/usr/lib/python2.7/dist-packages/openturns/weightedexperiment.py is in python-openturns 1.5-7build2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 | # This file was automatically generated by SWIG (http://www.swig.org).
# Version 2.0.12
#
# Do not make changes to this file unless you know what you are doing--modify
# the SWIG interface file instead.
"""
Weighted designs of experiments.
"""
from sys import version_info
if version_info >= (2,6,0):
def swig_import_helper():
from os.path import dirname
import imp
fp = None
try:
fp, pathname, description = imp.find_module('_weightedexperiment', [dirname(__file__)])
except ImportError:
import _weightedexperiment
return _weightedexperiment
if fp is not None:
try:
_mod = imp.load_module('_weightedexperiment', fp, pathname, description)
finally:
fp.close()
return _mod
_weightedexperiment = swig_import_helper()
del swig_import_helper
else:
import _weightedexperiment
del version_info
try:
_swig_property = property
except NameError:
pass # Python < 2.2 doesn't have 'property'.
def _swig_setattr_nondynamic(self,class_type,name,value,static=1):
if (name == "thisown"): return self.this.own(value)
if (name == "this"):
if type(value).__name__ == 'SwigPyObject':
self.__dict__[name] = value
return
method = class_type.__swig_setmethods__.get(name,None)
if method: return method(self,value)
if (not static):
self.__dict__[name] = value
else:
raise AttributeError("You cannot add attributes to %s" % self)
def _swig_setattr(self,class_type,name,value):
return _swig_setattr_nondynamic(self,class_type,name,value,0)
def _swig_getattr(self,class_type,name):
if (name == "thisown"): return self.this.own()
method = class_type.__swig_getmethods__.get(name,None)
if method: return method(self)
raise AttributeError(name)
def _swig_repr(self):
try: strthis = "proxy of " + self.this.__repr__()
except: strthis = ""
return "<%s.%s; %s >" % (self.__class__.__module__, self.__class__.__name__, strthis,)
try:
_object = object
_newclass = 1
except AttributeError:
class _object : pass
_newclass = 0
class SwigPyIterator(_object):
__swig_setmethods__ = {}
__setattr__ = lambda self, name, value: _swig_setattr(self, SwigPyIterator, name, value)
__swig_getmethods__ = {}
__getattr__ = lambda self, name: _swig_getattr(self, SwigPyIterator, name)
def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined - class is abstract")
__repr__ = _swig_repr
__swig_destroy__ = _weightedexperiment.delete_SwigPyIterator
__del__ = lambda self : None;
def value(self): return _weightedexperiment.SwigPyIterator_value(self)
def incr(self, n=1): return _weightedexperiment.SwigPyIterator_incr(self, n)
def decr(self, n=1): return _weightedexperiment.SwigPyIterator_decr(self, n)
def distance(self, *args): return _weightedexperiment.SwigPyIterator_distance(self, *args)
def equal(self, *args): return _weightedexperiment.SwigPyIterator_equal(self, *args)
def copy(self): return _weightedexperiment.SwigPyIterator_copy(self)
def next(self): return _weightedexperiment.SwigPyIterator_next(self)
def __next__(self): return _weightedexperiment.SwigPyIterator___next__(self)
def previous(self): return _weightedexperiment.SwigPyIterator_previous(self)
def advance(self, *args): return _weightedexperiment.SwigPyIterator_advance(self, *args)
def __eq__(self, *args): return _weightedexperiment.SwigPyIterator___eq__(self, *args)
def __ne__(self, *args): return _weightedexperiment.SwigPyIterator___ne__(self, *args)
def __iadd__(self, *args): return _weightedexperiment.SwigPyIterator___iadd__(self, *args)
def __isub__(self, *args): return _weightedexperiment.SwigPyIterator___isub__(self, *args)
def __add__(self, *args): return _weightedexperiment.SwigPyIterator___add__(self, *args)
def __sub__(self, *args): return _weightedexperiment.SwigPyIterator___sub__(self, *args)
def __iter__(self): return self
SwigPyIterator_swigregister = _weightedexperiment.SwigPyIterator_swigregister
SwigPyIterator_swigregister(SwigPyIterator)
GCC_VERSION = _weightedexperiment.GCC_VERSION
class TestFailed:
"""TestFailed is used to raise an uniform exception in tests."""
