This file is indexed.

/usr/lib/python2.7/dist-packages/pyopencl/scan.py is in python-pyopencl 2015.1-2build3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
"""Scan primitive."""

from __future__ import division

__copyright__ = """
Copyright 2011-2012 Andreas Kloeckner
Copyright 2008-2011 NVIDIA Corporation
"""

__license__ = """
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Derived from thrust/detail/backend/cuda/detail/fast_scan.inl
within the Thrust project, https://code.google.com/p/thrust/

"""

# Direct link to thrust source:
# https://code.google.com/p/thrust/source/browse/thrust/detail/backend/cuda/detail/fast_scan.inl # noqa

import numpy as np

import pyopencl as cl
import pyopencl.array  # noqa
from pyopencl.tools import (dtype_to_ctype, bitlog2,
        KernelTemplateBase, _process_code_for_macro,
        get_arg_list_scalar_arg_dtypes,
        context_dependent_memoize)

import pyopencl._mymako as mako
from pyopencl._cluda import CLUDA_PREAMBLE


# {{{ preamble

SHARED_PREAMBLE = CLUDA_PREAMBLE + """//CL//
#define WG_SIZE ${wg_size}

#define SCAN_EXPR(a, b, across_seg_boundary) ${scan_expr}
#define INPUT_EXPR(i) (${input_expr})
%if is_segmented:
    #define IS_SEG_START(i, a) (${is_segment_start_expr})
%endif

${preamble}

typedef ${dtype_to_ctype(scan_dtype)} scan_type;
typedef ${dtype_to_ctype(index_dtype)} index_type;

// NO_SEG_BOUNDARY is the largest representable integer in index_type.
// This assumption is used in code below.
#define NO_SEG_BOUNDARY ${str(np.iinfo(index_dtype).max)}
"""

# }}}

# {{{ main scan code

# Algorithm: Each work group is responsible for one contiguous
# 'interval'. There are just enough intervals to fill all compute
# units.  Intervals are split into 'units'. A unit is what gets
# worked on in parallel by one work group.
#
# in index space:
# interval > unit > local-parallel > k-group
#
# (Note that there is also a transpose in here: The data is read
# with local ids along linear index order.)
#
# Each unit has two axes--the local-id axis and the k axis.
#
# unit 0:
# | | | | | | | | | | ----> lid
# | | | | | | | | | |
# | | | | | | | | | |
# | | | | | | | | | |
# | | | | | | | | | |
#
# |
# v k (fastest-moving in linear index)
#
# unit 1:
# | | | | | | | | | | ----> lid
# | | | | | | | | | |
# | | | | | | | | | |
# | | | | | | | | | |
# | | | | | | | | | |
#
# |
# v k (fastest-moving in linear index)
#
# ...
#
# At a device-global level, this is a three-phase algorithm, in
# which first each interval does its local scan, then a scan
# across intervals exchanges data globally, and the final update
# adds the exchanged sums to each interval.
#
# Exclusive scan is realized by allowing look-behind (access to the
# preceding item) in the final update, by means of a local shift.
#
# NOTE: All segment_start_in_X indices are relative to the start
# of the array.

SCAN_INTERVALS_SOURCE = SHARED_PREAMBLE + r"""//CL//

#define K ${k_group_size}

// #define DEBUG
#ifdef DEBUG
    #define pycl_printf(ARGS) printf ARGS
#else
    #define pycl_printf(ARGS) /* */
#endif

KERNEL
REQD_WG_SIZE(WG_SIZE, 1, 1)
void ${kernel_name}(
    ${argument_signature},
    GLOBAL_MEM scan_type *restrict partial_scan_buffer,
    const index_type N,
    const index_type interval_size
    %if is_first_level:
        , GLOBAL_MEM scan_type *restrict interval_results
    %endif
    %if is_segmented and is_first_level:
        // NO_SEG_BOUNDARY if no segment boundary in interval.
        , GLOBAL_MEM index_type *restrict g_first_segment_start_in_interval
    %endif
    %if store_segment_start_flags:
        , GLOBAL_MEM char *restrict g_segment_start_flags
    %endif
    )
{
    // index K in first dimension used for carry storage
    %if use_bank_conflict_avoidance:
        // Avoid bank conflicts by adding a single 32-bit value to the size of
        // the scan type.
        struct __attribute__ ((__packed__)) wrapped_scan_type
        {
            scan_type value;
            int dummy;
        };
        LOCAL_MEM struct wrapped_scan_type ldata[K + 1][WG_SIZE + 1];
    %else:
        struct wrapped_scan_type
        {
            scan_type value;
        };

        // padded in WG_SIZE to avoid bank conflicts
        LOCAL_MEM struct wrapped_scan_type ldata[K + 1][WG_SIZE];
    %endif

    %if is_segmented:
        LOCAL_MEM char l_segment_start_flags[K][WG_SIZE];
        LOCAL_MEM index_type l_first_segment_start_in_subtree[WG_SIZE];

        // only relevant/populated for local id 0
        index_type first_segment_start_in_interval = NO_SEG_BOUNDARY;

        index_type first_segment_start_in_k_group, first_segment_start_in_subtree;
    %endif

    // {{{ declare local data for input_fetch_exprs if any of them are stenciled

    <%
        fetch_expr_offsets = {}
        for name, arg_name, ife_offset in input_fetch_exprs:
            fetch_expr_offsets.setdefault(arg_name, set()).add(ife_offset)

        local_fetch_expr_args = set(
            arg_name
            for arg_name, ife_offsets in fetch_expr_offsets.items()
            if -1 in ife_offsets or len(ife_offsets) > 1)
    %>

    %for arg_name in local_fetch_expr_args:
        LOCAL_MEM ${arg_ctypes[arg_name]} l_${arg_name}[WG_SIZE*K];
    %endfor

    // }}}

    const index_type interval_begin = interval_size * GID_0;
    const index_type interval_end   = min(interval_begin + interval_size, N);

    const index_type unit_size  = K * WG_SIZE;

    index_type unit_base = interval_begin;

    %for is_tail in [False, True]:

        %if not is_tail:
            for(; unit_base + unit_size <= interval_end; unit_base += unit_size)
        %else:
            if (unit_base < interval_end)
        %endif

        {

            // {{{ carry out input_fetch_exprs
            // (if there are ones that need to be fetched into local)

