This file is indexed.

/usr/lib/python2.7/dist-packages/pyopencl/elementwise.py is in python-pyopencl 2015.1-2build3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
"""Elementwise functionality."""

from __future__ import division

__copyright__ = "Copyright (C) 2009 Andreas Kloeckner"

__license__ = """
Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
"""


from pyopencl.tools import context_dependent_memoize
import numpy as np
import pyopencl as cl
from pytools import memoize_method
from pyopencl.tools import (dtype_to_ctype, VectorArg, ScalarArg,
        KernelTemplateBase)


# {{{ elementwise kernel code generator

def get_elwise_program(context, arguments, operation,
        name="elwise_kernel", options=[],
        preamble="", loop_prep="", after_loop="",
        use_range=False):

    if use_range:
        body = r"""//CL//
          if (step < 0)
          {
            for (i = start + (work_group_start + lid)*step;
              i > stop; i += gsize*step)
            {
              %(operation)s;
            }
          }
          else
          {
            for (i = start + (work_group_start + lid)*step;
              i < stop; i += gsize*step)
            {
              %(operation)s;
            }
          }
          """
    else:
        body = """//CL//
          for (i = work_group_start + lid; i < n; i += gsize)
          {
            %(operation)s;
          }
          """

    import re
    return_match = re.search(r"\breturn\b", operation)
    if return_match is not None:
        from warnings import warn
        warn("Using a 'return' statement in an element-wise operation will "
                "likely lead to incorrect results. Use "
                "PYOPENCL_ELWISE_CONTINUE instead.",
                stacklevel=3)

    source = ("""//CL//
        %(preamble)s

        #define PYOPENCL_ELWISE_CONTINUE continue

        __kernel void %(name)s(%(arguments)s)
        {
          int lid = get_local_id(0);
          int gsize = get_global_size(0);
          int work_group_start = get_local_size(0)*get_group_id(0);
          long i;

          %(loop_prep)s;
          %(body)s
          %(after_loop)s;
        }
        """ % {
            "arguments": ", ".join(arg.declarator() for arg in arguments),
            "name": name,
            "preamble": preamble,
            "loop_prep": loop_prep,
            "after_loop": after_loop,
            "body": body % dict(operation=operation),
            })

    from pyopencl import Program
    return Program(context, source).build(options)


def get_elwise_kernel_and_types(context, arguments, operation,
        name="elwise_kernel", options=[], preamble="", use_range=False,
        **kwargs):

    from pyopencl.tools import parse_arg_list, get_arg_offset_adjuster_code
    parsed_args = parse_arg_list(arguments, with_offset=True)

    auto_preamble = kwargs.pop("auto_preamble", True)

    pragmas = []
    includes = []
    have_double_pragma = False
    have_complex_include = False

    if auto_preamble:
        for arg in parsed_args:
            if arg.dtype in [np.float64, np.complex128]:
                if not have_double_pragma:
                    pragmas.append("""
                        #if __OPENCL_C_VERSION__ < 120
                        #pragma OPENCL EXTENSION cl_khr_fp64: enable
                        #endif
                        #define PYOPENCL_DEFINE_CDOUBLE
                        """)
                    have_double_pragma = True
            if arg.dtype.kind == 'c':
                if not have_complex_include:
                    includes.append("#include <pyopencl-complex.h>\n")
                    have_complex_include = True

    if pragmas or includes:
        preamble = "\n".join(pragmas+includes) + "\n" + preamble

    if use_range:
        parsed_args.extend([
            ScalarArg(np.intp, "start"),
            ScalarArg(np.intp, "stop"),
            ScalarArg(np.intp, "step"),
            ])
    else:
        parsed_args.append(ScalarArg(np.intp, "n"))

    loop_prep = kwargs.pop("loop_prep", "")
    loop_prep = get_arg_offset_adjuster_code(parsed_args) + loop_prep
    prg = get_elwise_program(
        context, parsed_args, operation,
        name=name, options=options, preamble=preamble,
        use_range=use_range, loop_prep=loop_prep, **kwargs)

    from pyopencl.tools import get_arg_list_scalar_arg_dtypes

    kernel = getattr(prg, name)
    kernel.set_scalar_arg_dtypes(get_arg_list_scalar_arg_dtypes(parsed_args))

