This file is indexed.

/usr/lib/python2.7/dist-packages/plplot.py is in python-plplot 5.10.0+dfsg2-0.1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
# Copyright 2002 Gary Bishop and Alan W. Irwin
# Copyright 2008 Andrew Ross
# This file is part of PLplot.

# PLplot is free software; you can redistribute it and/or modify
# it under the terms of the GNU Library General Public License as published by
# the Free Software Foundation; version 2 of the License.

# PLplot is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Library General Public License for more details.

# You should have received a copy of the GNU Library General Public License
# along with the file PLplot; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301  USA

# Wrap raw python interface to C API, plplotc, with this user-friendly version
# which implements some useful variations of the argument lists.

from plplotc import *
import types
import numpy

# Redefine plcont to have the user-friendly interface
# Allowable syntaxes:

# plcont( z, [kx, lx, ky, ly], clev, [pltr, [pltr_data] or [xg, yg, [wrap]]])
# N.B. Brackets represent options here and not python lists!

# All unbracketed arguments within brackets must all be present or all be
# missing.  Furthermore, z must be a 2D array, kx, lx, ky, ly must all be
# integers, clev must be a 1D array, pltr can be a function reference or
# string, pltr_data is an optional arbitrary data object, xg and yg are 
# optional 1D or 2D arrays and wrap (which only works if xg and yg
# are specified) is 0, 1, or 2.

# If pltr is a string it must be either "pltr0", "pltr1", or "pltr2" to
# refer to those built-in transformation functions.  Alternatively, the
# function names pltr0, pltr1, or pltr2 may be specified to refer to
# the built-in transformation functions or an arbitrary name for a
# user-defined transformation function may be specified.  Such functions
# must have x, y, and optional pltr_data arguments and return arbitrarily
# transformed x' and y' in a tuple.  The built-in pltr's such as pltr1 and
# pltr2 use pltr_data = tuple(xg, yg), and for this oft-used case (and any
# other user-defined pltr which uses a tuple of two arrays for pltr_data),
# we also provide optional xg and yg arguments separately as an alternative
# to the tuple method of providing these data. Note, that pltr_data cannot
# be in the argument list if xg and yg are there, and vice versa. Also note
# that the built-in pltr0 and some user-defined transformation functions
# ignore the auxiliary pltr_data (or the alternative xg and yg) in which
# case neither pltr_data nor xg and yg need to be specified.

_plcont = plcont
def plcont(z, *args):
    z = numpy.asarray(z)
    if len(z.shape) != 2:
	raise ValueError, "Expected 2D z array"

    if len(args) > 4 and type(args[0]) == types.IntType:
	for i in range(1,4):
	    if type(args[i]) != types.IntType:
		raise ValueError, "Expected 4 ints for kx,lx,ky,ly"

	else:
	    # these 4 args are the kx, lx, ky, ly ints
	    ifdefault_range = 0
	    kx,lx,ky,ly = args[0:4]
	    args = args[4:]
    else:
	ifdefault_range = 1

    if len(args) > 0:
	clev = numpy.asarray(args[0])
	if len(clev.shape) !=1:
	    raise ValueError, "Expected 1D clev array"
	args = args[1:]
    else:
	raise ValueError, "Missing clev argument"

    if len(args) > 0 and ( \
    type(args[0]) == types.StringType or \
    type(args[0]) == types.FunctionType or \
    type(args[0]) == types.BuiltinFunctionType):
	pltr = args[0]
	# Handle the string names for the callbacks though specifying the
	# built-in function name directly (without the surrounding quotes) 
	# or specifying any user-defined transformation function 
	# (following above rules) works fine too.
	if type(pltr) == types.StringType:
	    if pltr == "pltr0":
		pltr = pltr0
	    elif pltr == "pltr1":
		pltr = pltr1
	    elif pltr == "pltr2":
		pltr = pltr2
	    else:
		raise ValueError, "pltr string is unrecognized"