            %if local_fetch_expr_args:
                for(index_type k = 0; k < K; k++)
                {
                    const index_type offset = k*WG_SIZE + LID_0;
                    const index_type read_i = unit_base + offset;

                    %for arg_name in local_fetch_expr_args:
                        %if is_tail:
                        if (read_i < interval_end)
                        %endif
                        {
                            l_${arg_name}[offset] = ${arg_name}[read_i];
                        }
                    %endfor
                }

                local_barrier();
            %endif

            pycl_printf(("after input_fetch_exprs\n"));

            // }}}

            // {{{ read a unit's worth of data from global

            for(index_type k = 0; k < K; k++)
            {
                const index_type offset = k*WG_SIZE + LID_0;
                const index_type read_i = unit_base + offset;

                %if is_tail:
                if (read_i < interval_end)
                %endif
                {
                    %for name, arg_name, ife_offset in input_fetch_exprs:
                        ${arg_ctypes[arg_name]} ${name};

                        %if arg_name in local_fetch_expr_args:
                            if (offset + ${ife_offset} >= 0)
                                ${name} = l_${arg_name}[offset + ${ife_offset}];
                            else if (read_i + ${ife_offset} >= 0)
                                ${name} = ${arg_name}[read_i + ${ife_offset}];
                            /*
                            else
                                if out of bounds, name is left undefined */

                        %else:
                            // ${arg_name} gets fetched directly from global
                            ${name} = ${arg_name}[read_i];

                        %endif
                    %endfor

                    scan_type scan_value = INPUT_EXPR(read_i);

                    const index_type o_mod_k = offset % K;
                    const index_type o_div_k = offset / K;
                    ldata[o_mod_k][o_div_k].value = scan_value;

                    %if is_segmented:
                        bool is_seg_start = IS_SEG_START(read_i, scan_value);
                        l_segment_start_flags[o_mod_k][o_div_k] = is_seg_start;
                    %endif
                    %if store_segment_start_flags:
                        g_segment_start_flags[read_i] = is_seg_start;
                    %endif
                }
            }

            pycl_printf(("after read from global\n"));

            // }}}

            // {{{ carry in from previous unit, if applicable

            %if is_segmented:
                local_barrier();

                first_segment_start_in_k_group = NO_SEG_BOUNDARY;
                if (l_segment_start_flags[0][LID_0])
                    first_segment_start_in_k_group = unit_base + K*LID_0;
            %endif

            if (LID_0 == 0 && unit_base != interval_begin)
            {
                ldata[0][0].value = SCAN_EXPR(
                    ldata[K][WG_SIZE - 1].value, ldata[0][0].value,
                    %if is_segmented:
                        (l_segment_start_flags[0][0])
                    %else:
                        false
                    %endif
                    );
            }

            pycl_printf(("after carry-in\n"));

            // }}}

            local_barrier();

            // {{{ scan along k (sequentially in each work item)

            scan_type sum = ldata[0][LID_0].value;

            %if is_tail:
                const index_type offset_end = interval_end - unit_base;
            %endif

            for(index_type k = 1; k < K; k++)
            {
                %if is_tail:
                if (K * LID_0 + k < offset_end)
                %endif
                {
                    scan_type tmp = ldata[k][LID_0].value;
                    index_type seq_i = unit_base + K*LID_0 + k;

                    %if is_segmented:
                    if (l_segment_start_flags[k][LID_0])
                    {
                        first_segment_start_in_k_group = min(
                            first_segment_start_in_k_group,
                            seq_i);
                    }
                    %endif

                    sum = SCAN_EXPR(sum, tmp,
                        %if is_segmented:
                            (l_segment_start_flags[k][LID_0])
                        %else:
                            false
                        %endif
                        );

                    ldata[k][LID_0].value = sum;
                }
            }

            pycl_printf(("after scan along k\n"));

            // }}}

            // store carry in out-of-bounds (padding) array entry (index K) in
            // the K direction
            ldata[K][LID_0].value = sum;

            %if is_segmented:
                l_first_segment_start_in_subtree[LID_0] =
                    first_segment_start_in_k_group;
            %endif

            local_barrier();

            // {{{ tree-based local parallel scan

            // This tree-based scan works as follows:
            // - Each work item adds the previous item to its current state
            // - barrier
            // - Each work item adds in the item from two positions to the left
            // - barrier
            // - Each work item adds in the item from four positions to the left
            // ...
            // At the end, each item has summed all prior items.

            // across k groups, along local id
            // (uses out-of-bounds k=K array entry for storage)

            scan_type val = ldata[K][LID_0].value;

            <% scan_offset = 1 %>

            % while scan_offset <= wg_size:
                // {{{ reads from local allowed, writes to local not allowed

                if (LID_0 >= ${scan_offset})
                {
                    scan_type tmp = ldata[K][LID_0 - ${scan_offset}].value;
                    % if is_tail:
                    if (K*LID_0 < offset_end)
                    % endif
                    {
                        val = SCAN_EXPR(tmp, val,
                            %if is_segmented:
                                (l_first_segment_start_in_subtree[LID_0]
                                    != NO_SEG_BOUNDARY)
                            %else:
                                false
                            %endif
                            );
                    }

                    %if is_segmented:
                        // Prepare for l_first_segment_start_in_subtree, below.

                        // Note that this update must take place *even* if we're
                        // out of bounds.

                        first_segment_start_in_subtree = min(
                            l_first_segment_start_in_subtree[LID_0],
                            l_first_segment_start_in_subtree
                                [LID_0 - ${scan_offset}]);
                    %endif
                }
                %if is_segmented:
                    else
                    {
                        first_segment_start_in_subtree =
                            l_first_segment_start_in_subtree[LID_0];
                    }
                %endif

                // }}}

                local_barrier();

                // {{{ writes to local allowed, reads from local not allowed

                ldata[K][LID_0].value = val;
                %if is_segmented:
                    l_first_segment_start_in_subtree[LID_0] =
                        first_segment_start_in_subtree;
                %endif

                // }}}

                local_barrier();

                %if 0:
                if (LID_0 == 0)
                {
                    printf("${scan_offset}: ");
                    for (int i = 0; i < WG_SIZE; ++i)
                    {
                        if (l_first_segment_start_in_subtree[i] == NO_SEG_BOUNDARY)
                            printf("- ");
                        else
                            printf("%d ", l_first_segment_start_in_subtree[i]);
                    }
                    printf("\n");
                }
                %endif