__type = "TestFailed"
def __init__(self, reason=""):
self.reason = reason
def type(self):
return TestFailed.__type
def what(self):
return self.reason
def __str__(self):
return TestFailed.__type + ": " + self.reason
def __lshift__(self, ch):
self.reason += ch
return self
import openturns.base
import openturns.common
import openturns.wrapper
import openturns.typ
import openturns.statistics
import openturns.graph
import openturns.func
import openturns.geom
import openturns.diff
import openturns.optim
import openturns.solver
import openturns.algo
import openturns.experiment
import openturns.model_copula
class WeightedExperiment(openturns.experiment.ExperimentImplementation):
"""
Weighted experiment.
Available constructor:
WeightedExperiment(`distribution=ot.Uniform(), size=100`)
Parameters
----------
distribution : :class:`~openturns.Distribution`
Distribution :math:`\\mu` used to generate the set of input data.
size : positive int
Number :math:`cardI` of points that will be generated in the experiment.
Notes
-----
WeightedExperiment is used to generate the points :math:`\\Xi_i` so that the
mean :math:`E_{\\mu}` is approximated as follows:
.. math::
E_{\\mu} \\left[ f(\\vect{Z}) \\right] \\simeq \\sum_{i \\in I} \\omega_i f(\\Xi_i)
where :math:`\\mu` is a distribution, :math:`f` is a function :math:`L_1(\\mu)`
and :math:`\\omega_i` are the weights associated with the points. By default,
all the weights are equal to :math:`1/cardI`.
A WeightedExperiment object can be created only through its derived classes
which are distributed in three groups:
1. The first category is made up of the random patterns, where the set of input
data is generated from the joint distribution of the input random vector,
according to these sampling techniques:
- :class:`Monte Carlo <openturns.MonteCarloExperiment>`
- :class:`LHS <openturns.LHSExperiment>`
- :class:`Bootstrap <openturns.BootstrapExperiment>`
- :class:`Importance Sampling <openturns.ImportanceSamplingExperiment>`
2. The second category contains the :class:`low discrepancy sequences
<openturns.LowDiscrepancySequence>`. OpenTURNS proposes the Faure, Halton,
Haselgrove, Reverse Halton and Sobol sequences.
3. The third category consists of deterministic patterns:
- :class:`Gauss product <openturns.GaussProductExperiment>`
- :class:`~openturns.FixedExperiment`
- :class:`~openturns.LowDiscrepancyExperiment`
"""
__swig_setmethods__ = {}
for _s in [openturns.experiment.ExperimentImplementation]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
__setattr__ = lambda self, name, value: _swig_setattr(self, WeightedExperiment, name, value)
__swig_getmethods__ = {}
for _s in [openturns.experiment.ExperimentImplementation]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
__getattr__ = lambda self, name: _swig_getattr(self, WeightedExperiment, name)
def getClassName(self):
"""
Accessor to the object's name.
Returns
-------
class_name : str
The object class name (`object.__class__.__name__`).
"""
return _weightedexperiment.WeightedExperiment_getClassName(self)
def __repr__(self): return _weightedexperiment.WeightedExperiment___repr__(self)
def setDistribution(self, *args):
"""
Accessor to the distribution.
Parameters
----------
distribution : :class:`~openturns.Distribution`
Distribution used to generate the set of input data.
"""
return _weightedexperiment.WeightedExperiment_setDistribution(self, *args)
def getDistribution(self):
"""
Accessor to the distribution.
Returns
-------
distribution : :class:`~openturns.Distribution`
Distribution used to generate the set of input data.
"""
return _weightedexperiment.WeightedExperiment_getDistribution(self)
def setSize(self, *args):
"""
Accessor to the size of the generated sample.
Parameters
----------
size : positive int
Number :math:`cardI` of points constituting the design of experiments.
"""
return _weightedexperiment.WeightedExperiment_setSize(self, *args)
def getSize(self):
"""
Accessor to the size of the generated sample.
Returns
-------
size : positive int
Number :math:`cardI` of points constituting the design of experiments.
"""
return _weightedexperiment.WeightedExperiment_getSize(self)
def generate(self):
"""
Generate points according to the type of the experiment.
Returns
-------
sample : 2D float sequence
Points :math:`(\\Xi_i)_{i \\in I}` which constitute the design of experiments
with :math:`card I = size`. The sampling method is defined by the nature of
the weighted experiment.
