This file is indexed.

/usr/lib/python2.7/dist-packages/photutils/detection/core.py is in python-photutils 0.2.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
# Licensed under a 3-clause BSD style license - see LICENSE.rst
"""Functions for detecting sources in an astronomical image."""

from __future__ import (absolute_import, division, print_function,
                        unicode_literals)
from distutils.version import LooseVersion
import numpy as np
from astropy.table import Column, Table
from astropy.stats import sigma_clipped_stats
from ..segmentation import SegmentationImage
from ..morphology import cutout_footprint, fit_2dgaussian
from ..utils.convolution import _convolve_data
from ..utils.wcs_helpers import pixel_to_icrs_coords

import astropy
if LooseVersion(astropy.__version__) < LooseVersion('1.1'):
    ASTROPY_LT_1P1 = True
else:
    ASTROPY_LT_1P1 = False


__all__ = ['detect_threshold', 'detect_sources', 'find_peaks']


def detect_threshold(data, snr, background=None, error=None, mask=None,
                     mask_value=None, sigclip_sigma=3.0, sigclip_iters=None):
    """
    Calculate a pixel-wise threshold image to be used to detect sources.

    Parameters
    ----------
    data : array_like
        The 2D array of the image.

    snr : float
        The signal-to-noise ratio per pixel above the ``background`` for
        which to consider a pixel as possibly being part of a source.

    background : float or array_like, optional
        The background value(s) of the input ``data``.  ``background``
        may either be a scalar value or a 2D image with the same shape
        as the input ``data``.  If the input ``data`` has been
        background-subtracted, then set ``background`` to ``0.0``.  If
        `None`, then a scalar background value will be estimated using
        sigma-clipped statistics.

    error : float or array_like, optional
        The Gaussian 1-sigma standard deviation of the background noise
        in ``data``.  ``error`` should include all sources of
        "background" error, but *exclude* the Poisson error of the
        sources.  If ``error`` is a 2D image, then it should represent
        the 1-sigma background error in each pixel of ``data``.  If
        `None`, then a scalar background rms value will be estimated
        using sigma-clipped statistics.

    mask : array_like, bool, optional
        A boolean mask with the same shape as ``data``, where a `True`
        value indicates the corresponding element of ``data`` is masked.
        Masked pixels are ignored when computing the image background
        statistics.

    mask_value : float, optional
        An image data value (e.g., ``0.0``) that is ignored when
        computing the image background statistics.  ``mask_value`` will
        be ignored if ``mask`` is input.

    sigclip_sigma : float, optional
        The number of standard deviations to use as the clipping limit
        when calculating the image background statistics.

    sigclip_iters : float, optional
       The number of iterations to perform sigma clipping, or `None` to
       clip until convergence is achieved (i.e., continue until the last
       iteration clips nothing) when calculating the image background
       statistics.

    Returns
    -------
    threshold : 2D `~numpy.ndarray`
        A 2D image with the same shape as ``data`` containing the
        pixel-wise threshold values.

    See Also
    --------
    detect_sources

    Notes
    -----
    The ``mask``, ``mask_value``, ``sigclip_sigma``, and
    ``sigclip_iters`` inputs are used only if it is necessary to
    estimate ``background`` or ``error`` using sigma-clipped background
    statistics.  If ``background`` and ``error`` are both input, then
    ``mask``, ``mask_value``, ``sigclip_sigma``, and ``sigclip_iters``
    are ignored.
    """

    if background is None or error is None:
        # TODO: remove when astropy 1.1 is released
        if ASTROPY_LT_1P1:
            data_mean, data_median, data_std = sigma_clipped_stats(
                data, mask=mask, mask_val=mask_value, sigma=sigclip_sigma,
                iters=sigclip_iters)
        else:
            data_mean, data_median, data_std = sigma_clipped_stats(
                data, mask=mask, mask_value=mask_value, sigma=sigclip_sigma,
                iters=sigclip_iters)
        bkgrd_image = np.zeros_like(data) + data_mean
        bkgrdrms_image = np.zeros_like(data) + data_std

    if background is None:
        background = bkgrd_image
    else:
        if np.isscalar(background):
            background = np.zeros_like(data) + background
        else:
            if background.shape != data.shape:
                raise ValueError('If input background is 2D, then it '
                                 'must have the same shape as the input '
                                 'data.')