                <% scan_offset *= 2 %>
            % endwhile

            pycl_printf(("after tree scan\n"));

            // }}}

            // {{{ update local values

            if (LID_0 > 0)
            {
                sum = ldata[K][LID_0 - 1].value;

                for(index_type k = 0; k < K; k++)
                {
                    %if is_tail:
                    if (K * LID_0 + k < offset_end)
                    %endif
                    {
                        scan_type tmp = ldata[k][LID_0].value;
                        ldata[k][LID_0].value = SCAN_EXPR(sum, tmp,
                            %if is_segmented:
                                (unit_base + K * LID_0 + k
                                    >= first_segment_start_in_k_group)
                            %else:
                                false
                            %endif
                            );
                    }
                }
            }

            %if is_segmented:
                if (LID_0 == 0)
                {
                    // update interval-wide first-seg variable from current unit
                    first_segment_start_in_interval = min(
                        first_segment_start_in_interval,
                        l_first_segment_start_in_subtree[WG_SIZE-1]);
                }
            %endif

            pycl_printf(("after local update\n"));

            // }}}

            local_barrier();

            // {{{ write data

            %if is_gpu:
            {
                // work hard with index math to achieve contiguous 32-bit stores
                __global int *dest =
                    (__global int *) (partial_scan_buffer + unit_base);

                <%

                assert scan_dtype.itemsize % 4 == 0

                ints_per_wg = wg_size
                ints_to_store = scan_dtype.itemsize*wg_size*k_group_size // 4

                %>

                const index_type scan_types_per_int = ${scan_dtype.itemsize//4};

                %for store_base in range(0, ints_to_store, ints_per_wg):
                    <%

                    # Observe that ints_to_store is divisible by the work group
                    # size already, so we won't go out of bounds that way.
                    assert store_base + ints_per_wg <= ints_to_store

                    %>

                    %if is_tail:
                    if (${store_base} + LID_0 <
                        scan_types_per_int*(interval_end - unit_base))
                    %endif
                    {
                        index_type linear_index = ${store_base} + LID_0;
                        index_type linear_scan_data_idx =
                            linear_index / scan_types_per_int;
                        index_type remainder =
                            linear_index - linear_scan_data_idx * scan_types_per_int;

                        __local int *src = (__local int *) &(
                            ldata
                                [linear_scan_data_idx % K]
                                [linear_scan_data_idx / K].value);

                        dest[linear_index] = src[remainder];
                    }
                %endfor
            }
            %else:
            for (index_type k = 0; k < K; k++)
            {
                const index_type offset = k*WG_SIZE + LID_0;

                %if is_tail:
                if (unit_base + offset < interval_end)
                %endif
                {
                    pycl_printf(("write: %d\n", unit_base + offset));
                    partial_scan_buffer[unit_base + offset] =
                        ldata[offset % K][offset / K].value;
                }
            }
            %endif

            pycl_printf(("after write\n"));

            // }}}

            local_barrier();
        }

    % endfor

    // write interval sum
    %if is_first_level:
        if (LID_0 == 0)
        {
            interval_results[GID_0] = partial_scan_buffer[interval_end - 1];
            %if is_segmented:
                g_first_segment_start_in_interval[GID_0] =
                    first_segment_start_in_interval;
            %endif
        }
    %endif
}
"""

# }}}

# {{{ update

UPDATE_SOURCE = SHARED_PREAMBLE + r"""//CL//

KERNEL
REQD_WG_SIZE(WG_SIZE, 1, 1)
void ${name_prefix}_final_update(
    ${argument_signature},
    const index_type N,
    const index_type interval_size,
    GLOBAL_MEM scan_type *restrict interval_results,
    GLOBAL_MEM scan_type *restrict partial_scan_buffer
    %if is_segmented:
        , GLOBAL_MEM index_type *restrict g_first_segment_start_in_interval
    %endif
    %if is_segmented and use_lookbehind_update:
        , GLOBAL_MEM char *restrict g_segment_start_flags
    %endif
    )
{
    %if use_lookbehind_update:
        LOCAL_MEM scan_type ldata[WG_SIZE];
    %endif
    %if is_segmented and use_lookbehind_update:
        LOCAL_MEM char l_segment_start_flags[WG_SIZE];
    %endif

    const index_type interval_begin = interval_size * GID_0;
    const index_type interval_end = min(interval_begin + interval_size, N);

    // carry from last interval
    scan_type carry = ${neutral};
    if (GID_0 != 0)
        carry = interval_results[GID_0 - 1];

    %if is_segmented:
        const index_type first_seg_start_in_interval =
            g_first_segment_start_in_interval[GID_0];
    %endif

    %if not is_segmented and 'last_item' in output_statement:
        scan_type last_item = interval_results[GDIM_0-1];
    %endif

    %if not use_lookbehind_update:
        // {{{ no look-behind ('prev_item' not in output_statement -> simpler)

        index_type update_i = interval_begin+LID_0;

        %if is_segmented:
            index_type seg_end = min(first_seg_start_in_interval, interval_end);
        %endif

        for(; update_i < interval_end; update_i += WG_SIZE)
        {
            scan_type partial_val = partial_scan_buffer[update_i];
            scan_type item = SCAN_EXPR(carry, partial_val,
                %if is_segmented:
                    (update_i >= seg_end)
                %else:
                    false
                %endif
                );
            index_type i = update_i;

            { ${output_statement}; }
        }

        // }}}
    %else:
        // {{{ allow look-behind ('prev_item' in output_statement -> complicated)

        // We are not allowed to branch across barriers at a granularity smaller
        // than the whole workgroup. Therefore, the for loop is group-global,
        // and there are lots of local ifs.

        index_type group_base = interval_begin;
        scan_type prev_item = carry; // (A)

        for(; group_base < interval_end; group_base += WG_SIZE)
        {
            index_type update_i = group_base+LID_0;

            // load a work group's worth of data
            if (update_i < interval_end)
            {
                scan_type tmp = partial_scan_buffer[update_i];

                tmp = SCAN_EXPR(carry, tmp,
                    %if is_segmented:
                        (update_i >= first_seg_start_in_interval)
                    %else:
                        false
                    %endif
                    );

                ldata[LID_0] = tmp;