	args = args[1:]
	# Handle pltr_data or separate xg, yg, [wrap]
	if len(args) == 0:
	    # Default pltr_data
	    pltr_data = None
	elif len(args) == 1:
	    #Must be pltr_data
	    pltr_data = args[0]
	    args = args[1:]
	elif len(args) >= 2:
	    xg = numpy.asarray(args[0])
	    if len(xg.shape) < 1 or len(xg.shape) > 2:
		raise ValueError, "xg must be 1D or 2D array"
	    yg = numpy.asarray(args[1])
	    if len(yg.shape) != len(xg.shape):
		raise ValueError, "yg must have same number of dimensions as xg"
	    args = args[2:]
	    # wrap only relevant if xg and yg specified.
	    if len(args) > 0:
	     if type(args[0]) == types.IntType:
	      wrap = args[0]
	      args = args[1:]
	      if len(xg.shape) == 2 and len(yg.shape) == 2 and  \
	      z.shape == xg.shape and z.shape == yg.shape:
		# handle wrap
		if wrap == 1:
		    z = numpy.resize(z, (z.shape[0]+1, z.shape[1]))
		    xg = numpy.resize(xg, (xg.shape[0]+1, xg.shape[1]))
		    yg = numpy.resize(yg, (yg.shape[0]+1, yg.shape[1]))
		elif wrap == 2:
		    z = numpy.transpose(numpy.resize( \
		    numpy.transpose(z), (z.shape[1]+1, z.shape[0])))
		    xg = numpy.transpose(numpy.resize( \
		    numpy.transpose(xg), (xg.shape[1]+1, xg.shape[0])))
		    yg = numpy.transpose(numpy.resize( \
		    numpy.transpose(yg), (yg.shape[1]+1, yg.shape[0])))
		elif wrap != 0:
		    raise ValueError, "Invalid wrap specifier, must be 0, 1 or 2."
	      elif wrap != 0:
		  raise ValueError, "Non-zero wrap specified and xg and yg are not 2D arrays"
	     else:
		 raise ValueError, "Specified wrap is not an integer"
	    pltr_data = (xg, yg)
    else:
	# default is identity transformation
	pltr = pltr0
	pltr_data = None
    if len(args) > 0:
	raise ValueError, "Too many arguments for plcont"
    if ifdefault_range:
	# Default is to take full range (still using fortran convention
	# for indices which is embedded in the PLplot library API)
	kx = 1
	lx = z.shape[0]
	ky = 1
	ly = z.shape[1]
    _plcont(z, kx, lx, ky, ly, clev, pltr, pltr_data)
plcont.__doc__ = _plcont.__doc__
  
# Redefine plvect to have the user-friendly interface
# Allowable syntaxes:

# plvect( u, v, scaling, [pltr, [pltr_data] or [xg, yg, [wrap]]])
_plvect = plvect
def plvect(u, v, *args):
    u = numpy.asarray(u)
    v = numpy.asarray(v)

    if len(u.shape) != 2:
        raise ValueError, "Expected 2D u array"
    if len(v.shape) != 2:
        raise ValueError, "Expected 2D v array"
    if (u.shape[0] != v.shape[0]) or (u.shape[1] != v.shape[1]) :
        raise ValueError, "Expected u and v arrays to be the same dimensions"

    if len(args) > 0 and (type(args[0]) == types.FloatType or type(args[0]) == numpy.float64) :
        scaling = args[0]
        args = args[1:]
    else:
        raise ValueError, "Missing scaling argument"

    if len(args) > 0 and ( \
    type(args[0]) == types.StringType or \
    type(args[0]) == types.FunctionType or \
    type(args[0]) == types.BuiltinFunctionType):
        pltr = args[0]
        # Handle the string names for the callbacks though specifying the
        # built-in function name directly (without the surrounding quotes) 
        # or specifying any user-defined transformation function 
        # (following above rules) works fine too.
        if type(pltr) == types.StringType:
            if pltr == "pltr0":
                pltr = pltr0
            elif pltr == "pltr1":
                pltr = pltr1
            elif pltr == "pltr2":
                pltr = pltr2
            else:
                raise ValueError, "pltr string is unrecognized"