Examples
--------
>>> import openturns as ot
>>> ot.RandomGenerator.SetSeed(0)
>>> myExperiment = ot.MonteCarloExperiment(ot.Normal(2), 5)
>>> sample = myExperiment.generate()
>>> print(sample)
[ marginal 1 marginal 2 ]
0 : [ 0.608202 -1.26617 ]
1 : [ -0.438266 1.20548 ]
2 : [ -2.18139 0.350042 ]
3 : [ -0.355007 1.43725 ]
4 : [ 0.810668 0.793156 ]
"""
return _weightedexperiment.WeightedExperiment_generate(self)
def generateWithWeights(self):
"""
Generate points and their associated weight according to the type of the experiment.
Returns
-------
sample : 2D float sequence
The points which constitute the design of experiments. The sampling method
is defined by the nature of the experiment.
weights : float sequence of size :math:`cardI`
Weights :math:`(\\omega_i)_{i \\in I}` associated with the points. By default,
all the weights are equal to :math:`1/cardI`.
Examples
--------
>>> import openturns as ot
>>> ot.RandomGenerator.SetSeed(0)
>>> myExperiment = ot.MonteCarloExperiment(ot.Normal(2), 5)
>>> sample, weights = myExperiment.generateWithWeights()
>>> print(sample)
[ marginal 1 marginal 2 ]
0 : [ 0.608202 -1.26617 ]
1 : [ -0.438266 1.20548 ]
2 : [ -2.18139 0.350042 ]
3 : [ -0.355007 1.43725 ]
4 : [ 0.810668 0.793156 ]
>>> print(weights)
[0.2,0.2,0.2,0.2,0.2]
"""
return _weightedexperiment.WeightedExperiment_generateWithWeights(self)
def getWeight(self):
"""
Accessor to the weights associated with the points.
Returns
-------
weights : float sequence of size :math:`cardI`
Weights :math:`(\\omega_i)_{i \\in I}` associated with the points. By default,
all the weights are equal to :math:`1/cardI`.
"""
return _weightedexperiment.WeightedExperiment_getWeight(self)
def __init__(self, *args):
this = _weightedexperiment.new_WeightedExperiment(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _weightedexperiment.delete_WeightedExperiment
__del__ = lambda self : None;
WeightedExperiment_swigregister = _weightedexperiment.WeightedExperiment_swigregister
WeightedExperiment_swigregister(WeightedExperiment)
class BootstrapExperiment(WeightedExperiment):
__swig_setmethods__ = {}
for _s in [WeightedExperiment]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
__setattr__ = lambda self, name, value: _swig_setattr(self, BootstrapExperiment, name, value)
__swig_getmethods__ = {}
for _s in [WeightedExperiment]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
__getattr__ = lambda self, name: _swig_getattr(self, BootstrapExperiment, name)
def getClassName(self):
"""
Accessor to the object's name.
Returns
-------
class_name : str
The object class name (`object.__class__.__name__`).
"""
return _weightedexperiment.BootstrapExperiment_getClassName(self)
def __repr__(self): return _weightedexperiment.BootstrapExperiment___repr__(self)
def generate(self):
"""
Generate points according to the type of the experiment.
Returns
-------
sample : 2D float sequence
Points :math:`(\\Xi_i)_{i \\in I}` which constitute the design of experiments
with :math:`card I = size`. The sampling method is defined by the nature of
the weighted experiment.
Examples
--------
>>> import openturns as ot
>>> ot.RandomGenerator.SetSeed(0)
>>> myExperiment = ot.MonteCarloExperiment(ot.Normal(2), 5)
>>> sample = myExperiment.generate()
>>> print(sample)
[ marginal 1 marginal 2 ]
0 : [ 0.608202 -1.26617 ]
1 : [ -0.438266 1.20548 ]
2 : [ -2.18139 0.350042 ]
3 : [ -0.355007 1.43725 ]
4 : [ 0.810668 0.793156 ]
"""
return _weightedexperiment.BootstrapExperiment_generate(self)
def __init__(self, *args):
this = _weightedexperiment.new_BootstrapExperiment(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _weightedexperiment.delete_BootstrapExperiment
__del__ = lambda self : None;
BootstrapExperiment_swigregister = _weightedexperiment.BootstrapExperiment_swigregister
BootstrapExperiment_swigregister(BootstrapExperiment)
class FixedExperiment(WeightedExperiment):
__swig_setmethods__ = {}
for _s in [WeightedExperiment]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
__setattr__ = lambda self, name, value: _swig_setattr(self, FixedExperiment, name, value)
__swig_getmethods__ = {}
for _s in [WeightedExperiment]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
__getattr__ = lambda self, name: _swig_getattr(self, FixedExperiment, name)
def getClassName(self):
"""
Accessor to the object's name.