    if error is None:
        error = bkgrdrms_image
    else:
        if np.isscalar(error):
            error = np.zeros_like(data) + error
        else:
            if error.shape != data.shape:
                raise ValueError('If input error is 2D, then it '
                                 'must have the same shape as the input '
                                 'data.')

    return background + (error * snr)


def detect_sources(data, threshold, npixels, filter_kernel=None,
                   connectivity=8):
    """
    Detect sources above a specified threshold value in an image and
    return a `~photutils.segmentation.SegmentationImage` object.

    Detected sources must have ``npixels`` connected pixels that are
    each greater than the ``threshold`` value.  If the filtering option
    is used, then the ``threshold`` is applied to the filtered image.

    This function does not deblend overlapping sources.  First use this
    function to detect sources followed by
    :func:`~photutils.detection.deblend_sources` to deblend sources.

    Parameters
    ----------
    data : array_like
        The 2D array of the image.

    threshold : float or array-like
        The data value or pixel-wise data values to be used for the
        detection threshold.  A 2D ``threshold`` must have the same
        shape as ``data``.  See `detect_threshold` for one way to create
        a ``threshold`` image.

    npixels : int
        The number of connected pixels, each greater than ``threshold``,
        that an object must have to be detected.  ``npixels`` must be a
        positive integer.

    filter_kernel : array-like (2D) or `~astropy.convolution.Kernel2D`, optional
        The 2D array of the kernel used to filter the image before
        thresholding.  Filtering the image will smooth the noise and
        maximize detectability of objects with a shape similar to the
        kernel.

    connectivity : {4, 8}, optional
        The type of pixel connectivity used in determining how pixels
        are grouped into a detected source.  The options are 4 or 8
        (default).  4-connected pixels touch along their edges.
        8-connected pixels touch along their edges or corners.  For
        reference, SExtractor uses 8-connected pixels.

    Returns
    -------
    segment_image : `~photutils.segmentation.SegmentationImage`
        A 2D segmentation image, with the same shape as ``data``, where
        sources are marked by different positive integer values.  A
        value of zero is reserved for the background.

    See Also
    --------
    detect_threshold, :class:`photutils.segmentation.SegmentationImage`,
    :func:`photutils.segmentation.source_properties`
    :func:`photutils.detection.deblend_sources`

    Examples
    --------

    .. plot::
        :include-source:

        # make a table of Gaussian sources
        from astropy.table import Table
        table = Table()
        table['amplitude'] = [50, 70, 150, 210]
        table['x_mean'] = [160, 25, 150, 90]
        table['y_mean'] = [70, 40, 25, 60]
        table['x_stddev'] = [15.2, 5.1, 3., 8.1]
        table['y_stddev'] = [2.6, 2.5, 3., 4.7]
        table['theta'] = np.array([145., 20., 0., 60.]) * np.pi / 180.

        # make an image of the sources with Gaussian noise
        from photutils.datasets import make_gaussian_sources
        from photutils.datasets import make_noise_image
        shape = (100, 200)
        sources = make_gaussian_sources(shape, table)
        noise = make_noise_image(shape, type='gaussian', mean=0.,
                                 stddev=5., random_state=12345)
        image = sources + noise

        # detect the sources
        from photutils import detect_threshold, detect_sources
        threshold = detect_threshold(image, snr=3)
        from astropy.convolution import Gaussian2DKernel
        sigma = 3.0 / (2.0 * np.sqrt(2.0 * np.log(2.0)))   # FWHM = 3
        kernel = Gaussian2DKernel(sigma, x_size=3, y_size=3)
        kernel.normalize()
        segm = detect_sources(image, threshold, npixels=5,
                              filter_kernel=kernel)