        args = args[1:]
        # Handle pltr_data or separate xg, yg, [wrap]
        if len(args) == 0:
            # Default pltr_data
            pltr_data = None
        elif len(args) == 1:
            #Must be pltr_data
            pltr_data = args[0]
            args = args[1:]
        elif len(args) >= 2:
            xg = numpy.asarray(args[0])
            if len(xg.shape) < 1 or len(xg.shape) > 2:
                raise ValueError, "xg must be 1D or 2D array"
            yg = numpy.asarray(args[1])
            if len(yg.shape) != len(xg.shape):
                raise ValueError, "yg must have same number of dimensions as xg"
            args = args[2:]
            # wrap only relevant if xg and yg specified.
            if len(args) > 0:
             if type(args[0]) == types.IntType:
              wrap = args[0]
              args = args[1:]
              if len(xg.shape) == 2 and len(yg.shape) == 2 and  \
              u.shape == xg.shape and u.shape == yg.shape:
                # handle wrap
                if wrap == 1:
                    u = numpy.resize(u, (u.shape[0]+1, u.shape[1]))
                    v = numpy.resize(v, (v.shape[0]+1, v.shape[1]))
                    xg = numpy.resize(xg, (xg.shape[0]+1, xg.shape[1]))
                    yg = numpy.resize(yg, (yg.shape[0]+1, yg.shape[1]))
                elif wrap == 2:
                    u = numpy.transpose(numpy.resize( \
                    numpy.transpose(u), (u.shape[1]+1, u.shape[0])))
                    v = numpy.transpose(numpy.resize( \
                    numpy.transpose(v), (v.shape[1]+1, v.shape[0])))
                    xg = numpy.transpose(numpy.resize( \
                    numpy.transpose(xg), (xg.shape[1]+1, xg.shape[0])))
                    yg = numpy.transpose(numpy.resize( \
                    numpy.transpose(yg), (yg.shape[1]+1, yg.shape[0])))
                elif wrap != 0:
                    raise ValueError, "Invalid wrap specifier, must be 0, 1 or 2."
              elif wrap != 0:
                  raise ValueError, "Non-zero wrap specified and xg and yg are not 2D arrays"
             else:
                 raise ValueError, "Specified wrap is not an integer"
            pltr_data = (xg, yg)
    else:
        # default is identity transformation
        pltr = pltr0
        pltr_data = None
    if len(args) > 0:
        raise ValueError, "Too many arguments for plvect"
    _plvect(u, v, scaling, pltr, pltr_data)
plvect.__doc__ = _plvect.__doc__

# Redefine plimagefr to have the user-friendly interface
# Allowable syntaxes:

# plimagefr( img, xmin, xmax, ymin, ymax, zmin, zmax, valuemin, valuemax, [pltr, [pltr_data] or [xg, yg, [wrap]]])
_plimagefr = plimagefr
def plimagefr(img, *args):
    img = numpy.asarray(img)

    if len(img.shape) != 2:
        raise ValueError, "Expected 2D img array"

    if len(args) >= 8 :
        for i in range(8) :
            if (type(args[i]) != types.FloatType and \
                type(args[i]) != numpy.float64 and \
                type(args[i]) != types.IntType) : 
                raise ValueError, "Expected 8 numbers for xmin, xmax, ymin, ymax, zmin, zmax, valuemin, valuemax"
        else:
            # These 8 args are xmin, xmax, ymin, ymax, zmin, zmax, valuemin, valuemax
            xmin, xmax, ymin, ymax, zmin, zmax, valuemin, valuemax = args[0:8]
            args = args[8:]
    else:
        raise ValueError, "Expected 8 numbers for xmin, xmax, ymin, ymax, zmin, zmax, valuemin, valuemax"

