>> S = ot.CorrelationMatrix(2)
>>> S[1, 0] = 0.3
>>> R = ot.NormalCopula().GetCorrelationFromSpearmanCorrelation(S)
>>> CorrelatedInputDistribution = ot.ComposedDistribution([ot.Normal()] * 2, ot.NormalCopula(R))
>>> sample = CorrelatedInputDistribution.getSample(2000)
>>> # Functional chaos computation
>>> productBasis = ot.OrthogonalProductPolynomialFactory([ot.HermiteFactory()] * 2, ot.EnumerateFunction(2))
>>> adaptiveStrategy = ot.FixedStrategy(productBasis, 15)
>>> projectionStrategy = ot.LeastSquaresStrategy(ot.MonteCarloExperiment(250))
>>> algo = ot.FunctionalChaosAlgorithm(model, distribution, adaptiveStrategy, projectionStrategy)
>>> algo.run()
>>> ancovaResult = ot.ANCOVA(algo.getResult(), sample)
>>> indices = ancovaResult.getIndices()
>>> print(indices)
[0.411077,0.588923]
>>> uncorrelatedIndices = ancovaResult.getUncorrelatedIndices()
>>> print(uncorrelatedIndices)
[0.29868,0.476527]
>>> # Get indices measuring the correlated effects
>>> print(indices - uncorrelatedIndices)
[0.112397,0.112397]
"""
__swig_setmethods__ = {}
__setattr__ = lambda self, name, value: _swig_setattr(self, ANCOVA, name, value)
__swig_getmethods__ = {}
__getattr__ = lambda self, name: _swig_getattr(self, ANCOVA, name)
__repr__ = _swig_repr
def getUncorrelatedIndices(self, marginalIndex=0):
"""
Accessor to the ANCOVA indices measuring uncorrelated effects.
Parameters
----------
marginalIndex : int, :math:`0 \\leq i < n`, optional
Index of the model's marginal used to estimate the indices.
By default, marginalIndex is equal to 0.
Returns
-------
indices : float sequence
List of the ANCOVA indices measuring uncorrelated effects of the inputs.
The effects of the correlation are represented by the indices resulting
from the subtraction of the :meth:`getIndices` and
:meth:`getUncorrelatedIndices` lists.
"""
return _uncertainty.ANCOVA_getUncorrelatedIndices(self, marginalIndex)
def getIndices(self, marginalIndex=0):
"""
Accessor to the ANCOVA indices.
Parameters
----------
marginalIndex : int, :math:`0 \\leq i < n`, optional
Index of the model's marginal used to estimate the indices.
By default, marginalIndex is equal to 0.
Returns
-------
indices : float sequence
List of the ANCOVA indices measuring the contribution of the
input variables to the variance of the model. These indices are made up
of a *physical* part and a *correlated* part. The first one is obtained
thanks to :meth:`getUncorrelatedIndices`.
The effects of the correlation are represented by the indices resulting
from the subtraction of the :meth:`getIndices` and
:meth:`getUncorrelatedIndices` lists.
"""
return _uncertainty.ANCOVA_getIndices(self, marginalIndex)
def __init__(self, *args):
this = _uncertainty.new_ANCOVA(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _uncertainty.delete_ANCOVA
__del__ = lambda self : None;
ANCOVA_swigregister = _uncertainty.ANCOVA_swigregister
ANCOVA_swigregister(ANCOVA)
class FAST(_object):
"""
Fourier Amplitude Sensitivity Testing (FAST).
Available constructor:
FAST(*model, distribution, N, Nr=1, M=4*)
Parameters
----------
model : :class:`~openturns.NumericalMathFunction`
Definition of the model to analyse.
distribution : :class:`~openturns.Distribution`
Contains the distributions of each model's input.
Its dimension must be equal to the number of inputs.
N : int, :math:`N > Nr`
Size of the sample from which the Fourier series are calculated.
It represents the length of the discretization of the s-space.
Nr : int, :math:`Nr \\geq 1`
Number of resamplings. The extended FAST method involves a part of
randomness in the computation of the indices. So it can be asked to
realize the procedure *Nr* times and then to calculate the
arithmetic means of the results over the *Nr* estimates.
M : int, :math:`0 < M < N`
Interference factor usually equal to 4 or higher.
It corresponds to the truncation level of the Fourier series, i.e. the
number of harmonics that are retained in the decomposition.
Notes
-----
FAST is a sensitivity analysis method which is based upon the ANOVA
decomposition of the variance of the model response :math:`y = f(\\vect{X})`,
the latter being represented by its Fourier expansion.
:math:`\\vect{X}=\\{X^1,\\dots,X^{n_X}\\}` is an input random vector of :math:`n_X`
independent components.
OpenTURNS implements the extended FAST method consisting in computing
alternately the first order and the total-effect indices of each input.
This approach, widely described in the paper by [Saltelli1999]_, relies upon a
Fourier decomposition of the model response. Its key idea is to recast this
representation as a function of a *scalar* parameter :math:`s`, by defining
parametric curves :math:`s \\mapsto x_i(s), i=1, \\dots, n_X` exploring the
support of the input random vector :math:`\\vect{X}`.