    return kernel, parsed_args


def get_elwise_kernel(context, arguments, operation,
        name="elwise_kernel", options=[], **kwargs):
    """Return a L{pyopencl.Kernel} that performs the same scalar operation
    on one or several vectors.
    """
    func, arguments = get_elwise_kernel_and_types(
        context, arguments, operation,
        name=name, options=options, **kwargs)

    return func

# }}}


# {{{ ElementwiseKernel driver

class ElementwiseKernel:
    """
    A kernel that takes a number of scalar or vector *arguments* and performs
    an *operation* specified as a snippet of C on these arguments.

    :arg arguments: a string formatted as a C argument list.
    :arg operation: a snippet of C that carries out the desired 'map'
        operation.  The current index is available as the variable *i*.
        *operation* may contain the statement ``PYOPENCL_ELWISE_CONTINUE``,
        which will terminate processing for the current element.
    :arg name: the function name as which the kernel is compiled
    :arg options: passed unmodified to :meth:`pyopencl.Program.build`.
    :arg preamble: a piece of C source code that gets inserted outside of the
        function context in the elementwise operation's kernel source code.

    .. warning :: Using a `return` statement in *operation* will lead to
        incorrect results, as some elements may never get processed. Use
        ``PYOPENCL_ELWISE_CONTINUE`` instead.

    .. versionchanged:: 2013.1
        Added ``PYOPENCL_ELWISE_CONTINUE``.
    """

    def __init__(self, context, arguments, operation,
            name="elwise_kernel", options=[], **kwargs):
        self.context = context
        self.arguments = arguments
        self.operation = operation
        self.name = name
        self.options = options
        self.kwargs = kwargs

    @memoize_method
    def get_kernel(self, use_range):
        knl, arg_descrs = get_elwise_kernel_and_types(
            self.context, self.arguments, self.operation,
            name=self.name, options=self.options,
            use_range=use_range, **self.kwargs)

        for arg in arg_descrs:
            if isinstance(arg, VectorArg) and not arg.with_offset:
                from warnings import warn
                warn("ElementwiseKernel '%s' used with VectorArgs that do not "
                        "have offset support enabled. This usage is deprecated. "
                        "Just pass with_offset=True to VectorArg, everything should "
                        "sort itself out automatically." % self.name,
                        DeprecationWarning)

        if not [i for i, arg in enumerate(arg_descrs)
                if isinstance(arg, VectorArg)]:
            raise RuntimeError(
                "ElementwiseKernel can only be used with "
                "functions that have at least one "
                "vector argument")
        return knl, arg_descrs

    def __call__(self, *args, **kwargs):
        repr_vec = None

        range_ = kwargs.pop("range", None)
        slice_ = kwargs.pop("slice", None)

        use_range = range_ is not None or slice_ is not None
        kernel, arg_descrs = self.get_kernel(use_range)

        # {{{ assemble arg array

        invocation_args = []
        for arg, arg_descr in zip(args, arg_descrs):
            if isinstance(arg_descr, VectorArg):
                if not arg.flags.forc:
                    raise RuntimeError("ElementwiseKernel cannot "
                            "deal with non-contiguous arrays")

                if repr_vec is None:
                    repr_vec = arg

                invocation_args.append(arg.base_data)
                if arg_descr.with_offset:
                    invocation_args.append(arg.offset)
            else:
                invocation_args.append(arg)

        # }}}

        queue = kwargs.pop("queue", None)
        wait_for = kwargs.pop("wait_for", None)
        if kwargs:
            raise TypeError("unknown keyword arguments: '%s'"
                    % ", ".join(kwargs))

        if queue is None:
            queue = repr_vec.queue

        if slice_ is not None:
            if range_ is not None:
                raise TypeError("may not specify both range and slice "
                        "keyword arguments")

            range_ = slice(*slice_.indices(repr_vec.size))

        max_wg_size = kernel.get_work_group_info(
                cl.kernel_work_group_info.WORK_GROUP_SIZE,
                queue.device)

        if range_ is not None:
            start = range_.start
            if start is None:
                start = 0
            invocation_args.append(start)
            invocation_args.append(range_.stop)
            if range_.step is None:
                step = 1
            else:
                step = range_.step

            invocation_args.append(step)

            from pyopencl.array import splay
            gs, ls = splay(queue,
                    abs(range_.stop - start)//step,
                    max_wg_size)
        else:
            invocation_args.append(repr_vec.size)
            gs, ls = repr_vec.get_sizes(queue, max_wg_size)

        kernel.set_args(*invocation_args)
        return cl.enqueue_nd_range_kernel(queue, kernel,
                gs, ls, wait_for=wait_for)