    if len(args) > 0 and ( \
    type(args[0]) == types.StringType or \
    type(args[0]) == types.FunctionType or \
    type(args[0]) == types.BuiltinFunctionType):
        pltr = args[0]
        # Handle the string names for the callbacks though specifying the
        # built-in function name directly (without the surrounding quotes) 
        # or specifying any user-defined transformation function 
        # (following above rules) works fine too.
        if type(pltr) == types.StringType:
            if pltr == "pltr0":
                pltr = pltr0
            elif pltr == "pltr1":
                pltr = pltr1
            elif pltr == "pltr2":
                pltr = pltr2
            else:
                raise ValueError, "pltr string is unrecognized"

        args = args[1:]
        # Handle pltr_data or separate xg, yg, [wrap]
        if len(args) == 0:
            # Default pltr_data
            pltr_data = None
        elif len(args) == 1:
            #Must be pltr_data
            pltr_data = args[0]
            args = args[1:]
        elif len(args) >= 2:
            xg = numpy.asarray(args[0])
            if len(xg.shape) < 1 or len(xg.shape) > 2:
                raise ValueError, "xg must be 1D or 2D array"
            yg = numpy.asarray(args[1])
            if len(yg.shape) != len(xg.shape):
                raise ValueError, "yg must have same number of dimensions as xg"
            args = args[2:]
            # wrap only relevant if xg and yg specified.
            if len(args) > 0:
             if type(args[0]) == types.IntType:
              wrap = args[0]
              args = args[1:]
              if len(xg.shape) == 2 and len(yg.shape) == 2 and  \
              img.shape[0] == xg.shape[0]-1 and img.shape[1] == xg.shape[1]-1:
                # handle wrap
                if wrap == 1:
                    img = numpy.resize(img, (img.shape[0]+1, u.shape[1]))
                    xg = numpy.resize(xg, (xg.shape[0]+1, xg.shape[1]))
                    yg = numpy.resize(yg, (yg.shape[0]+1, yg.shape[1]))
                elif wrap == 2:
                    img = numpy.transpose(numpy.resize( \
                    numpy.transpose(img), (img.shape[1]+1, img.shape[0])))
                    xg = numpy.transpose(numpy.resize( \
                    numpy.transpose(xg), (xg.shape[1]+1, xg.shape[0])))
                    yg = numpy.transpose(numpy.resize( \
                    numpy.transpose(yg), (yg.shape[1]+1, yg.shape[0])))
                elif wrap != 0:
                    raise ValueError, "Invalid wrap specifier, must be 0, 1 or 2."
              elif wrap != 0:
                  raise ValueError, "Non-zero wrap specified and xg and yg are not 2D arrays"
             else:
                 raise ValueError, "Specified wrap is not an integer"
            pltr_data = (xg, yg)
    else:
        # default is identity transformation
        pltr = pltr0
        pltr_data = None
    if len(args) > 0:
        raise ValueError, "Too many arguments for plimagefr"
    _plimagefr(img, xmin, xmax, ymin, ymax, zmin, zmax, valuemin, valuemax, pltr, pltr_data)
plimagefr.__doc__ = _plimagefr.__doc__

# Redefine plshades to have the user-friendly interface
# Allowable syntaxes:

# plshades(z,  [xmin, xmax, ymin, ymax,] clev, \
# fill_width, [cont_color, cont_width,], rect, \
# [pltr, [pltr_data] or [xg, yg, [wrap]]])
 
_plshades = plshades
def plshades(z, *args):
    z = numpy.asarray(z)
    if len(z.shape) != 2:
	raise ValueError, "Expected 2D z array"

    if len(args) > 4 and \
    (type(args[0]) == types.FloatType or type(args[0]) == numpy.float64 or type(args[0]) == types.IntType) and \
    (type(args[1]) == types.FloatType or type(args[1]) == numpy.float64 or type(args[1]) == types.IntType) and \
    (type(args[2]) == types.FloatType or type(args[2]) == numpy.float64 or type(args[2]) == types.IntType) and \
    (type(args[3]) == types.FloatType or type(args[3]) == numpy.float64 or type(args[3]) == types.IntType):
	# These 4 args are xmin, xmax, ymin, ymax
	xmin, xmax, ymin, ymax = args[0:4]
	args = args[4:]
    else:
	# These values are ignored if pltr and pltr_data are defined in any case.
	# So pick some convenient defaults that work for the pltr0, None case
	xmin = -1.
	xmax = 1.
	ymin = -1.
	ymax = 1.