Returns
-------
class_name : str
The object class name (`object.__class__.__name__`).
"""
return _weightedexperiment.FixedExperiment_getClassName(self)
def __repr__(self): return _weightedexperiment.FixedExperiment___repr__(self)
def setDistribution(self, *args):
"""
Accessor to the distribution.
Parameters
----------
distribution : :class:`~openturns.Distribution`
Distribution used to generate the set of input data.
"""
return _weightedexperiment.FixedExperiment_setDistribution(self, *args)
def generate(self):
"""
Generate points according to the type of the experiment.
Returns
-------
sample : 2D float sequence
Points :math:`(\\Xi_i)_{i \\in I}` which constitute the design of experiments
with :math:`card I = size`. The sampling method is defined by the nature of
the weighted experiment.
Examples
--------
>>> import openturns as ot
>>> ot.RandomGenerator.SetSeed(0)
>>> myExperiment = ot.MonteCarloExperiment(ot.Normal(2), 5)
>>> sample = myExperiment.generate()
>>> print(sample)
[ marginal 1 marginal 2 ]
0 : [ 0.608202 -1.26617 ]
1 : [ -0.438266 1.20548 ]
2 : [ -2.18139 0.350042 ]
3 : [ -0.355007 1.43725 ]
4 : [ 0.810668 0.793156 ]
"""
return _weightedexperiment.FixedExperiment_generate(self)
def __init__(self, *args):
this = _weightedexperiment.new_FixedExperiment(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _weightedexperiment.delete_FixedExperiment
__del__ = lambda self : None;
FixedExperiment_swigregister = _weightedexperiment.FixedExperiment_swigregister
FixedExperiment_swigregister(FixedExperiment)
class GaussProductExperiment(WeightedExperiment):
__swig_setmethods__ = {}
for _s in [WeightedExperiment]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
__setattr__ = lambda self, name, value: _swig_setattr(self, GaussProductExperiment, name, value)
__swig_getmethods__ = {}
for _s in [WeightedExperiment]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
__getattr__ = lambda self, name: _swig_getattr(self, GaussProductExperiment, name)
def getClassName(self):
"""
Accessor to the object's name.
Returns
-------
class_name : str
The object class name (`object.__class__.__name__`).
"""
return _weightedexperiment.GaussProductExperiment_getClassName(self)
def __repr__(self): return _weightedexperiment.GaussProductExperiment___repr__(self)
def generate(self):
"""
Generate points according to the type of the experiment.
Returns
-------
sample : 2D float sequence
Points :math:`(\\Xi_i)_{i \\in I}` which constitute the design of experiments
with :math:`card I = size`. The sampling method is defined by the nature of
the weighted experiment.
Examples
--------
>>> import openturns as ot
>>> ot.RandomGenerator.SetSeed(0)
>>> myExperiment = ot.MonteCarloExperiment(ot.Normal(2), 5)
>>> sample = myExperiment.generate()
>>> print(sample)
[ marginal 1 marginal 2 ]
0 : [ 0.608202 -1.26617 ]
1 : [ -0.438266 1.20548 ]
2 : [ -2.18139 0.350042 ]
3 : [ -0.355007 1.43725 ]
4 : [ 0.810668 0.793156 ]
"""
return _weightedexperiment.GaussProductExperiment_generate(self)
def setMarginalDegrees(self, *args): return _weightedexperiment.GaussProductExperiment_setMarginalDegrees(self, *args)
def getMarginalDegrees(self): return _weightedexperiment.GaussProductExperiment_getMarginalDegrees(self)
def setDistribution(self, *args):
"""
Accessor to the distribution.
Parameters
----------
distribution : :class:`~openturns.Distribution`
Distribution used to generate the set of input data.
"""
return _weightedexperiment.GaussProductExperiment_setDistribution(self, *args)
def __init__(self, *args):
this = _weightedexperiment.new_GaussProductExperiment(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _weightedexperiment.delete_GaussProductExperiment
__del__ = lambda self : None;
GaussProductExperiment_swigregister = _weightedexperiment.GaussProductExperiment_swigregister
GaussProductExperiment_swigregister(GaussProductExperiment)
class ImportanceSamplingExperiment(WeightedExperiment):
__swig_setmethods__ = {}
for _s in [WeightedExperiment]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
__setattr__ = lambda self, name, value: _swig_setattr(self, ImportanceSamplingExperiment, name, value)
__swig_getmethods__ = {}
for _s in [WeightedExperiment]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
__getattr__ = lambda self, name: _swig_getattr(self, ImportanceSamplingExperiment, name)
def getClassName(self):
"""
Accessor to the object's name.