                %if is_segmented:
                    l_segment_start_flags[LID_0] = g_segment_start_flags[update_i];
                %endif
            }

            local_barrier();

            // find prev_item
            if (LID_0 != 0)
                prev_item = ldata[LID_0 - 1];
            /*
            else
                prev_item = carry (see (A)) OR last tail (see (B));
            */

            if (update_i < interval_end)
            {
                %if is_segmented:
                    if (l_segment_start_flags[LID_0])
                        prev_item = ${neutral};
                %endif

                scan_type item = ldata[LID_0];
                index_type i = update_i;
                { ${output_statement}; }
            }

            if (LID_0 == 0)
                prev_item = ldata[WG_SIZE - 1]; // (B)

            local_barrier();
        }

        // }}}
    %endif
}
"""

# }}}


# {{{ driver

# {{{ helpers

def _round_down_to_power_of_2(val):
    result = 2**bitlog2(val)
    if result > val:
        result >>= 1

    assert result <= val
    return result

_PREFIX_WORDS = set("""
        ldata partial_scan_buffer global scan_offset
        segment_start_in_k_group carry
        g_first_segment_start_in_interval IS_SEG_START tmp Z
        val l_first_segment_start_in_subtree unit_size
        index_type interval_begin interval_size offset_end K
        SCAN_EXPR do_update WG_SIZE
        first_segment_start_in_k_group scan_type
        segment_start_in_subtree offset interval_results interval_end
        first_segment_start_in_subtree unit_base
        first_segment_start_in_interval k INPUT_EXPR
        prev_group_sum prev pv value partial_val pgs
        is_seg_start update_i scan_item_at_i seq_i read_i
        l_ o_mod_k o_div_k l_segment_start_flags scan_value sum
        first_seg_start_in_interval g_segment_start_flags
        group_base seg_end my_val DEBUG ARGS
        ints_to_store ints_per_wg scan_types_per_int linear_index
        linear_scan_data_idx dest src store_base wrapped_scan_type
        dummy

        LID_2 LID_1 LID_0
        LDIM_0 LDIM_1 LDIM_2
        GDIM_0 GDIM_1 GDIM_2
        GID_0 GID_1 GID_2
        """.split())

_IGNORED_WORDS = set("""
        4 8 32

        typedef for endfor if void while endwhile endfor endif else const printf
        None return bool n char true false ifdef pycl_printf str range assert
        np iinfo max itemsize __packed__ struct restrict

        set iteritems len setdefault

        GLOBAL_MEM LOCAL_MEM_ARG WITHIN_KERNEL LOCAL_MEM KERNEL REQD_WG_SIZE
        local_barrier
        CLK_LOCAL_MEM_FENCE OPENCL EXTENSION
        pragma __attribute__ __global __kernel __local
        get_local_size get_local_id cl_khr_fp64 reqd_work_group_size
        get_num_groups barrier get_group_id
        CL_VERSION_1_1 __OPENCL_C_VERSION__ 120

        _final_update _debug_scan kernel_name

        positions all padded integer its previous write based writes 0
        has local worth scan_expr to read cannot not X items False bank
        four beginning follows applicable item min each indices works side
        scanning right summed relative used id out index avoid current state
        boundary True across be This reads groups along Otherwise undetermined
        store of times prior s update first regardless Each number because
        array unit from segment conflicts two parallel 2 empty define direction
        CL padding work tree bounds values and adds
        scan is allowed thus it an as enable at in occur sequentially end no
        storage data 1 largest may representable uses entry Y meaningful
        computations interval At the left dimension know d
        A load B group perform shift tail see last OR
        this add fetched into are directly need
        gets them stenciled that undefined
        there up any ones or name only relevant populated
        even wide we Prepare int seg Note re below place take variable must
        intra Therefore find code assumption
        branch workgroup complicated granularity phase remainder than simpler
        We smaller look ifs lots self behind allow barriers whole loop
        after already Observe achieve contiguous stores hard go with by math
        size won t way divisible bit so Avoid declare adding single type

        is_tail is_first_level input_expr argument_signature preamble
        double_support neutral output_statement
        k_group_size name_prefix is_segmented index_dtype scan_dtype
        wg_size is_segment_start_expr fetch_expr_offsets
        arg_ctypes ife_offsets input_fetch_exprs def
        ife_offset arg_name local_fetch_expr_args update_body
        update_loop_lookbehind update_loop_plain update_loop
        use_lookbehind_update store_segment_start_flags
        update_loop first_seg scan_dtype dtype_to_ctype
        is_gpu use_bank_conflict_avoidance

        a b prev_item i last_item prev_value
        N NO_SEG_BOUNDARY across_seg_boundary
        """.split())


def _make_template(s):
    leftovers = set()

    def replace_id(match):
        # avoid name clashes with user code by adding 'psc_' prefix to
        # identifiers.

        word = match.group(1)
        if word in _IGNORED_WORDS:
            return word
        elif word in _PREFIX_WORDS:
            return "psc_"+word
        else:
            leftovers.add(word)
            return word

    import re
    s = re.sub(r"\b([a-zA-Z0-9_]+)\b", replace_id, s)

    if leftovers:
        from warnings import warn
        warn("leftover words in identifier prefixing: " + " ".join(leftovers))

    return mako.template.Template(s, strict_undefined=True)

from pytools import Record


class _ScanKernelInfo(Record):
    pass

# }}}


class ScanPerformanceWarning(UserWarning):
    pass


class _GenericScanKernelBase(object):
    # {{{ constructor, argument processing

    def __init__(self, ctx, dtype,
            arguments, input_expr, scan_expr, neutral, output_statement,
            is_segment_start_expr=None, input_fetch_exprs=[],
            index_dtype=np.int32,
            name_prefix="scan", options=[], preamble="", devices=None):
        """
        :arg ctx: a :class:`pyopencl.Context` within which the code
            for this scan kernel will be generated.
        :arg dtype: the :class:`numpy.dtype` with which the scan will
            be performed. May be a structured type if that type was registered
            through :func:`pyopencl.tools.get_or_register_dtype`.
        :arg arguments: A string of comma-separated C argument declarations.
            If *arguments* is specified, then *input_expr* must also be
            specified. All types used here must be known to PyOpenCL.
            (see :func:`pyopencl.tools.get_or_register_dtype`).
        :arg scan_expr: The associative, binary operation carrying out the scan,
            represented as a C string. Its two arguments are available as `a`
            and `b` when it is evaluated. `b` is guaranteed to be the
            'element being updated', and `a` is the increment. Thus,
            if some data is supposed to just propagate along without being
            modified by the scan, it should live in `b`.

