This file is indexed.

/usr/lib/python2.7/dist-packages/pyopencl/cl/pyopencl-complex.h is in python-pyopencl 2015.1-2build3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
/*
 * Copyright (c) 1999
 * Silicon Graphics Computer Systems, Inc.
 *
 * Copyright (c) 1999
 * Boris Fomitchev
 *
 * Copyright (c) 2012
 * Andreas Kloeckner
 *
 * This material is provided "as is", with absolutely no warranty expressed
 * or implied. Any use is at your own risk.
 *
 * Permission to use or copy this software for any purpose is hereby granted
 * without fee, provided the above notices are retained on all copies.
 * Permission to modify the code and to distribute modified code is granted,
 * provided the above notices are retained, and a notice that the code was
 * modified is included with the above copyright notice.
 *
 */

// This file is available for inclusion in pyopencl kernels and provides
// complex types 'cfloat_t' and 'cdouble_t', along with a number of special
// functions as visible below, e.g. cdouble_log(z).
//
// Under the hood, the complex types are simply float2 and double2.
// Note that native (operator-based) addition (float + float2) and
// multiplication (float2*float1) is defined for these types,
// but do not match the rules of complex arithmetic.

#define PYOPENCL_DECLARE_COMPLEX_TYPE_INT(REAL_TP, REAL_3LTR, TPROOT, TP) \
  \
  REAL_TP TPROOT##_real(TP a) { return a.x; } \
  REAL_TP TPROOT##_imag(TP a) { return a.y; } \
  REAL_TP TPROOT##_abs(TP a) { return hypot(a.x, a.y); } \
  \
  TP TPROOT##_fromreal(REAL_TP a) { return (TP)(a, 0); } \
  TP TPROOT##_new(REAL_TP a, REAL_TP b) { return (TP)(a, b); } \
  TP TPROOT##_conj(TP a) { return (TP)(a.x, -a.y); } \
  \
  TP TPROOT##_add(TP a, TP b) \
  { \
    return a+b; \
  } \
  TP TPROOT##_addr(TP a, REAL_TP b) \
  { \
    return (TP)(b+a.x, a.y); \
  } \
  TP TPROOT##_radd(REAL_TP a, TP b) \
  { \
    return (TP)(a+b.x, b.y); \
  } \
  \
  TP TPROOT##_mul(TP a, TP b) \
  { \
    return (TP)( \
        a.x*b.x - a.y*b.y, \
        a.x*b.y + a.y*b.x); \
  } \
  \
  TP TPROOT##_mulr(TP a, REAL_TP b) \
  { \
    return a*b; \
  } \
  \
  TP TPROOT##_rmul(REAL_TP a, TP b) \
  { \
    return a*b; \
  } \
  \
  TP TPROOT##_rdivide(REAL_TP z1, TP z2) \
  { \
    if (fabs(z2.x) <= fabs(z2.y)) { \
      REAL_TP ratio = z2.x / z2.y; \
      REAL_TP denom = z2.y * (1 + ratio * ratio); \
      return (TP)((z1 * ratio) / denom, - z1 / denom); \
    } \
    else { \
      REAL_TP ratio = z2.y / z2.x; \
      REAL_TP denom = z2.x * (1 + ratio * ratio); \
      return (TP)(z1 / denom, - (z1 * ratio) / denom); \
    } \
  } \
  \
  TP TPROOT##_divide(TP z1, TP z2) \
  { \
    REAL_TP ratio, denom, a, b, c, d; \
    \
    if (fabs(z2.x) <= fabs(z2.y)) { \
      ratio = z2.x / z2.y; \
      denom = z2.y; \
      a = z1.y; \
      b = z1.x; \
      c = -z1.x; \
      d = z1.y; \
    } \
    else { \
      ratio = z2.y / z2.x; \
      denom = z2.x; \
      a = z1.x; \
      b = z1.y; \
      c = z1.y; \
      d = -z1.x; \
    } \
    denom *= (1 + ratio * ratio); \
    return (TP)( \
       (a + b * ratio) / denom, \
       (c + d * ratio) / denom); \
  } \
  \
  TP TPROOT##_divider(TP a, REAL_TP b) \
  { \
    return a/b; \
  } \
  \
  TP TPROOT##_pow(TP a, TP b) \
  { \
    REAL_TP logr = log(hypot(a.x, a.y)); \