Returns
-------
class_name : str
The object class name (`object.__class__.__name__`).
"""
return _weightedexperiment.ImportanceSamplingExperiment_getClassName(self)
def getImportanceDistribution(self): return _weightedexperiment.ImportanceSamplingExperiment_getImportanceDistribution(self)
def __repr__(self): return _weightedexperiment.ImportanceSamplingExperiment___repr__(self)
def generate(self, *args):
"""
Generate points according to the type of the experiment.
Returns
-------
sample : 2D float sequence
Points :math:`(\\Xi_i)_{i \\in I}` which constitute the design of experiments
with :math:`card I = size`. The sampling method is defined by the nature of
the weighted experiment.
Examples
--------
>>> import openturns as ot
>>> ot.RandomGenerator.SetSeed(0)
>>> myExperiment = ot.MonteCarloExperiment(ot.Normal(2), 5)
>>> sample = myExperiment.generate()
>>> print(sample)
[ marginal 1 marginal 2 ]
0 : [ 0.608202 -1.26617 ]
1 : [ -0.438266 1.20548 ]
2 : [ -2.18139 0.350042 ]
3 : [ -0.355007 1.43725 ]
4 : [ 0.810668 0.793156 ]
"""
return _weightedexperiment.ImportanceSamplingExperiment_generate(self, *args)
def __init__(self, *args):
this = _weightedexperiment.new_ImportanceSamplingExperiment(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _weightedexperiment.delete_ImportanceSamplingExperiment
__del__ = lambda self : None;
ImportanceSamplingExperiment_swigregister = _weightedexperiment.ImportanceSamplingExperiment_swigregister
ImportanceSamplingExperiment_swigregister(ImportanceSamplingExperiment)
class LHSExperiment(WeightedExperiment):
__swig_setmethods__ = {}
for _s in [WeightedExperiment]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
__setattr__ = lambda self, name, value: _swig_setattr(self, LHSExperiment, name, value)
__swig_getmethods__ = {}
for _s in [WeightedExperiment]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
__getattr__ = lambda self, name: _swig_getattr(self, LHSExperiment, name)
def getClassName(self):
"""
Accessor to the object's name.
Returns
-------
class_name : str
The object class name (`object.__class__.__name__`).
"""
return _weightedexperiment.LHSExperiment_getClassName(self)
def __repr__(self): return _weightedexperiment.LHSExperiment___repr__(self)
def generate(self):
"""
Generate points according to the type of the experiment.
Returns
-------
sample : 2D float sequence
Points :math:`(\\Xi_i)_{i \\in I}` which constitute the design of experiments
with :math:`card I = size`. The sampling method is defined by the nature of
the weighted experiment.
Examples
--------
>>> import openturns as ot
>>> ot.RandomGenerator.SetSeed(0)
>>> myExperiment = ot.MonteCarloExperiment(ot.Normal(2), 5)
>>> sample = myExperiment.generate()
>>> print(sample)
[ marginal 1 marginal 2 ]
0 : [ 0.608202 -1.26617 ]
1 : [ -0.438266 1.20548 ]
2 : [ -2.18139 0.350042 ]
3 : [ -0.355007 1.43725 ]
4 : [ 0.810668 0.793156 ]
"""
return _weightedexperiment.LHSExperiment_generate(self)
__swig_getmethods__["ComputeShuffle"] = lambda x: _weightedexperiment.LHSExperiment_ComputeShuffle
if _newclass:ComputeShuffle = staticmethod(_weightedexperiment.LHSExperiment_ComputeShuffle)
def getShuffle(self): return _weightedexperiment.LHSExperiment_getShuffle(self)
def setDistribution(self, *args):
"""
Accessor to the distribution.
Parameters
----------
distribution : :class:`~openturns.Distribution`
Distribution used to generate the set of input data.
"""
return _weightedexperiment.LHSExperiment_setDistribution(self, *args)
def __init__(self, *args):
this = _weightedexperiment.new_LHSExperiment(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _weightedexperiment.delete_LHSExperiment
__del__ = lambda self : None;
LHSExperiment_swigregister = _weightedexperiment.LHSExperiment_swigregister
LHSExperiment_swigregister(LHSExperiment)
def LHSExperiment_ComputeShuffle(*args):
return _weightedexperiment.LHSExperiment_ComputeShuffle(*args)
LHSExperiment_ComputeShuffle = _weightedexperiment.LHSExperiment_ComputeShuffle
class LowDiscrepancyExperiment(WeightedExperiment):
__swig_setmethods__ = {}
for _s in [WeightedExperiment]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
__setattr__ = lambda self, name, value: _swig_setattr(self, LowDiscrepancyExperiment, name, value)
__swig_getmethods__ = {}
for _s in [WeightedExperiment]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
__getattr__ = lambda self, name: _swig_getattr(self, LowDiscrepancyExperiment, name)
def getClassName(self):
"""
Accessor to the object's name.