            This expression may call functions given in the *preamble*.

            Another value available to this expression is `across_seg_boundary`,
            a C `bool` indicating whether this scan update is crossing a
            segment boundary, as defined by `is_segment_start_expr`.
            The scan routine does not implement segmentation
            semantics on its own. It relies on `scan_expr` to do this.
            This value is available (but always `false`) even for a
            non-segmented scan.

            .. note::

                In early pre-releases of the segmented scan,
                segmentation semantics were implemented *without*
                relying on `scan_expr`.

        :arg input_expr: A C expression, encoded as a string, resulting
            in the values to which the scan is applied. This may be used
            to apply a mapping to values stored in *arguments* before being
            scanned. The result of this expression must match *dtype*.
            The index intended to be mapped is available as `i` in this
            expression. This expression may also use the variables defined
            by *input_fetch_expr*.

            This expression may also call functions given in the *preamble*.
        :arg output_statement: a C statement that writes
            the output of the scan. It has access to the scan result as `item`,
            the preceding scan result item as `prev_item`, and the current index
            as `i`. `prev_item` in a segmented scan will be the neutral element
            at a segment boundary, not the immediately preceding item.

            Using *prev_item* in output statement has a small run-time cost.
            `prev_item` enables the construction of an exclusive scan.

            For non-segmented scans, *output_statement* may also reference
            `last_item`, which evaluates to the scan result of the last
            array entry.
        :arg is_segment_start_expr: A C expression, encoded as a string,
            resulting in a C `bool` value that determines whether a new
            scan segments starts at index *i*.  If given, makes the scan a
            segmented scan. Has access to the current index `i`, the result
            of *input_expr* as a, and in addition may use *arguments* and
            *input_fetch_expr* variables just like *input_expr*.

            If it returns true, then previous sums will not spill over into the
            item with index *i* or subsequent items.
        :arg input_fetch_exprs: a list of tuples *(NAME, ARG_NAME, OFFSET)*.
            An entry here has the effect of doing the equivalent of the following
            before input_expr::

                ARG_NAME_TYPE NAME = ARG_NAME[i+OFFSET];

            `OFFSET` is allowed to be 0 or -1, and `ARG_NAME_TYPE` is the type
            of `ARG_NAME`.
        :arg preamble: |preamble|

        The first array in the argument list determines the size of the index
        space over which the scan is carried out, and thus the values over
        which the index *i* occurring in a number of code fragments in
        arguments above will vary.

        All code fragments further have access to N, the number of elements
        being processed in the scan.
        """

        self.context = ctx
        dtype = self.dtype = np.dtype(dtype)

        if neutral is None:
            from warnings import warn
            warn("not specifying 'neutral' is deprecated and will lead to "
                    "wrong results if your scan is not in-place or your "
                    "'output_statement' does something otherwise non-trivial",
                    stacklevel=2)

        if dtype.itemsize % 4 != 0:
            raise TypeError("scan value type must have size divisible by 4 bytes")

        self.index_dtype = np.dtype(index_dtype)
        if np.iinfo(self.index_dtype).min >= 0:
            raise TypeError("index_dtype must be signed")

        if devices is None:
            devices = ctx.devices
        self.devices = devices
        self.options = options

        from pyopencl.tools import parse_arg_list
        self.parsed_args = parse_arg_list(arguments)
        from pyopencl.tools import VectorArg
        self.first_array_idx = [
                i for i, arg in enumerate(self.parsed_args)
                if isinstance(arg, VectorArg)][0]

        self.input_expr = input_expr

        self.is_segment_start_expr = is_segment_start_expr
        self.is_segmented = is_segment_start_expr is not None
        if self.is_segmented:
            is_segment_start_expr = _process_code_for_macro(is_segment_start_expr)

        self.output_statement = output_statement

        for name, arg_name, ife_offset in input_fetch_exprs:
            if ife_offset not in [0, -1]:
                raise RuntimeError("input_fetch_expr offsets must either be 0 or -1")
        self.input_fetch_exprs = input_fetch_exprs

        arg_dtypes = {}
        arg_ctypes = {}
        for arg in self.parsed_args:
            arg_dtypes[arg.name] = arg.dtype
            arg_ctypes[arg.name] = dtype_to_ctype(arg.dtype)

        self.options = options
        self.name_prefix = name_prefix

        # {{{ set up shared code dict

        from pytools import all
        from pyopencl.characterize import has_double_support

        self.code_variables = dict(
            np=np,
            dtype_to_ctype=dtype_to_ctype,
            preamble=preamble,
            name_prefix=name_prefix,
            index_dtype=self.index_dtype,
            scan_dtype=dtype,
            is_segmented=self.is_segmented,
            arg_dtypes=arg_dtypes,
            arg_ctypes=arg_ctypes,
            scan_expr=_process_code_for_macro(scan_expr),
            neutral=_process_code_for_macro(neutral),
            is_gpu=bool(self.devices[0].type & cl.device_type.GPU),
            double_support=all(
                has_double_support(dev) for dev in devices),
            )

        # }}}

        self.finish_setup()

    # }}}


class GenericScanKernel(_GenericScanKernelBase):
    """Generates and executes code that performs prefix sums ("scans") on
    arbitrary types, with many possible tweaks.