# }}}


# {{{ template

class ElementwiseTemplate(KernelTemplateBase):
    def __init__(self,
            arguments, operation, name="elwise", preamble="",
            template_processor=None):

        KernelTemplateBase.__init__(self,
                template_processor=template_processor)
        self.arguments = arguments
        self.operation = operation
        self.name = name
        self.preamble = preamble

    def build_inner(self, context, type_aliases=(), var_values=(),
            more_preamble="", more_arguments=(), declare_types=(),
            options=()):
        renderer = self.get_renderer(
                type_aliases, var_values, context, options)

        arg_list = renderer.render_argument_list(
                self.arguments, more_arguments, with_offset=True)
        type_decl_preamble = renderer.get_type_decl_preamble(
                context.devices[0], declare_types, arg_list)

        return ElementwiseKernel(context,
            arg_list, renderer(self.operation),
            name=renderer(self.name), options=list(options),
            preamble=(
                type_decl_preamble
                + "\n"
                + renderer(self.preamble + "\n" + more_preamble)),
            auto_preamble=False)

# }}}


# {{{ kernels supporting array functionality

@context_dependent_memoize
def get_take_kernel(context, dtype, idx_dtype, vec_count=1):
    ctx = {
            "idx_tp": dtype_to_ctype(idx_dtype),
            "tp": dtype_to_ctype(dtype),
            }

    args = ([VectorArg(dtype, "dest" + str(i), with_offset=True)
             for i in range(vec_count)]
            + [VectorArg(dtype, "src" + str(i), with_offset=True)
               for i in range(vec_count)]
            + [VectorArg(idx_dtype, "idx", with_offset=True)])
    body = (
            ("%(idx_tp)s src_idx = idx[i];\n" % ctx)
            + "\n".join(
                "dest%d[i] = src%d[src_idx];" % (i, i)
                for i in range(vec_count)))

    return get_elwise_kernel(context, args, body, name="take")


@context_dependent_memoize
def get_take_put_kernel(context, dtype, idx_dtype, with_offsets, vec_count=1):
    ctx = {
            "idx_tp": dtype_to_ctype(idx_dtype),
            "tp": dtype_to_ctype(dtype),
            }

    args = [
            VectorArg(dtype, "dest%d" % i)
                for i in range(vec_count)
            ] + [
                VectorArg(idx_dtype, "gmem_dest_idx", with_offset=True),
                VectorArg(idx_dtype, "gmem_src_idx", with_offset=True),
            ] + [
                VectorArg(dtype, "src%d" % i, with_offset=True)
                for i in range(vec_count)
            ] + [
                ScalarArg(idx_dtype, "offset%d" % i)
                    for i in range(vec_count) if with_offsets
            ]

    if with_offsets:
        def get_copy_insn(i):
            return ("dest%d[dest_idx] = "
                    "src%d[src_idx+offset%d];"
                    % (i, i, i))
    else:
        def get_copy_insn(i):
            return ("dest%d[dest_idx] = "
                    "src%d[src_idx];" % (i, i))

    body = (("%(idx_tp)s src_idx = gmem_src_idx[i];\n"
                "%(idx_tp)s dest_idx = gmem_dest_idx[i];\n" % ctx)
            + "\n".join(get_copy_insn(i) for i in range(vec_count)))

    return get_elwise_kernel(context, args, body, name="take_put")