Returns
-------
class_name : str
The object class name (`object.__class__.__name__`).
"""
return _weightedexperiment.LowDiscrepancyExperiment_getClassName(self)
def __repr__(self): return _weightedexperiment.LowDiscrepancyExperiment___repr__(self)
def setDistribution(self, *args):
"""
Accessor to the distribution.
Parameters
----------
distribution : :class:`~openturns.Distribution`
Distribution used to generate the set of input data.
"""
return _weightedexperiment.LowDiscrepancyExperiment_setDistribution(self, *args)
def getSequence(self): return _weightedexperiment.LowDiscrepancyExperiment_getSequence(self)
def generate(self):
"""
Generate points according to the type of the experiment.
Returns
-------
sample : 2D float sequence
Points :math:`(\\Xi_i)_{i \\in I}` which constitute the design of experiments
with :math:`card I = size`. The sampling method is defined by the nature of
the weighted experiment.
Examples
--------
>>> import openturns as ot
>>> ot.RandomGenerator.SetSeed(0)
>>> myExperiment = ot.MonteCarloExperiment(ot.Normal(2), 5)
>>> sample = myExperiment.generate()
>>> print(sample)
[ marginal 1 marginal 2 ]
0 : [ 0.608202 -1.26617 ]
1 : [ -0.438266 1.20548 ]
2 : [ -2.18139 0.350042 ]
3 : [ -0.355007 1.43725 ]
4 : [ 0.810668 0.793156 ]
"""
return _weightedexperiment.LowDiscrepancyExperiment_generate(self)
def __init__(self, *args):
this = _weightedexperiment.new_LowDiscrepancyExperiment(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _weightedexperiment.delete_LowDiscrepancyExperiment
__del__ = lambda self : None;
LowDiscrepancyExperiment_swigregister = _weightedexperiment.LowDiscrepancyExperiment_swigregister
LowDiscrepancyExperiment_swigregister(LowDiscrepancyExperiment)
class MonteCarloExperiment(WeightedExperiment):
__swig_setmethods__ = {}
for _s in [WeightedExperiment]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
__setattr__ = lambda self, name, value: _swig_setattr(self, MonteCarloExperiment, name, value)
__swig_getmethods__ = {}
for _s in [WeightedExperiment]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
__getattr__ = lambda self, name: _swig_getattr(self, MonteCarloExperiment, name)
def getClassName(self):
"""
Accessor to the object's name.
Returns
-------
class_name : str
The object class name (`object.__class__.__name__`).
"""
return _weightedexperiment.MonteCarloExperiment_getClassName(self)
def __repr__(self): return _weightedexperiment.MonteCarloExperiment___repr__(self)
def generate(self):
"""
Generate points according to the type of the experiment.
Returns
-------
sample : 2D float sequence
Points :math:`(\\Xi_i)_{i \\in I}` which constitute the design of experiments
with :math:`card I = size`. The sampling method is defined by the nature of
the weighted experiment.
Examples
--------
>>> import openturns as ot
>>> ot.RandomGenerator.SetSeed(0)
>>> myExperiment = ot.MonteCarloExperiment(ot.Normal(2), 5)
>>> sample = myExperiment.generate()
>>> print(sample)
[ marginal 1 marginal 2 ]
0 : [ 0.608202 -1.26617 ]
1 : [ -0.438266 1.20548 ]
2 : [ -2.18139 0.350042 ]
3 : [ -0.355007 1.43725 ]
4 : [ 0.810668 0.793156 ]
"""
return _weightedexperiment.MonteCarloExperiment_generate(self)
def __init__(self, *args):
this = _weightedexperiment.new_MonteCarloExperiment(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _weightedexperiment.delete_MonteCarloExperiment
__del__ = lambda self : None;
MonteCarloExperiment_swigregister = _weightedexperiment.MonteCarloExperiment_swigregister
MonteCarloExperiment_swigregister(MonteCarloExperiment)
# This file is compatible with both classic and new-style classes.
|