    # clev must be present.
    if len(args) > 0:
	clev = numpy.asarray(args[0])
	if len(clev.shape) !=1:
	    raise ValueError, "Expected 1D clev array"
	args = args[1:]
    else:
	raise ValueError, "Missing clev argument"

    # fill_width must be present
    if len(args) > 0 and (type(args[0]) == types.FloatType or type(args[0]) == numpy.float64):
	fill_width = args[0]
	args = args[1:]
    else:
	raise ValueError, "fill_width argument must be present and of types.FloatType or numpy.float64 type"

    # cont_color and cont_width are optional.
    if len(args) > 2 and \
    type(args[0]) == types.IntType and \
    (type(args[1]) == types.FloatType or type(args[1]) == numpy.float64):
	# These 2 args are 
	cont_color, cont_width = args[0:2]
	args = args[2:]
    else:
	# Turn off contouring.
	cont_color, cont_width = (0,0.)

    # rect must be present.
    if len(args) > 0 and type(args[0]) == types.IntType:
	rect = args[0]
	args = args[1:]
    else:
	raise ValueError, "Missing rect argument"

    if len(args) > 0 and ( \
    type(args[0]) == types.NoneType or \
    type(args[0]) == types.StringType or \
    type(args[0]) == types.FunctionType or \
    type(args[0]) == types.BuiltinFunctionType):
	pltr = args[0]
	# Handle the string names for the callbacks though specifying the
	# built-in function name directly (without the surrounding quotes) 
	# or specifying any user-defined transformation function 
	# (following above rules) works fine too.
	if type(pltr) == types.StringType:
	    if pltr == "pltr0":
		pltr = pltr0
	    elif pltr == "pltr1":
		pltr = pltr1
	    elif pltr == "pltr2":
		pltr = pltr2
	    else:
		raise ValueError, "pltr string is unrecognized"

	args = args[1:]
	# Handle pltr_data or separate xg, yg, [wrap]
	if len(args) == 0:
	    # Default pltr_data
	    pltr_data = None
	elif len(args) == 1:
	    #Must be pltr_data
	    pltr_data = args[0]
	    args = args[1:]
	elif len(args) >= 2:
	    xg = numpy.asarray(args[0])
	    if len(xg.shape) < 1 or len(xg.shape) > 2:
		raise ValueError, "xg must be 1D or 2D array"
	    yg = numpy.asarray(args[1])
	    if len(yg.shape) != len(xg.shape):
		raise ValueError, "yg must have same number of dimensions as xg"
	    args = args[2:]
	    # wrap only relevant if xg and yg specified.
	    if len(args) > 0:
	     if type(args[0]) == types.IntType:
	      wrap = args[0]
	      args = args[1:]
	      if len(xg.shape) == 2 and len(yg.shape) == 2 and  \
	      z.shape == xg.shape and z.shape == yg.shape:
		# handle wrap
		if wrap == 1:
		    z = numpy.resize(z, (z.shape[0]+1, z.shape[1]))
		    xg = numpy.resize(xg, (xg.shape[0]+1, xg.shape[1]))
		    yg = numpy.resize(yg, (yg.shape[0]+1, yg.shape[1]))
		elif wrap == 2:
		    z = numpy.transpose(numpy.resize( \
		    numpy.transpose(z), (z.shape[1]+1, z.shape[0])))
		    xg = numpy.transpose(numpy.resize( \
		    numpy.transpose(xg), (xg.shape[1]+1, xg.shape[0])))
		    yg = numpy.transpose(numpy.resize( \
		    numpy.transpose(yg), (yg.shape[1]+1, yg.shape[0])))
		elif wrap != 0:
		    raise ValueError, "Invalid wrap specifier, must be 0, 1 or 2."
	      elif wrap != 0:
		  raise ValueError, "Non-zero wrap specified and xg and yg are not 2D arrays"
	     else:
		 raise ValueError, "Specified wrap is not an integer"
	    pltr_data = (xg, yg)
    else:
	# default is identity transformation
	pltr = pltr0
	pltr_data = None
    if len(args) > 0:
	raise ValueError, "Too many arguments for plshades"