@context_dependent_memoize
def get_put_kernel(context, dtype, idx_dtype, vec_count=1):
    ctx = {
            "idx_tp": dtype_to_ctype(idx_dtype),
            "tp": dtype_to_ctype(dtype),
            }

    args = [
            VectorArg(dtype, "dest%d" % i, with_offset=True)
                for i in range(vec_count)
            ] + [
                VectorArg(idx_dtype, "gmem_dest_idx", with_offset=True),
            ] + [
                VectorArg(dtype, "src%d" % i, with_offset=True)
                for i in range(vec_count)
            ]

    body = (
            "%(idx_tp)s dest_idx = gmem_dest_idx[i];\n" % ctx
            + "\n".join("dest%d[dest_idx] = src%d[i];" % (i, i)
                for i in range(vec_count)))

    return get_elwise_kernel(context, args, body, name="put")


@context_dependent_memoize
def get_copy_kernel(context, dtype_dest, dtype_src):
    src = "src[i]"
    if dtype_dest.kind == "c" != dtype_src.kind:
        src = "%s_fromreal(%s)" % (complex_dtype_to_name(dtype_dest), src)

    if dtype_dest.kind == "c" and dtype_src != dtype_dest:
        src = "%s_cast(%s)" % (complex_dtype_to_name(dtype_dest), src),

    return get_elwise_kernel(context,
            "%(tp_dest)s *dest, %(tp_src)s *src" % {
                "tp_dest": dtype_to_ctype(dtype_dest),
                "tp_src": dtype_to_ctype(dtype_src),
                },
            "dest[i] = %s" % src,
            name="copy")


@context_dependent_memoize
def get_linear_combination_kernel(summand_descriptors,
        dtype_z):
    # TODO: Port this!
    raise NotImplementedError

    from pyopencl.tools import dtype_to_ctype
    from pyopencl.elementwise import \
            VectorArg, ScalarArg, get_elwise_module

    args = []
    preamble = []
    loop_prep = []
    summands = []
    tex_names = []

    for i, (is_gpu_scalar, scalar_dtype, vector_dtype) in \
            enumerate(summand_descriptors):
        if is_gpu_scalar:
            preamble.append(
                    "texture <%s, 1, cudaReadModeElementType> tex_a%d;"
                    % (dtype_to_ctype(scalar_dtype, with_fp_tex_hack=True), i))
            args.append(VectorArg(vector_dtype, "x%d" % i, with_offset=True))
            tex_names.append("tex_a%d" % i)
            loop_prep.append(
                    "%s a%d = fp_tex1Dfetch(tex_a%d, 0)"
                    % (dtype_to_ctype(scalar_dtype), i, i))
        else:
            args.append(ScalarArg(scalar_dtype, "a%d" % i))
            args.append(VectorArg(vector_dtype, "x%d" % i, with_offset=True))

        summands.append("a%d*x%d[i]" % (i, i))

    args.append(VectorArg(dtype_z, "z", with_offset=True))
    args.append(ScalarArg(np.uintp, "n"))

    mod = get_elwise_module(args,
            "z[i] = " + " + ".join(summands),
            "linear_combination",
            preamble="\n".join(preamble),
            loop_prep=";\n".join(loop_prep))

    func = mod.get_function("linear_combination")
    tex_src = [mod.get_texref(tn) for tn in tex_names]
    func.prepare("".join(arg.struct_char for arg in args),
            (1, 1, 1), texrefs=tex_src)

    return func, tex_src


def complex_dtype_to_name(dtype):
    if dtype == np.complex128:
        return "cdouble"
    elif dtype == np.complex64:
        return "cfloat"
    else:
        raise RuntimeError("invalid complex type")


def real_dtype(dtype):
    return dtype.type(0).real.dtype


@context_dependent_memoize
def get_axpbyz_kernel(context, dtype_x, dtype_y, dtype_z):
    ax = "a*x[i]"
    by = "b*y[i]"

    x_is_complex = dtype_x.kind == "c"
    y_is_complex = dtype_y.kind == "c"
    z_is_complex = dtype_z.kind == "c"

    if x_is_complex:
        ax = "%s_mul(a, x[i])" % complex_dtype_to_name(dtype_x)

    if y_is_complex:
        by = "%s_mul(b, y[i])" % complex_dtype_to_name(dtype_y)

    if x_is_complex and not y_is_complex:
        by = "%s_fromreal(%s)" % (complex_dtype_to_name(dtype_x), by)