    REAL_TP logi = atan2(a.y, a.x); \
    REAL_TP x = exp(logr * b.x - logi * b.y); \
    REAL_TP y = logr * b.y + logi * b.x; \
    \
    REAL_TP cosy; \
    REAL_TP siny = sincos(y, &cosy); \
    return (TP) (x*cosy, x*siny); \
  } \
  \
  TP TPROOT##_powr(TP a, REAL_TP b) \
  { \
    REAL_TP logr = log(hypot(a.x, a.y)); \
    REAL_TP logi = atan2(a.y, a.x); \
    REAL_TP x = exp(logr * b); \
    REAL_TP y = logi * b; \
    \
    REAL_TP cosy; \
    REAL_TP siny = sincos(y, &cosy); \
    \
    return (TP)(x * cosy, x*siny); \
  } \
  \
  TP TPROOT##_rpow(REAL_TP a, TP b) \
  { \
    REAL_TP logr = log(a); \
    REAL_TP x = exp(logr * b.x); \
    REAL_TP y = logr * b.y; \
    \
    REAL_TP cosy; \
    REAL_TP siny = sincos(y, &cosy); \
    return (TP) (x * cosy, x * siny); \
  } \
  \
  TP TPROOT##_sqrt(TP a) \
  { \
    REAL_TP re = a.x; \
    REAL_TP im = a.y; \
    REAL_TP mag = hypot(re, im); \
    TP result; \
    \
    if (mag == 0.f) { \
      result.x = result.y = 0.f; \
    } else if (re > 0.f) { \
      result.x = sqrt(0.5f * (mag + re)); \
      result.y = im/result.x/2.f; \
    } else { \
      result.y = sqrt(0.5f * (mag - re)); \
      if (im < 0.f) \
        result.y = - result.y; \
      result.x = im/result.y/2.f; \
    } \
    return result; \
  } \
  \
  TP TPROOT##_exp(TP a) \
  { \
    REAL_TP expr = exp(a.x); \
    REAL_TP cosi; \
    REAL_TP sini = sincos(a.y, &cosi); \
    return (TP)(expr * cosi, expr * sini); \
  } \
  \
  TP TPROOT##_log(TP a) \
  { return (TP)(log(hypot(a.x, a.y)), atan2(a.y, a.x)); } \
  \
  TP TPROOT##_sin(TP a) \
  { \
    REAL_TP cosr; \
    REAL_TP sinr = sincos(a.x, &cosr); \
    return (TP)(sinr*cosh(a.y), cosr*sinh(a.y)); \
  } \
  \
  TP TPROOT##_cos(TP a) \
  { \
    REAL_TP cosr; \
    REAL_TP sinr = sincos(a.x, &cosr); \
    return (TP)(cosr*cosh(a.y), -sinr*sinh(a.y)); \
  } \
  \
  TP TPROOT##_tan(TP a) \
  { \
    REAL_TP re2 = 2.f * a.x; \
    REAL_TP im2 = 2.f * a.y; \
    \
    const REAL_TP limit = log(REAL_3LTR##_MAX); \
    \
    if (fabs(im2) > limit) \
      return (TP)(0.f, (im2 > 0 ? 1.f : -1.f)); \
    else \
    { \
      REAL_TP den = cos(re2) + cosh(im2); \
      return (TP) (sin(re2) / den, sinh(im2) / den); \
    } \
  } \
  \
  TP TPROOT##_sinh(TP a) \
  { \
    REAL_TP cosi; \
    REAL_TP sini = sincos(a.y, &cosi); \
    return (TP)(sinh(a.x)*cosi, cosh(a.x)*sini); \
  } \
  \
  TP TPROOT##_cosh(TP a) \
  { \
    REAL_TP cosi; \
    REAL_TP sini = sincos(a.y, &cosi); \
    return (TP)(cosh(a.x)*cosi, sinh(a.x)*sini); \
  } \
  \
  TP TPROOT##_tanh(TP a) \
  { \
    REAL_TP re2 = 2.f * a.x; \
    REAL_TP im2 = 2.f * a.y; \
    \
    const REAL_TP limit = log(REAL_3LTR##_MAX); \
    \
    if (fabs(re2) > limit) \
      return (TP)((re2 > 0 ? 1.f : -1.f), 0.f); \
    else \
    { \
      REAL_TP den = cosh(re2) + cos(im2); \
      return (TP) (sinh(re2) / den, sin(im2) / den); \
    } \
  } \

#define PYOPENCL_DECLARE_COMPLEX_TYPE(BASE, BASE_3LTR) \
  typedef BASE##2 c##BASE##_t; \
  \
  PYOPENCL_DECLARE_COMPLEX_TYPE_INT(BASE, BASE_3LTR, c##BASE, c##BASE##_t)

PYOPENCL_DECLARE_COMPLEX_TYPE(float, FLT);
#define cfloat_cast(a) ((cfloat_t) ((a).x, (a).y))

#ifdef PYOPENCL_DEFINE_CDOUBLE
PYOPENCL_DECLARE_COMPLEX_TYPE(double, DBL);
#define cdouble_cast(a) ((cdouble_t) ((a).x, (a).y))
#endif