    Usage example::

        from pyopencl.scan import GenericScanKernel
        knl = GenericScanKernel(
                context, np.int32,
                arguments="__global int *ary",
                input_expr="ary[i]",
                scan_expr="a+b", neutral="0",
                output_statement="ary[i+1] = item;")

        a = cl.array.arange(queue, 10000, dtype=np.int32)
        scan_kernel(a, queue=queue)

    """

    def finish_setup(self):
        use_lookbehind_update = "prev_item" in self.output_statement
        self.store_segment_start_flags = self.is_segmented and use_lookbehind_update

        # {{{ find usable workgroup/k-group size, build first-level scan

        trip_count = 0

        avail_local_mem = min(
                dev.local_mem_size
                for dev in self.devices)

        is_cpu = self.devices[0].type & cl.device_type.CPU
        is_gpu = self.devices[0].type & cl.device_type.GPU

        if is_cpu:
            # (about the widest vector a CPU can support, also taking
            # into account that CPUs don't hide latency by large work groups
            max_scan_wg_size = 16
            wg_size_multiples = 4
        else:
            max_scan_wg_size = min(dev.max_work_group_size for dev in self.devices)
            wg_size_multiples = 64

        use_bank_conflict_avoidance = (
                self.dtype.itemsize > 4 and self.dtype.itemsize % 8 == 0 and is_gpu)

        # k_group_size should be a power of two because of in-kernel
        # division by that number.

        solutions = []
        for k_exp in range(0, 9):
            for wg_size in range(wg_size_multiples, max_scan_wg_size+1,
                    wg_size_multiples):

                k_group_size = 2**k_exp
                lmem_use = self.get_local_mem_use(wg_size, k_group_size,
                        use_bank_conflict_avoidance)
                if lmem_use + 256 <= avail_local_mem:
                    solutions.append((wg_size*k_group_size, k_group_size, wg_size))

        if is_gpu:
            from pytools import any
            for wg_size_floor in [256, 192, 128]:
                have_sol_above_floor = any(wg_size >= wg_size_floor
                        for _, _, wg_size in solutions)

                if have_sol_above_floor:
                    # delete all solutions not meeting the wg size floor
                    solutions = [(total, try_k_group_size, try_wg_size)
                            for total, try_k_group_size, try_wg_size in solutions
                            if try_wg_size >= wg_size_floor]
                    break

        _, k_group_size, max_scan_wg_size = max(solutions)

        while True:
            candidate_scan_info = self.build_scan_kernel(
                    max_scan_wg_size, self.parsed_args,
                    _process_code_for_macro(self.input_expr),
                    self.is_segment_start_expr,
                    input_fetch_exprs=self.input_fetch_exprs,
                    is_first_level=True,
                    store_segment_start_flags=self.store_segment_start_flags,
                    k_group_size=k_group_size,
                    use_bank_conflict_avoidance=use_bank_conflict_avoidance)

            # Will this device actually let us execute this kernel
            # at the desired work group size? Building it is the
            # only way to find out.
            kernel_max_wg_size = min(
                    candidate_scan_info.kernel.get_work_group_info(
                        cl.kernel_work_group_info.WORK_GROUP_SIZE,
                        dev)
                    for dev in self.devices)

            if candidate_scan_info.wg_size <= kernel_max_wg_size:
                break
            else:
                max_scan_wg_size = min(kernel_max_wg_size, max_scan_wg_size)

            trip_count += 1
            assert trip_count <= 20

        self.first_level_scan_info = candidate_scan_info
        assert (_round_down_to_power_of_2(candidate_scan_info.wg_size)
                == candidate_scan_info.wg_size)

        # }}}

        # {{{ build second-level scan

        from pyopencl.tools import VectorArg
        second_level_arguments = self.parsed_args + [
                VectorArg(self.dtype, "interval_sums")]

        second_level_build_kwargs = {}
        if self.is_segmented:
            second_level_arguments.append(
                    VectorArg(self.index_dtype,
                        "g_first_segment_start_in_interval_input"))

            # is_segment_start_expr answers the question "should previous sums
            # spill over into this item". And since
            # g_first_segment_start_in_interval_input answers the question if a
            # segment boundary was found in an interval of data, then if not,
            # it's ok to spill over.
            second_level_build_kwargs["is_segment_start_expr"] = \
                    "g_first_segment_start_in_interval_input[i] != NO_SEG_BOUNDARY"
        else:
            second_level_build_kwargs["is_segment_start_expr"] = None

        self.second_level_scan_info = self.build_scan_kernel(
                max_scan_wg_size,
                arguments=second_level_arguments,
                input_expr="interval_sums[i]",
                input_fetch_exprs=[],
                is_first_level=False,
                store_segment_start_flags=False,
                k_group_size=k_group_size,
                use_bank_conflict_avoidance=use_bank_conflict_avoidance,
                **second_level_build_kwargs)

        # }}}

        # {{{ build final update kernel

        self.update_wg_size = min(max_scan_wg_size, 256)

        final_update_tpl = _make_template(UPDATE_SOURCE)
        final_update_src = str(final_update_tpl.render(
            wg_size=self.update_wg_size,
            output_statement=self.output_statement,
            argument_signature=", ".join(
                arg.declarator() for arg in self.parsed_args),
            is_segment_start_expr=self.is_segment_start_expr,
            input_expr=_process_code_for_macro(self.input_expr),
            use_lookbehind_update=use_lookbehind_update,
            **self.code_variables))

        final_update_prg = cl.Program(
                self.context, final_update_src).build(self.options)
        self.final_update_knl = getattr(
                final_update_prg,
                self.name_prefix+"_final_update")
        update_scalar_arg_dtypes = (
                get_arg_list_scalar_arg_dtypes(self.parsed_args)
                + [self.index_dtype, self.index_dtype, None, None])
        if self.is_segmented:
            # g_first_segment_start_in_interval
            update_scalar_arg_dtypes.append(None)
        if self.store_segment_start_flags:
            update_scalar_arg_dtypes.append(None)  # g_segment_start_flags
        self.final_update_knl.set_scalar_arg_dtypes(update_scalar_arg_dtypes)

        # }}}

    # {{{ scan kernel build/properties

    def get_local_mem_use(self, k_group_size, wg_size, use_bank_conflict_avoidance):
        arg_dtypes = {}
        for arg in self.parsed_args:
            arg_dtypes[arg.name] = arg.dtype

        fetch_expr_offsets = {}
        for name, arg_name, ife_offset in self.input_fetch_exprs:
            fetch_expr_offsets.setdefault(arg_name, set()).add(ife_offset)

        itemsize = self.dtype.itemsize
        if use_bank_conflict_avoidance:
            itemsize += 4

        return (
                # ldata
                itemsize*(k_group_size+1)*(wg_size+1)

                # l_segment_start_flags
                + k_group_size*wg_size

                # l_first_segment_start_in_subtree
                + self.index_dtype.itemsize*wg_size

                + k_group_size*wg_size*sum(
                    arg_dtypes[arg_name].itemsize
                    for arg_name, ife_offsets in fetch_expr_offsets.items()
                    if -1 in ife_offsets or len(ife_offsets) > 1))

    def build_scan_kernel(self, max_wg_size, arguments, input_expr,
            is_segment_start_expr, input_fetch_exprs, is_first_level,
            store_segment_start_flags, k_group_size,
            use_bank_conflict_avoidance):
        scalar_arg_dtypes = get_arg_list_scalar_arg_dtypes(arguments)