    if not x_is_complex and y_is_complex:
        ax = "%s_fromreal(%s)" % (complex_dtype_to_name(dtype_y), ax)

    result = "%s + %s" % (ax, by)
    if z_is_complex:
        result = "%s_cast(%s)" % (complex_dtype_to_name(dtype_z), result)

    return get_elwise_kernel(context,
            "%(tp_z)s *z, %(tp_x)s a, %(tp_x)s *x, %(tp_y)s b, %(tp_y)s *y" % {
                "tp_x": dtype_to_ctype(dtype_x),
                "tp_y": dtype_to_ctype(dtype_y),
                "tp_z": dtype_to_ctype(dtype_z),
                },
            "z[i] = %s" % result,
            name="axpbyz")


@context_dependent_memoize
def get_axpbz_kernel(context, dtype_a, dtype_x, dtype_b, dtype_z):
    a_is_complex = dtype_a.kind == "c"
    x_is_complex = dtype_x.kind == "c"
    b_is_complex = dtype_b.kind == "c"

    z_is_complex = dtype_z.kind == "c"

    ax = "a*x[i]"
    if a_is_complex and x_is_complex:
        a = "a"
        x = "x[i]"

        if dtype_a != dtype_z:
            a = "%s_cast(%s)" % (complex_dtype_to_name(dtype_z), a)
        if dtype_x != dtype_z:
            x = "%s_cast(%s)" % (complex_dtype_to_name(dtype_z), x)

        ax = "%s_mul(%s, %s)" % (complex_dtype_to_name(dtype_z), a, x)

    # The following two are workarounds for Apple on OS X 10.8.
    # They're not really necessary.

    elif a_is_complex and not x_is_complex:
        ax = "a*((%s) x[i])" % dtype_to_ctype(real_dtype(dtype_a))
    elif not a_is_complex and x_is_complex:
        ax = "((%s) a)*x[i]" % dtype_to_ctype(real_dtype(dtype_x))

    b = "b"
    if z_is_complex and not b_is_complex:
        b = "%s_fromreal(%s)" % (complex_dtype_to_name(dtype_z), b)

    if z_is_complex and not (a_is_complex or x_is_complex):
        ax = "%s_fromreal(%s)" % (complex_dtype_to_name(dtype_z), ax)

    if z_is_complex:
        ax = "%s_cast(%s)" % (complex_dtype_to_name(dtype_z), ax)
        b = "%s_cast(%s)" % (complex_dtype_to_name(dtype_z), b)

    return get_elwise_kernel(context,
            "%(tp_z)s *z, %(tp_a)s a, %(tp_x)s *x,%(tp_b)s b" % {
                "tp_a": dtype_to_ctype(dtype_a),
                "tp_x": dtype_to_ctype(dtype_x),
                "tp_b": dtype_to_ctype(dtype_b),
                "tp_z": dtype_to_ctype(dtype_z),
                },
            "z[i] = %s + %s" % (ax, b),
            name="axpb")


@context_dependent_memoize
def get_multiply_kernel(context, dtype_x, dtype_y, dtype_z):
    x_is_complex = dtype_x.kind == "c"
    y_is_complex = dtype_y.kind == "c"
    z_is_complex = dtype_z.kind == "c"

    x = "x[i]"
    y = "y[i]"

    if x_is_complex and dtype_x != dtype_z:
        x = "%s_cast(%s)" % (complex_dtype_to_name(dtype_z), x)
    if y_is_complex and dtype_y != dtype_z:
        y = "%s_cast(%s)" % (complex_dtype_to_name(dtype_z), y)

    if x_is_complex and y_is_complex:
        xy = "%s_mul(%s, %s)" % (complex_dtype_to_name(dtype_z), x, y)

    else:
        xy = "%s * %s" % (x, y)

    if z_is_complex:
        xy = "%s_cast(%s)" % (complex_dtype_to_name(dtype_z), xy)

    return get_elwise_kernel(context,
            "%(tp_z)s *z, %(tp_x)s *x, %(tp_y)s *y" % {
                "tp_x": dtype_to_ctype(dtype_x),
                "tp_y": dtype_to_ctype(dtype_y),
                "tp_z": dtype_to_ctype(dtype_z),
                },
            "z[i] = %s" % xy,
            name="multiply")