        # plot the image and the segmentation image
        import matplotlib.pyplot as plt
        fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(8, 8))
        ax1.imshow(image, origin='lower', interpolation='nearest')
        ax2.imshow(segm.data, origin='lower', interpolation='nearest')
    """

    from scipy import ndimage

    if (npixels <= 0) or (int(npixels) != npixels):
        raise ValueError('npixels must be a positive integer, got '
                         '"{0}"'.format(npixels))

    image = (_convolve_data(
        data, filter_kernel, mode='constant', fill_value=0.0,
        check_normalization=True) > threshold)

    if connectivity == 4:
        selem = ndimage.generate_binary_structure(2, 1)
    elif connectivity == 8:
        selem = ndimage.generate_binary_structure(2, 2)
    else:
        raise ValueError('Invalid connectivity={0}.  '
                         'Options are 4 or 8'.format(connectivity))

    objlabels, nobj = ndimage.label(image, structure=selem)
    objslices = ndimage.find_objects(objlabels)

    # remove objects with less than npixels
    for objslice in objslices:
        objlabel = objlabels[objslice]
        obj_npix = len(np.where(objlabel.ravel() != 0)[0])
        if obj_npix < npixels:
            objlabels[objslice] = 0

    # relabel to make sequential label indices
    objlabels, nobj = ndimage.label(objlabels, structure=selem)

    return SegmentationImage(objlabels)


def find_peaks(data, threshold, box_size=3, footprint=None, mask=None,
               border_width=None, npeaks=np.inf, subpixel=False, error=None,
               wcs=None):
    """
    Find local peaks in an image that are above above a specified
    threshold value.

    Peaks are the maxima above the ``threshold`` within a local region.
    The regions are defined by either the ``box_size`` or ``footprint``
    parameters.  ``box_size`` defines the local region around each pixel
    as a square box.  ``footprint`` is a boolean array where `True`
    values specify the region shape.

    If multiple pixels within a local region have identical intensities,
    then the coordinates of all such pixels are returned.  Otherwise,
    there will be only one peak pixel per local region.  Thus, the
    defined region effectively imposes a minimum separation between
    peaks (unless there are identical peaks within the region).

    When using subpixel precision (``subpixel=True``), then a cutout of
    the specified ``box_size`` or ``footprint`` will be taken centered
    on each peak and fit with a 2D Gaussian (plus a constant).  In this
    case, the fitted local centroid and peak value (the Gaussian
    amplitude plus the background constant) will also be returned in the
    output table.

    Parameters
    ----------
    data : array_like
        The 2D array of the image.

    threshold : float
        The data value to be used for the detection threshold.

    box_size : scalar or tuple, optional
        The size of the local region to search for peaks at every point
        in ``data``.  If ``box_size`` is a scalar, then the region shape
        will be ``(box_size, box_size)``.  Either ``box_size`` or
        ``footprint`` must be defined.  If they are both defined, then
        ``footprint`` overrides ``box_size``.

    footprint : `~numpy.ndarray` of bools, optional
        A boolean array where `True` values describe the local footprint
        region within which to search for peaks at every point in
        ``data``.  ``box_size=(n, m)`` is equivalent to
        ``footprint=np.ones((n, m))``.  Either ``box_size`` or
        ``footprint`` must be defined.  If they are both defined, then
        ``footprint`` overrides ``box_size``.

    mask : array_like, bool, optional
        A boolean mask with the same shape as ``data``, where a `True`
        value indicates the corresponding element of ``data`` is masked.

    border_width : bool, optional
        The width in pixels to exclude around the border of the
        ``data``.

    npeaks : int, optional
        The maximum number of peaks to return.  When the number of
        detected peaks exceeds ``npeaks``, the peaks with the highest
        peak intensities will be returned.

    subpixel : bool, optional
        If `True`, then a cutout of the specified ``box_size`` or
        ``footprint`` will be taken centered on each peak and fit with a
        2D Gaussian (plus a constant).  In this case, the fitted local
        centroid and peak value (the Gaussian amplitude plus the
        background constant) will also be returned in the output table.

    error : array_like, optional
        The 2D array of the 1-sigma errors of the input ``data``.
        ``error`` is used only to weight the 2D Gaussian fit performed
        when ``subpixel=True``.

    wcs : `~astropy.wcs.WCS`
        The WCS transformation to use to convert from pixel coordinates
        to ICRS world coordinates.  If `None`, then the world
        coordinates will not be returned in the output
        `~astropy.table.Table`.