        # Empirically found on Nv hardware: no need to be bigger than this size
        wg_size = _round_down_to_power_of_2(
                min(max_wg_size, 256))

        kernel_name = self.code_variables["name_prefix"]+"_scan_intervals"
        if is_first_level:
            kernel_name += "_lev1"
        else:
            kernel_name += "_lev2"

        scan_tpl = _make_template(SCAN_INTERVALS_SOURCE)
        scan_src = str(scan_tpl.render(
            wg_size=wg_size,
            input_expr=input_expr,
            k_group_size=k_group_size,
            argument_signature=", ".join(arg.declarator() for arg in arguments),
            is_segment_start_expr=is_segment_start_expr,
            input_fetch_exprs=input_fetch_exprs,
            is_first_level=is_first_level,
            store_segment_start_flags=store_segment_start_flags,
            use_bank_conflict_avoidance=use_bank_conflict_avoidance,
            kernel_name=kernel_name,
            **self.code_variables))

        prg = cl.Program(self.context, scan_src).build(self.options)

        knl = getattr(prg, kernel_name)

        scalar_arg_dtypes.extend(
                (None, self.index_dtype, self. index_dtype))
        if is_first_level:
            scalar_arg_dtypes.append(None)  # interval_results
        if self.is_segmented and is_first_level:
            scalar_arg_dtypes.append(None)  # g_first_segment_start_in_interval
        if store_segment_start_flags:
            scalar_arg_dtypes.append(None)  # g_segment_start_flags
        knl.set_scalar_arg_dtypes(scalar_arg_dtypes)

        return _ScanKernelInfo(
                kernel=knl, wg_size=wg_size, knl=knl, k_group_size=k_group_size)

    # }}}

    def __call__(self, *args, **kwargs):
        # {{{ argument processing

        allocator = kwargs.get("allocator")
        queue = kwargs.get("queue")
        n = kwargs.get("size")
        wait_for = kwargs.get("wait_for")

        if len(args) != len(self.parsed_args):
            raise TypeError("expected %d arguments, got %d" %
                    (len(self.parsed_args), len(args)))

        first_array = args[self.first_array_idx]
        allocator = allocator or first_array.allocator
        queue = queue or first_array.queue

        if n is None:
            n, = first_array.shape

        if n == 0:
            # We're done here. (But pretend to return an event.)
            return cl.enqueue_marker(queue, wait_for=wait_for)

        data_args = []
        from pyopencl.tools import VectorArg
        for arg_descr, arg_val in zip(self.parsed_args, args):
            if isinstance(arg_descr, VectorArg):
                data_args.append(arg_val.data)
            else:
                data_args.append(arg_val)

        # }}}

        l1_info = self.first_level_scan_info
        l2_info = self.second_level_scan_info

        # see CL source above for terminology
        unit_size = l1_info.wg_size * l1_info.k_group_size
        max_intervals = 3*max(dev.max_compute_units for dev in self.devices)

        from pytools import uniform_interval_splitting
        interval_size, num_intervals = uniform_interval_splitting(
                n, unit_size, max_intervals)

        # {{{ allocate some buffers

        interval_results = cl.array.empty(queue,
                num_intervals, dtype=self.dtype,
                allocator=allocator)

        partial_scan_buffer = cl.array.empty(
                queue, n, dtype=self.dtype,
                allocator=allocator)

        if self.store_segment_start_flags:
            segment_start_flags = cl.array.empty(
                    queue, n, dtype=np.bool,
                    allocator=allocator)

        # }}}

        # {{{ first level scan of interval (one interval per block)

        scan1_args = data_args + [
                partial_scan_buffer.data, n, interval_size, interval_results.data,
                ]

        if self.is_segmented:
            first_segment_start_in_interval = cl.array.empty(queue,
                    num_intervals, dtype=self.index_dtype,
                    allocator=allocator)
            scan1_args.append(first_segment_start_in_interval.data)

        if self.store_segment_start_flags:
            scan1_args.append(segment_start_flags.data)

        l1_evt = l1_info.kernel(
                queue, (num_intervals,), (l1_info.wg_size,),
                *scan1_args, **dict(g_times_l=True, wait_for=wait_for))

        # }}}

        # {{{ second level scan of per-interval results

        # can scan at most one interval
        assert interval_size >= num_intervals

        scan2_args = data_args + [
                interval_results.data,  # interval_sums
                ]
        if self.is_segmented:
            scan2_args.append(first_segment_start_in_interval.data)
        scan2_args = scan2_args + [
                interval_results.data,  # partial_scan_buffer
                num_intervals, interval_size]

        l2_evt = l2_info.kernel(
                queue, (1,), (l1_info.wg_size,),
                *scan2_args, **dict(g_times_l=True, wait_for=[l1_evt]))

        # }}}

        # {{{ update intervals with result of interval scan

        upd_args = data_args + [
                n, interval_size, interval_results.data, partial_scan_buffer.data]
        if self.is_segmented:
            upd_args.append(first_segment_start_in_interval.data)
        if self.store_segment_start_flags:
            upd_args.append(segment_start_flags.data)

        return self.final_update_knl(
                queue, (num_intervals,), (self.update_wg_size,),
                *upd_args, **dict(g_times_l=True, wait_for=[l2_evt]))

        # }}}

# }}}

# {{{ debug kernel

DEBUG_SCAN_TEMPLATE = SHARED_PREAMBLE + r"""//CL//

KERNEL
REQD_WG_SIZE(1, 1, 1)
void ${name_prefix}_debug_scan(
    ${argument_signature},
    const index_type N)
{
    scan_type item = ${neutral};
    scan_type prev_item;

    for (index_type i = 0; i < N; ++i)
    {
        %for name, arg_name, ife_offset in input_fetch_exprs:
            ${arg_ctypes[arg_name]} ${name};
            %if ife_offset < 0:
                if (i+${ife_offset} >= 0)
                    ${name} = ${arg_name}[i+offset];
            %else:
                ${name} = ${arg_name}[i];
            %endif
        %endfor

        scan_type my_val = INPUT_EXPR(i);

        prev_item = item;
        %if is_segmented:
            bool is_seg_start = IS_SEG_START(i, my_val);
        %endif

        item = SCAN_EXPR(prev_item, my_val,
            %if is_segmented:
                is_seg_start
            %else:
                false
            %endif
            );