@context_dependent_memoize
def get_divide_kernel(context, dtype_x, dtype_y, dtype_z):
    x_is_complex = dtype_x.kind == "c"
    y_is_complex = dtype_y.kind == "c"
    z_is_complex = dtype_z.kind == "c"

    x = "x[i]"
    y = "y[i]"

    if z_is_complex and dtype_x != dtype_y:
        if x_is_complex and dtype_x != dtype_z:
            x = "%s_cast(%s)" % (complex_dtype_to_name(dtype_z), x)
        if y_is_complex and dtype_y != dtype_z:
            y = "%s_cast(%s)" % (complex_dtype_to_name(dtype_z), y)

    if x_is_complex and y_is_complex:
        xoy = "%s_divide(%s, %s)" % (complex_dtype_to_name(dtype_z), x, y)
    elif not x_is_complex and y_is_complex:

        xoy = "%s_rdivide(%s, %s)" % (complex_dtype_to_name(dtype_z), x, y)
    else:
        xoy = "%s / %s" % (x, y)

    if z_is_complex:
        xoy = "%s_cast(%s)" % (complex_dtype_to_name(dtype_z), xoy)

    return get_elwise_kernel(context,
            "%(tp_z)s *z, %(tp_x)s *x, %(tp_y)s *y" % {
                "tp_x": dtype_to_ctype(dtype_x),
                "tp_y": dtype_to_ctype(dtype_y),
                "tp_z": dtype_to_ctype(dtype_z),
                },
            "z[i] = %s" % xoy,
            name="divide")


@context_dependent_memoize
def get_rdivide_elwise_kernel(context, dtype_x, dtype_y, dtype_z):
    # implements y / x!
    x_is_complex = dtype_x.kind == "c"
    y_is_complex = dtype_y.kind == "c"
    z_is_complex = dtype_z.kind == "c"

    x = "x[i]"
    y = "y"

    if z_is_complex and dtype_x != dtype_y:
        if x_is_complex and dtype_x != dtype_z:
            x = "%s_cast(%s)" % (complex_dtype_to_name(dtype_z), x)
        if y_is_complex and dtype_y != dtype_z:
            y = "%s_cast(%s)" % (complex_dtype_to_name(dtype_z), y)

    if x_is_complex and y_is_complex:
        yox = "%s_divide(%s, %s)" % (complex_dtype_to_name(dtype_z), y, x)
    elif not y_is_complex and x_is_complex:
        yox = "%s_rdivide(%s, %s)" % (complex_dtype_to_name(dtype_x), y, x)
    else:
        yox = "%s / %s" % (y, x)

    return get_elwise_kernel(context,
            "%(tp_z)s *z, %(tp_x)s *x, %(tp_y)s y" % {
                "tp_x": dtype_to_ctype(dtype_x),
                "tp_y": dtype_to_ctype(dtype_y),
                "tp_z": dtype_to_ctype(dtype_z),
                },
            "z[i] = %s" % yox,
            name="divide_r")


@context_dependent_memoize
def get_fill_kernel(context, dtype):
    return get_elwise_kernel(context,
            "%(tp)s *z, %(tp)s a" % {
                "tp": dtype_to_ctype(dtype),
                },
            "z[i] = a",
            name="fill")


@context_dependent_memoize
def get_reverse_kernel(context, dtype):
    return get_elwise_kernel(context,
            "%(tp)s *z, %(tp)s *y" % {
                "tp": dtype_to_ctype(dtype),
                },
            "z[i] = y[n-1-i]",
            name="reverse")


@context_dependent_memoize
def get_arange_kernel(context, dtype):
    if dtype.kind == "c":
        i = "%s_fromreal(i)" % complex_dtype_to_name(dtype)
    else:
        i = "(%s) i" % dtype_to_ctype(dtype)

    return get_elwise_kernel(context, [
        VectorArg(dtype, "z", with_offset=True),
        ScalarArg(dtype, "start"),
        ScalarArg(dtype, "step"),
        ],
        "z[i] = start + %s*step" % i,
        name="arange")


