/usr/lib/python2.7/dist-packages/PyVCF-0.6.7.egg-info/PKG-INFO is in python-pyvcf 0.6.7-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 | Metadata-Version: 1.1
Name: PyVCF
Version: 0.6.7
Summary: Variant Call Format (VCF) parser for Python
Home-page: https://github.com/jamescasbon/PyVCF
Author: James Casbon and @jdoughertyii
Author-email: casbon@gmail.com
License: UNKNOWN
Description: A VCFv4.0 and 4.1 parser for Python.
Online version of PyVCF documentation is available at http://pyvcf.rtfd.org/
The intent of this module is to mimic the ``csv`` module in the Python stdlib,
as opposed to more flexible serialization formats like JSON or YAML. ``vcf``
will attempt to parse the content of each record based on the data types
specified in the meta-information lines -- specifically the ##INFO and
##FORMAT lines. If these lines are missing or incomplete, it will check
against the reserved types mentioned in the spec. Failing that, it will just
return strings.
There main interface is the class: ``Reader``. It takes a file-like
object and acts as a reader::
>>> import vcf
>>> vcf_reader = vcf.Reader(open('vcf/test/example-4.0.vcf', 'r'))
>>> for record in vcf_reader:
... print record
Record(CHROM=20, POS=14370, REF=G, ALT=[A])
Record(CHROM=20, POS=17330, REF=T, ALT=[A])
Record(CHROM=20, POS=1110696, REF=A, ALT=[G, T])
Record(CHROM=20, POS=1230237, REF=T, ALT=[None])
Record(CHROM=20, POS=1234567, REF=GTCT, ALT=[G, GTACT])
This produces a great deal of information, but it is conveniently accessed.
The attributes of a Record are the 8 fixed fields from the VCF spec::
* ``Record.CHROM``
* ``Record.POS``
* ``Record.ID``
* ``Record.REF``
* ``Record.ALT``
* ``Record.QUAL``
* ``Record.FILTER``
* ``Record.INFO``
plus attributes to handle genotype information:
* ``Record.FORMAT``
* ``Record.samples``
* ``Record.genotype``
``samples`` and ``genotype``, not being the title of any column, are left lowercase. The format
of the fixed fields is from the spec. Comma-separated lists in the VCF are
converted to lists. In particular, one-entry VCF lists are converted to
one-entry Python lists (see, e.g., ``Record.ALT``). Semicolon-delimited lists
of key=value pairs are converted to Python dictionaries, with flags being given
a ``True`` value. Integers and floats are handled exactly as you'd expect::
>>> vcf_reader = vcf.Reader(open('vcf/test/example-4.0.vcf', 'r'))
>>> record = vcf_reader.next()
>>> print record.POS
14370
>>> print record.ALT
[A]
>>> print record.INFO['AF']
[0.5]
There are a number of convienience methods and properties for each ``Record`` allowing you to
examine properties of interest::
>>> print record.num_called, record.call_rate, record.num_unknown
3 1.0 0
>>> print record.num_hom_ref, record.num_het, record.num_hom_alt
1 1 1
>>> print record.nucl_diversity, record.aaf, record.heterozygosity
0.6 [0.5] 0.5
>>> print record.get_hets()
[Call(sample=NA00002, CallData(GT=1|0, GQ=48, DP=8, HQ=[51, 51]))]
>>> print record.is_snp, record.is_indel, record.is_transition, record.is_deletion
True False True False
>>> print record.var_type, record.var_subtype
snp ts
>>> print record.is_monomorphic
False
``record.FORMAT`` will be a string specifying the format of the genotype
fields. In case the FORMAT column does not exist, ``record.FORMAT`` is
``None``. Finally, ``record.samples`` is a list of dictionaries containing the
parsed sample column and ``record.genotype`` is a way of looking up genotypes
by sample name::
>>> record = vcf_reader.next()
>>> for sample in record.samples:
... print sample['GT']
0|0
0|1
0/0
>>> print record.genotype('NA00001')['GT']
0|0
The genotypes are represented by ``Call`` objects, which have three attributes: the
corresponding Record ``site``, the sample name in ``sample`` and a dictionary of
call data in ``data``::
>>> call = record.genotype('NA00001')
>>> print call.site
Record(CHROM=20, POS=17330, REF=T, ALT=[A])
>>> print call.sample
NA00001
>>> print call.data
CallData(GT=0|0, GQ=49, DP=3, HQ=[58, 50])
Please note that as of release 0.4.0, attributes known to have single values (such as
``DP`` and ``GQ`` above) are returned as values. Other attributes are returned
as lists (such as ``HQ`` above).
There are also a number of methods::
>>> print call.called, call.gt_type, call.gt_bases, call.phased
True 0 T|T True
Metadata regarding the VCF file itself can be investigated through the
following attributes:
* ``Reader.metadata``
* ``Reader.infos``
* ``Reader.filters``
* ``Reader.formats``
* ``Reader.samples``
For example::
>>> vcf_reader.metadata['fileDate']
'20090805'
>>> vcf_reader.samples
['NA00001', 'NA00002', 'NA00003']
>>> vcf_reader.filters
OrderedDict([('q10', Filter(id='q10', desc='Quality below 10')), ('s50', Filter(id='s50', desc='Less than 50% of samples have data'))])
>>> vcf_reader.infos['AA'].desc
'Ancestral Allele'
ALT records are actually classes, so that you can interrogate them::
>>> reader = vcf.Reader(open('vcf/test/example-4.1-bnd.vcf'))
>>> _ = reader.next(); row = reader.next()
>>> print row
Record(CHROM=1, POS=2, REF=T, ALT=[T[2:3[])
>>> bnd = row.ALT[0]
>>> print bnd.withinMainAssembly, bnd.orientation, bnd.remoteOrientation, bnd.connectingSequence
True False True T
Random access is supported for files with tabix indexes. Simply call fetch for the
region you are interested in::
>>> vcf_reader = vcf.Reader(filename='vcf/test/tb.vcf.gz')
>>> for record in vcf_reader.fetch('20', 1110696, 1230237): # doctest: +SKIP
... print record
Record(CHROM=20, POS=1110696, REF=A, ALT=[G, T])
Record(CHROM=20, POS=1230237, REF=T, ALT=[None])
Or extract a single row::
>>> print vcf_reader.fetch('20', 1110696) # doctest: +SKIP
Record(CHROM=20, POS=1110696, REF=A, ALT=[G, T])
The ``Writer`` class provides a way of writing a VCF file. Currently, you must specify a
template ``Reader`` which provides the metadata::
>>> vcf_reader = vcf.Reader(filename='vcf/test/tb.vcf.gz')
>>> vcf_writer = vcf.Writer(open('/dev/null', 'w'), vcf_reader)
>>> for record in vcf_reader:
... vcf_writer.write_record(record)
An extensible script is available to filter vcf files in vcf_filter.py. VCF filters
declared by other packages will be available for use in this script. Please
see :doc:`FILTERS` for full description.
Keywords: bioinformatics
Platform: UNKNOWN
Classifier: Development Status :: 4 - Beta
Classifier: Intended Audience :: Developers
Classifier: Intended Audience :: Science/Research
Classifier: Operating System :: OS Independent
Classifier: Programming Language :: Python
Classifier: Programming Language :: Python :: 3
Classifier: Topic :: Scientific/Engineering
|