    Returns
    -------
    output : `~astropy.table.Table`
        A table containing the x and y pixel location of the peaks and
        their values.  If ``subpixel=True``, then the table will also
        contain the local centroid and fitted peak value.
    """

    from scipy import ndimage

    if np.all(data == data.flat[0]):
        return []

    if footprint is not None:
        data_max = ndimage.maximum_filter(data, footprint=footprint,
                                          mode='constant', cval=0.0)
    else:
        data_max = ndimage.maximum_filter(data, size=box_size,
                                          mode='constant', cval=0.0)

    peak_goodmask = (data == data_max)    # good pixels are True

    if mask is not None:
        mask = np.asanyarray(mask)
        if data.shape != mask.shape:
            raise ValueError('data and mask must have the same shape')
        peak_goodmask = np.logical_and(peak_goodmask, ~mask)

    if border_width is not None:
        for i in range(peak_goodmask.ndim):
            peak_goodmask = peak_goodmask.swapaxes(0, i)
            peak_goodmask[:border_width] = False
            peak_goodmask[-border_width:] = False
            peak_goodmask = peak_goodmask.swapaxes(0, i)

    peak_goodmask = np.logical_and(peak_goodmask, (data > threshold))
    y_peaks, x_peaks = peak_goodmask.nonzero()
    peak_values = data[y_peaks, x_peaks]

    if len(x_peaks) > npeaks:
        idx = np.argsort(peak_values)[::-1][:npeaks]
        x_peaks = x_peaks[idx]
        y_peaks = y_peaks[idx]
        peak_values = peak_values[idx]

    if subpixel:
        x_centroid, y_centroid = [], []
        fit_peak_values = []
        for (y_peak, x_peak) in zip(y_peaks, x_peaks):
            rdata, rmask, rerror, slc = cutout_footprint(
                data, (x_peak, y_peak), box_size=box_size,
                footprint=footprint, mask=mask, error=error)
            gaussian_fit = fit_2dgaussian(rdata, mask=rmask, error=rerror)
            if gaussian_fit is None:
                x_cen, y_cen, fit_peak_value = np.nan, np.nan, np.nan
            else:
                x_cen = slc[1].start + gaussian_fit.x_mean_1.value
                y_cen = slc[0].start + gaussian_fit.y_mean_1.value
                fit_peak_value = (gaussian_fit.amplitude_0.value +
                                  gaussian_fit.amplitude_1.value)
            x_centroid.append(x_cen)
            y_centroid.append(y_cen)
            fit_peak_values.append(fit_peak_value)

        columns = (x_peaks, y_peaks, peak_values, x_centroid, y_centroid,
                   fit_peak_values)
        names = ('x_peak', 'y_peak', 'peak_value', 'x_centroid', 'y_centroid',
                 'fit_peak_value')
    else:
        columns = (x_peaks, y_peaks, peak_values)
        names = ('x_peak', 'y_peak', 'peak_value')

    table = Table(columns, names=names)

    if wcs is not None:
        icrs_ra_peak, icrs_dec_peak = pixel_to_icrs_coords(x_peaks, y_peaks,
                                                           wcs)
        table.add_column(Column(icrs_ra_peak, name='icrs_ra_peak'), index=2)
        table.add_column(Column(icrs_dec_peak, name='icrs_dec_peak'), index=3)

        if subpixel:
            icrs_ra_centroid, icrs_dec_centroid = pixel_to_icrs_coords(
                x_centroid, y_centroid, wcs)
            idx = table.colnames.index('y_centroid')
            table.add_column(Column(icrs_ra_centroid,
                                    name='icrs_ra_centroid'), index=idx+1)
            table.add_column(Column(icrs_dec_centroid,
                                    name='icrs_dec_centroid'), index=idx+2)

    return table