@context_dependent_memoize
def get_pow_kernel(context, dtype_x, dtype_y, dtype_z,
        is_base_array, is_exp_array):
    if is_base_array:
        x = "x[i]"
        x_ctype = "%(tp_x)s *x"
    else:
        x = "x"
        x_ctype = "%(tp_x)s x"

    if is_exp_array:
        y = "y[i]"
        y_ctype = "%(tp_y)s *y"
    else:
        y = "y"
        y_ctype = "%(tp_y)s y"

    x_is_complex = dtype_x.kind == "c"
    y_is_complex = dtype_y.kind == "c"
    z_is_complex = dtype_z.kind == "c"

    if z_is_complex and dtype_x != dtype_y:
        if x_is_complex and dtype_x != dtype_z:
            x = "%s_cast(%s)" % (complex_dtype_to_name(dtype_z), x)
        if y_is_complex and dtype_y != dtype_z:
            y = "%s_cast(%s)" % (complex_dtype_to_name(dtype_z), y)
    elif dtype_x != dtype_y:
        if dtype_x != dtype_z:
            x = "(%s) (%s)" % (dtype_to_ctype(dtype_z), x)
        if dtype_y != dtype_z:
            y = "(%s) (%s)" % (dtype_to_ctype(dtype_z), y)

    if x_is_complex and y_is_complex:
        result = "%s_pow(%s, %s)" % (complex_dtype_to_name(dtype_z), x, y)
    elif x_is_complex and not y_is_complex:
        result = "%s_powr(%s, %s)" % (complex_dtype_to_name(dtype_z), x, y)
    elif not x_is_complex and y_is_complex:
        result = "%s_rpow(%s, %s)" % (complex_dtype_to_name(dtype_z), x, y)
    else:
        result = "pow(%s, %s)" % (x, y)

    return get_elwise_kernel(context,
            ("%(tp_z)s *z, " + x_ctype + ", "+y_ctype) % {
                "tp_x": dtype_to_ctype(dtype_x),
                "tp_y": dtype_to_ctype(dtype_y),
                "tp_z": dtype_to_ctype(dtype_z),
                },
            "z[i] = %s" % result,
            name="pow_method")


@context_dependent_memoize
def get_array_scalar_comparison_kernel(context, operator, dtype_a):
    return get_elwise_kernel(context, [
        VectorArg(np.int8, "out", with_offset=True),
        VectorArg(dtype_a, "a", with_offset=True),
        ScalarArg(dtype_a, "b"),
        ],
        "out[i] = a[i] %s b" % operator,
        name="scalar_comparison_kernel")


@context_dependent_memoize
def get_array_comparison_kernel(context, operator, dtype_a, dtype_b):
    return get_elwise_kernel(context, [
        VectorArg(np.int8, "out", with_offset=True),
        VectorArg(dtype_a, "a", with_offset=True),
        VectorArg(dtype_b, "b", with_offset=True),
        ],
        "out[i] = a[i] %s b[i]" % operator,
        name="comparison_kernel")


@context_dependent_memoize
def get_unary_func_kernel(context, func_name, in_dtype, out_dtype=None):
    if out_dtype is None:
        out_dtype = in_dtype

    return get_elwise_kernel(context, [
        VectorArg(out_dtype, "z", with_offset=True),
        VectorArg(in_dtype, "y", with_offset=True),
        ],
        "z[i] = %s(y[i])" % func_name,
        name="%s_kernel" % func_name)


@context_dependent_memoize
def get_binary_func_kernel(context, func_name, x_dtype, y_dtype, out_dtype,
                           preamble="", name=None):
    return get_elwise_kernel(context, [
        VectorArg(out_dtype, "z", with_offset=True),
        VectorArg(x_dtype, "x", with_offset=True),
        VectorArg(y_dtype, "y", with_offset=True),
        ],
        "z[i] = %s(x[i], y[i])" % func_name,
        name="%s_kernel" % func_name if name is None else name,
        preamble=preamble)