    _plshades(z, xmin, xmax, ymin, ymax, clev, \
    fill_width, cont_color, cont_width, rect, pltr, pltr_data)
plshades.__doc__ = _plshades.__doc__
  
# Redefine plshade to have the user-friendly interface
# Allowable syntaxes:

# _plshade(z, [xmin, xmax, ymin, ymax,] \
# shade_min, shade_max, sh_cmap, sh_color, sh_width, \
# [min_color, min_width, max_color, max_width,] rect, \
# [pltr, [pltr_data] or [xg, yg, [wrap]]])

_plshade = plshade
def plshade(z, *args):
    z = numpy.asarray(z)
    if len(z.shape) != 2:
	raise ValueError, "Expected 2D z array"

    # Extra check on shade_min = float on end is absolutely necessary
    # to unambiguously figure out where we are in the argument list.
    if len(args) > 9 and \
    (type(args[0]) == types.FloatType or type(args[0]) == numpy.float64 or type(args[0]) == types.IntType) and \
    (type(args[1]) == types.FloatType or type(args[1]) == numpy.float64 or type(args[1]) == types.IntType) and \
    (type(args[2]) == types.FloatType or type(args[2]) == numpy.float64 or type(args[2]) == types.IntType) and \
    (type(args[3]) == types.FloatType or type(args[3]) == numpy.float64 or type(args[3]) == types.IntType) and \
    (type(args[4]) == types.FloatType or type(args[4]) == numpy.float64) :
	# These 4 args are xmin, xmax, ymin, ymax
	xmin, xmax, ymin, ymax = args[0:4]
	args = args[4:]
    else:
	# These values are ignored if pltr and pltr_data are defined in any case.
	# So pick some convenient defaults that work for the pltr0, None case
	xmin = -1.
	xmax = 1.
	ymin = -1.
	ymax = 1.

    # shade_min, shade_max, sh_cmap, sh_color, sh_width, must be present.
    # sh_color can be either integer or float.
    if len(args) > 5 and \
    (type(args[0]) == types.FloatType or type(args[0]) == numpy.float64) and \
    (type(args[1]) == types.FloatType or type(args[1]) == numpy.float64) and \
    type(args[2]) == types.IntType and \
    (type(args[3]) == types.FloatType or type(args[3]) == numpy.float64 or type(args[3]) == types.IntType) and \
    (type(args[4]) == types.FloatType or type(args[4]) == numpy.float64):
	shade_min, shade_max, sh_cmap, sh_color, sh_width = args[0:5]
	args = args[5:]
    else:
	raise ValueError, \
	"shade_min, shade_max, sh_cmap, sh_color, sh_width, must be present with sh_cmap of types.IntType type and the rest of types.FloatType or numpy.float64 type"

    # min_color, min_width, max_color, max_width are optional.
    if len(args) > 4 and \
    type(args[0]) == types.IntType and \
    (type(args[1]) == types.FloatType or type(args[1]) == numpy.float64) and \
    type(args[2]) == types.IntType and \
    (type(args[3]) == types.FloatType or type(args[3]) == numpy.float64):
	# These 4 args are 
	min_color, min_width, max_color, max_width = args[0:4]
	args = args[4:]
    else:
	# Turn off boundary colouring
	min_color, min_width, max_color, max_width = (0,0.,0,0.)