Then the Fourier expansion of the model response is:
.. math::
f(s) = \\sum_{k \\in \\Zset^N} A_k cos(ks) + B_k sin(ks)
where :math:`A_k` and :math:`B_k` are Fourier coefficients whose estimates are:
.. math::
\\hat{A}_k &= \\frac{1}{N} \\sum_{j=1}^N f(x_j^1,\\dots,x_j^{N_X}) cos\\left(\\frac{2k\\pi (j-1)}{N} \\right) \\quad , \\quad -\\frac{N}{2} \\leq k \\leq \\frac{N}{2} \\\\
\\hat{B}_k &= \\frac{1}{N} \\sum_{j=1}^N f(x_j^1,\\dots,x_j^{N_X}) sin\\left(\\frac{2k\\pi (j-1)}{N} \\right) \\quad , \\quad -\\frac{N}{2} \\leq k \\leq \\frac{N}{2}
The first order indices are estimated by:
.. math::
\\hat{S}_i = \\frac{\\hat{D}_i}{\\hat{D}}
= \\frac{\\sum_{p=1}^M(\\hat{A}_{p\\omega_i}^2 + \\hat{B}_{p\\omega_i}^2)^2}
{\\sum_{n=1}^{(N-1)/2}(\\hat{A}_n^2 + \\hat{B}_n^2)^2}
and the total order indices by:
.. math::
\\hat{T}_i = 1 - \\frac{\\hat{D}_{-i}}{\\hat{D}}
= 1 - \\frac{\\sum_{k=1}^{\\omega_i/2}(\\hat{A}_k^2 + \\hat{B}_k^2)^2}
{\\sum_{n=1}^{(N-1)/2}(\\hat{A}_n^2 + \\hat{B}_n^2)^2}
where :math:`\\hat{D}` is the total variance, :math:`\\hat{D}_i` the portion
of :math:`D` arising from the uncertainty of the :math:`i^{th}` input and
:math:`\\hat{D}_{-i}` is the part of the variance due to all the inputs
except the :math:`i^{th}` input.
:math:`N` is the size of the sample using to compute the Fourier series and
:math:`M` is the interference factor. *Saltelli et al.* (1999) recommanded to
set :math:`M` to a value in the range :math:`[4, 6]`.
:math:`\\{\\omega_i\\}, \\forall i=1, \\dots, n_X` is a set of integer frequencies
assigned to each input :math:`X^i`. The frequency associated with the input
for which the sensitivity indices are computed, is set to the maximum admissible
frequency satisfying the Nyquist criterion (which ensures to avoid aliasing effects):
.. math::
\\omega_i = \\frac{N - 1}{2M}
In the paper by Saltelli et al. (1999), for high sample size, it is suggested
that :math:`16 \\leq \\omega_i/N_r \\leq 64`.
Examples
--------
>>> import openturns as ot
>>> ot.RandomGenerator.SetSeed(0)
>>> formulaIshigami = ['sin(_pi*X1)+7*sin(_pi*X2)*sin(_pi*X2)+0.1*((_pi*X3)*(_pi*X3)*(_pi*X3)*(_pi*X3))*sin(_pi*X1)']
>>> modelIshigami = ot.NumericalMathFunction(['X1', 'X2', 'X3'], ['y'], formulaIshigami)
>>> distributions = ot.ComposedDistribution([ot.Uniform(-1.0, 1.0)] * 3)
>>> sensitivityAnalysis = ot.FAST(modelIshigami, distributions, 400)
>>> print(sensitivityAnalysis.getFirstOrderIndices())
[0.307461,0.442524,4.18878e-07]
"""
__swig_setmethods__ = {}
__setattr__ = lambda self, name, value: _swig_setattr(self, FAST, name, value)
__swig_getmethods__ = {}
__getattr__ = lambda self, name: _swig_getattr(self, FAST, name)
__repr__ = _swig_repr
def getFirstOrderIndices(self, marginalIndex=0):
"""
Accessor to the first order indices.
Parameters
----------
marginalIndex : int, :math:`0 \\leq i < n`, optional
Index of the model's marginal used to estimate the indices.
By default, marginalIndex is equal to 0.
Returns
-------
indices : float sequence
List of the first order indices of all the inputs.
"""
return _uncertainty.FAST_getFirstOrderIndices(self, marginalIndex)
def getTotalOrderIndices(self, marginalIndex=0):
"""
Accessor to the total order indices.
Parameters
----------
marginalIndex : int, :math:`0 \\leq i < n`, optional
Index of the model's marginal used to estimate the indices.
By default, marginalIndex is equal to 0.
Returns
-------
indices : float sequence
List of the total-effect order indices of all the inputs.
"""
return _uncertainty.FAST_getTotalOrderIndices(self, marginalIndex)
def getFFTAlgorithm(self):
"""
Accessor to the FFT algorithm implementation.
Returns
-------
fft : a :class:`~openturns.FFT`
A FFT algorithm.
"""
return _uncertainty.FAST_getFFTAlgorithm(self)
def setFFTAlgorithm(self, *args):
"""
Accessor to the FFT algorithm implementation.
Parameters
----------
fft : a :class:`~openturns.FFT`
A FFT algorithm.
"""
return _uncertainty.FAST_setFFTAlgorithm(self, *args)
def __init__(self, *args):
this = _uncertainty.new_FAST(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _uncertainty.delete_FAST
__del__ = lambda self : None;
FAST_swigregister = _uncertainty.FAST_swigregister
FAST_swigregister(FAST)
import openturns.transformation
import openturns.analytical
import openturns.simulation
import openturns.stattests
import openturns.model_process
# This file is compatible with both classic and new-style classes.
|