@context_dependent_memoize
def get_float_binary_func_kernel(context, func_name, x_dtype, y_dtype,
                                 out_dtype, preamble="", name=None):
    if (np.array(0, x_dtype) * np.array(0, y_dtype)).itemsize > 4:
        arg_type = 'double'
        preamble = """
        #if __OPENCL_C_VERSION__ < 120
        #pragma OPENCL EXTENSION cl_khr_fp64: enable
        #endif
        #define PYOPENCL_DEFINE_CDOUBLE
        """ + preamble
    else:
        arg_type = 'float'
    return get_elwise_kernel(context, [
        VectorArg(out_dtype, "z", with_offset=True),
        VectorArg(x_dtype, "x", with_offset=True),
        VectorArg(y_dtype, "y", with_offset=True),
        ],
        "z[i] = %s((%s)x[i], (%s)y[i])" % (func_name, arg_type, arg_type),
        name="%s_kernel" % func_name if name is None else name,
        preamble=preamble)


@context_dependent_memoize
def get_fmod_kernel(context, out_dtype=np.float32, arg_dtype=np.float32,
                    mod_dtype=np.float32):
    return get_float_binary_func_kernel(context, 'fmod', arg_dtype,
                                        mod_dtype, out_dtype)


@context_dependent_memoize
def get_modf_kernel(context, int_dtype=np.float32,
                    frac_dtype=np.float32, x_dtype=np.float32):
    return get_elwise_kernel(context, [
        VectorArg(int_dtype, "intpart", with_offset=True),
        VectorArg(frac_dtype, "fracpart", with_offset=True),
        VectorArg(x_dtype, "x", with_offset=True),
        ],
        """
        fracpart[i] = modf(x[i], &intpart[i])
        """,
        name="modf_kernel")


@context_dependent_memoize
def get_frexp_kernel(context, sign_dtype=np.float32, exp_dtype=np.float32,
                     x_dtype=np.float32):
    return get_elwise_kernel(context, [
        VectorArg(sign_dtype, "significand", with_offset=True),
        VectorArg(exp_dtype, "exponent", with_offset=True),
        VectorArg(x_dtype, "x", with_offset=True),
        ],
        """
        int expt = 0;
        significand[i] = frexp(x[i], &expt);
        exponent[i] = expt;
        """,
        name="frexp_kernel")


@context_dependent_memoize
def get_ldexp_kernel(context, out_dtype=np.float32, sig_dtype=np.float32,
                     expt_dtype=np.float32):
    return get_binary_func_kernel(
        context, '_PYOCL_LDEXP', sig_dtype, expt_dtype, out_dtype,
        preamble="#define _PYOCL_LDEXP(x, y) ldexp(x, (int)(y))",
        name="ldexp_kernel")


@context_dependent_memoize
def get_bessel_kernel(context, which_func, out_dtype=np.float64,
                      order_dtype=np.int32, x_dtype=np.float64):
    return get_elwise_kernel(context, [
        VectorArg(out_dtype, "z", with_offset=True),
        ScalarArg(order_dtype, "ord_n"),
        VectorArg(x_dtype, "x", with_offset=True),
        ],
        "z[i] = bessel_%sn(ord_n, x[i])" % which_func,
        name="bessel_%sn_kernel" % which_func,
        preamble="""
        #if __OPENCL_C_VERSION__ < 120
        #pragma OPENCL EXTENSION cl_khr_fp64: enable
        #endif
        #define PYOPENCL_DEFINE_CDOUBLE
        #include <pyopencl-bessel-%s.cl>
        """ % which_func)


@context_dependent_memoize
def get_diff_kernel(context, dtype):
    return get_elwise_kernel(context, [
            VectorArg(dtype, "result", with_offset=True),
            VectorArg(dtype, "array", with_offset=True),
            ],
            "result[i] = array[i+1] - array[i]",
            name="diff")


@context_dependent_memoize
def get_if_positive_kernel(context, crit_dtype, dtype):
    return get_elwise_kernel(context, [
            VectorArg(dtype, "result", with_offset=True),
            VectorArg(crit_dtype, "crit", with_offset=True),
            VectorArg(dtype, "then_", with_offset=True),
            VectorArg(dtype, "else_", with_offset=True),
            ],
            "result[i] = crit[i] > 0 ? then_[i] : else_[i]",
            name="if_positive")

# }}}

# vim: fdm=marker:filetype=pyopencl