    # rect must be present.
    if len(args) > 0 and type(args[0]) == types.IntType:
	rect = args[0]
	args = args[1:]
    else:
	raise ValueError, "Missing rect argument"

    if len(args) > 0 and ( \
    type(args[0]) == types.NoneType or \
    type(args[0]) == types.StringType or \
    type(args[0]) == types.FunctionType or \
    type(args[0]) == types.BuiltinFunctionType):
	pltr = args[0]
	# Handle the string names for the callbacks though specifying the
	# built-in function name directly (without the surrounding quotes) 
	# or specifying any user-defined transformation function 
	# (following above rules) works fine too.
	if type(pltr) == types.StringType:
	    if pltr == "pltr0":
		pltr = pltr0
	    elif pltr == "pltr1":
		pltr = pltr1
	    elif pltr == "pltr2":
		pltr = pltr2
	    else:
		raise ValueError, "pltr string is unrecognized"

	args = args[1:]
	# Handle pltr_data or separate xg, yg, [wrap]
	if len(args) == 0:
	    # Default pltr_data
	    pltr_data = None
	elif len(args) == 1:
	    #Must be pltr_data
	    pltr_data = args[0]
	    args = args[1:]
	elif len(args) >= 2:
	    xg = numpy.asarray(args[0])
	    if len(xg.shape) < 1 or len(xg.shape) > 2:
		raise ValueError, "xg must be 1D or 2D array"
	    yg = numpy.asarray(args[1])
	    if len(yg.shape) != len(xg.shape):
		raise ValueError, "yg must have same number of dimensions as xg"
	    args = args[2:]
	    # wrap only relevant if xg and yg specified.
	    if len(args) > 0:
	     if type(args[0]) == types.IntType:
	      wrap = args[0]
	      args = args[1:]
	      if len(xg.shape) == 2 and len(yg.shape) == 2 and  \
	      z.shape == xg.shape and z.shape == yg.shape:
		# handle wrap
		if wrap == 1:
		    z = numpy.resize(z, (z.shape[0]+1, z.shape[1]))
		    xg = numpy.resize(xg, (xg.shape[0]+1, xg.shape[1]))
		    yg = numpy.resize(yg, (yg.shape[0]+1, yg.shape[1]))
		elif wrap == 2:
		    z = numpy.transpose(numpy.resize( \
		    numpy.transpose(z), (z.shape[1]+1, z.shape[0])))
		    xg = numpy.transpose(numpy.resize( \
		    numpy.transpose(xg), (xg.shape[1]+1, xg.shape[0])))
		    yg = numpy.transpose(numpy.resize( \
		    numpy.transpose(yg), (yg.shape[1]+1, yg.shape[0])))
		elif wrap != 0:
		    raise ValueError, "Invalid wrap specifier, must be 0, 1 or 2."
	      elif wrap != 0:
		  raise ValueError, "Non-zero wrap specified and xg and yg are not 2D arrays"
	     else:
		 raise ValueError, "Specified wrap is not an integer"
	    pltr_data = (xg, yg)
    else:
	# default is identity transformation
	pltr = pltr0
	pltr_data = None
    if len(args) > 0:
	raise ValueError, "Too many arguments for plshade"

    _plshade(z,  xmin, xmax, ymin, ymax, \
    shade_min, shade_max, sh_cmap, sh_color, sh_width, \
    min_color, min_width, max_color, max_width, rect, pltr, pltr_data)
plshade.__doc__ = _plshade.__doc__

# Redefine plscmap1l to have the user-friendly interface
# Allowable syntaxes:

# plscmap1l(itype, pos, coord1, coord2, coord3[, alt_hue_path])
 
_plscmap1l = plscmap1l
def plscmap1l(itype, pos, coord1, coord2, coord3, *args):

    pos = numpy.asarray(pos)
    if len(pos.shape) != 1:
	raise ValueError, "Expected 1D pos array"
		
    if len(args) == 0:
	# Default alt_hue_path
	alt_hue_path = numpy.zeros(pos.shape[0]-1,dtype="int")
    elif len(args) == 1:
	alt_hue_path = numpy.asarray(args[0])
    else:
	raise ValueError, "Too many arguments to plscmap1l"
    _plscmap1l(itype, pos, coord1, coord2, coord3, alt_hue_path)
plscmap1l.__doc__ = _plscmap1l.__doc__