        {
            ${output_statement};
        }
    }
}
"""


class GenericDebugScanKernel(_GenericScanKernelBase):
    def finish_setup(self):
        scan_tpl = _make_template(DEBUG_SCAN_TEMPLATE)
        scan_src = str(scan_tpl.render(
            output_statement=self.output_statement,
            argument_signature=", ".join(
                arg.declarator() for arg in self.parsed_args),
            is_segment_start_expr=self.is_segment_start_expr,
            input_expr=_process_code_for_macro(self.input_expr),
            input_fetch_exprs=self.input_fetch_exprs,
            wg_size=1,
            **self.code_variables))

        scan_prg = cl.Program(self.context, scan_src).build(self.options)
        self.kernel = getattr(
                scan_prg, self.name_prefix+"_debug_scan")
        scalar_arg_dtypes = (
                get_arg_list_scalar_arg_dtypes(self.parsed_args)
                + [self.index_dtype])
        self.kernel.set_scalar_arg_dtypes(scalar_arg_dtypes)

    def __call__(self, *args, **kwargs):
        # {{{ argument processing

        allocator = kwargs.get("allocator")
        queue = kwargs.get("queue")
        n = kwargs.get("size")
        wait_for = kwargs.get("wait_for")

        if len(args) != len(self.parsed_args):
            raise TypeError("expected %d arguments, got %d" %
                    (len(self.parsed_args), len(args)))

        first_array = args[self.first_array_idx]
        allocator = allocator or first_array.allocator
        queue = queue or first_array.queue

        if n is None:
            n, = first_array.shape

        data_args = []
        from pyopencl.tools import VectorArg
        for arg_descr, arg_val in zip(self.parsed_args, args):
            if isinstance(arg_descr, VectorArg):
                data_args.append(arg_val.data)
            else:
                data_args.append(arg_val)

        # }}}

        return self.kernel(queue, (1,), (1,),
                *(data_args + [n]), **dict(wait_for=wait_for))

# }}}


# {{{ compatibility interface

class _LegacyScanKernelBase(GenericScanKernel):
    def __init__(self, ctx, dtype,
            scan_expr, neutral=None,
            name_prefix="scan", options=[], preamble="", devices=None):
        scan_ctype = dtype_to_ctype(dtype)
        GenericScanKernel.__init__(self,
                ctx, dtype,
                arguments="__global %s *input_ary, __global %s *output_ary" % (
                    scan_ctype, scan_ctype),
                input_expr="input_ary[i]",
                scan_expr=scan_expr,
                neutral=neutral,
                output_statement=self.ary_output_statement,
                options=options, preamble=preamble, devices=devices)

    def __call__(self, input_ary, output_ary=None, allocator=None, queue=None):
        allocator = allocator or input_ary.allocator
        queue = queue or input_ary.queue or output_ary.queue

        if output_ary is None:
            output_ary = input_ary

        if isinstance(output_ary, (str, unicode)) and output_ary == "new":
            output_ary = cl.array.empty_like(input_ary, allocator=allocator)

        if input_ary.shape != output_ary.shape:
            raise ValueError("input and output must have the same shape")

        if not input_ary.flags.forc:
            raise RuntimeError("ScanKernel cannot "
                    "deal with non-contiguous arrays")

        n, = input_ary.shape

        if not n:
            return output_ary

        GenericScanKernel.__call__(self,
                input_ary, output_ary, allocator=allocator, queue=queue)

        return output_ary


class InclusiveScanKernel(_LegacyScanKernelBase):
    ary_output_statement = "output_ary[i] = item;"


class ExclusiveScanKernel(_LegacyScanKernelBase):
    ary_output_statement = "output_ary[i] = prev_item;"

# }}}


# {{{ template

class ScanTemplate(KernelTemplateBase):
    def __init__(self,
            arguments, input_expr, scan_expr, neutral, output_statement,
            is_segment_start_expr=None, input_fetch_exprs=[],
            name_prefix="scan", preamble="", template_processor=None):

        KernelTemplateBase.__init__(self, template_processor=template_processor)
        self.arguments = arguments
        self.input_expr = input_expr
        self.scan_expr = scan_expr
        self.neutral = neutral
        self.output_statement = output_statement
        self.is_segment_start_expr = is_segment_start_expr
        self.input_fetch_exprs = input_fetch_exprs
        self.name_prefix = name_prefix
        self.preamble = preamble

    def build_inner(self, context, type_aliases=(), var_values=(),
            more_preamble="", more_arguments=(), declare_types=(),
            options=(), devices=None, scan_cls=GenericScanKernel):
        renderer = self.get_renderer(type_aliases, var_values, context, options)

        arg_list = renderer.render_argument_list(self.arguments, more_arguments)

        type_decl_preamble = renderer.get_type_decl_preamble(
                context.devices[0], declare_types, arg_list)

        return scan_cls(context, renderer.type_aliases["scan_t"],
            renderer.render_argument_list(self.arguments, more_arguments),
            renderer(self.input_expr), renderer(self.scan_expr),
            renderer(self.neutral), renderer(self.output_statement),
            is_segment_start_expr=renderer(self.is_segment_start_expr),
            input_fetch_exprs=self.input_fetch_exprs,
            index_dtype=renderer.type_aliases.get("index_t", np.int32),
            name_prefix=renderer(self.name_prefix), options=list(options),
            preamble=(
                type_decl_preamble
                + "\n"
                + renderer(self.preamble + "\n" + more_preamble)),
            devices=devices)

# }}}


# {{{ 'canned' scan kernels

@context_dependent_memoize
def get_cumsum_kernel(context, input_dtype, output_dtype):
    from pyopencl.tools import VectorArg
    return GenericScanKernel(
        context, output_dtype,
        arguments=[
            VectorArg(input_dtype, "input"),
            VectorArg(output_dtype, "output"),
            ],
        input_expr="input[i]",
        scan_expr="a+b", neutral="0",
        output_statement="""
            output[i] = item;
            """)

# }}}

# vim: filetype=pyopencl:fdm=marker