/usr/lib/python2.7/dist-packages/rosbag/migration.py is in python-rosbag 1.11.16-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 | # Software License Agreement (BSD License)
#
# Copyright (c) 2009, Willow Garage, Inc.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above
# copyright notice, this list of conditions and the following
# disclaimer in the documentation and/or other materials provided
# with the distribution.
# * Neither the name of Willow Garage, Inc. nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
from __future__ import print_function
import collections
import copy
try:
from cStringIO import StringIO # Python 2.x
except ImportError:
from io import BytesIO as StringIO # Python 3.x
import inspect
import itertools
import os
import string
import sys
import genmsg.msgs
import genpy
import genpy.dynamic
import rospkg
import rosbag
# Anything outside the scope of these primitives is a submessage
#_PRIMITIVES = ['bool', 'byte','int8','int16','int32','int64','char','uint8','uint16','uint32','uint64','float32','float64','string','time']
class BagMigrationException(Exception):
pass
def checkbag(migrator, inbag):
"""
Check whether a bag file can be played in the current system.
@param migrator: message migrator to use
@param inbag name of the bag to be checked.
@returns A list of tuples for each type in the bag file. The first
element of each tuple is the full migration path for the type. The
second element of the tuple is the expanded list of invalid rules
for that particular path.
"""
checked = set()
migrations = []
bag = rosbag.Bag(inbag, 'r')
for topic, msg, t in bag.read_messages(raw=True):
key = get_message_key(msg[4])
if key not in checked:
target = migrator.find_target(msg[4])
# Even in the case of a zero-length path (matching md5sums), we still want
# to migrate in the event of a type change (message move).
path = migrator.find_path(msg[4], target)
if len(path) > 0:
migrations.append((path, [r for r in migrator.expand_rules([sn.rule for sn in path]) if r.valid == False]))
checked.add(key)
bag.close()
return migrations
def checkmessages(migrator, messages):
"""
Check whether a bag file can be played in the current system.
@param migrator The message migrator to use
@param message_list A list of message classes.
@returns A list of tuples for each type in the bag file. The first
element of each tuple is the full migration path for the type. The
second element of the tuple is the expanded list of invalid rules
for that particular path.
"""
checked = set()
migrations = []
for msg in messages:
key = get_message_key(msg)
if key not in checked:
target = migrator.find_target(msg)
# Even in the case of a zero-length path (matching md5sums), we still want
# to migrate in the event of a type change (message move).
path = migrator.find_path(msg, target)
if len(path) > 0:
migrations.append((path, [r for r in migrator.expand_rules([sn.rule for sn in path]) if r.valid == False]))
checked.add(key)
return migrations
## Fix a bag so that it can be played in the current system
#
# @param migrator The message migrator to use
# @param inbag Name of the bag to be fixed.
# @param outbag Name of the bag to be saved.
# @returns True if migration was successful.
def fixbag(migrator, inbag, outbag):
# This checks/builds up rules for the given migrator
res = checkbag(migrator, inbag)
# Deserializing all messages is inefficient, but we can speed this up later
if not False in [m[1] == [] for m in res]:
bag = rosbag.Bag(inbag, 'r')
rebag = rosbag.Bag(outbag, 'w', options=bag.options)
for topic, msg, t in bag.read_messages(raw=True):
new_msg_type = migrator.find_target(msg[4])
mig_msg = migrator.migrate_raw(msg, (new_msg_type._type, None, new_msg_type._md5sum, None, new_msg_type))
rebag.write(topic, mig_msg, t, raw=True)
rebag.close()
bag.close()
return True
else:
return False
## Fix a bag so that it can be played in the current system
#
# @param migrator The message migrator to use
# @param inbag Name of the bag to be fixed.
# @param outbag Name of the bag to be saved.
# @returns [] if bag could be migrated, otherwise, it returns the list of necessary migration paths
def fixbag2(migrator, inbag, outbag, force=False):
# This checks/builds up rules for the given migrator
res = checkbag(migrator, inbag)
migrations = [m for m in res if len(m[1]) > 0]
# Deserializing all messages is inefficient, but we can speed this up later
if len(migrations) == 0 or force:
bag = rosbag.Bag(inbag, 'r')
rebag = rosbag.Bag(outbag, 'w', options=bag.options)
for topic, msg, t in bag.read_messages(raw=True):
new_msg_type = migrator.find_target(msg[4])
if new_msg_type != None:
mig_msg = migrator.migrate_raw(msg, (new_msg_type._type, None, new_msg_type._md5sum, None, new_msg_type))
rebag.write(topic, mig_msg, t, raw=True)
else:
rebag.write(topic, msg, t, raw=True)
rebag.close()
bag.close()
if force:
return []
else:
return migrations
## Helper function to strip out roslib and package name from name usages.
#
# There is some inconsistency in whether a fully-qualified path is
# used for sub-messages within a given message. This function is
# useful for stripping out the package name in a fully qualified
# sub-message.
#
# @param name The name to clean.
# @param top_name The name of the top-level type
# @returns The cleaned version of the name.
def clean_name(name, top_name):
name_split = name.split('/')
try:
name_split.remove('std_msgs')
except ValueError:
pass
try:
name_split.remove(top_name.split('/')[0])
except ValueError:
pass
new_name = '/'.join(name_split)
return new_name
## Helper function to ensure we end up with a qualified name
#
# There is some inconsistency in whether a fully-qualified path is
# used for sub-messages within a given message. This function is
# useful for ensuring that a name is fully qualified correctly.
#
# @param name The name to quailfy
# @param top_name The name of the top-level type
# @returns The qualified version of the name.
def qualified_name(name, top_name):
# First clean the name, to make everyting else more deterministic
tmp_name = clean_name(name, top_name)
if len(tmp_name.split('/')) == 2 or (genmsg.msgs.is_builtin(tmp_name)):
return tmp_name
elif tmp_name == 'Header':
return 'std_msgs/Header'
else:
return top_name.split('/')[0] + '/' + tmp_name
## Helper function to return a key from a given class
#
# For now, we choose the tuple (type,md5sum) as a unique key for the
# class. However, this is subject to change and assumptions about keys
# should not be made other than their uniqueness.
#
# @param c The message class or instance to get a key for
# @returns The unique key
def get_message_key(c):
try:
return (c._type, c._md5sum)
except:
return None
## Helper function to return a key for a given path
#
# For now, we choose the tuple ((type1,md5sum1),(type2,md5sum2)) as a
# unique key for the path. However, this is subject to change and
# assumptions about keys should not be made other than their
# uniqueness.
#
# @param c1 The start point of the path
# @param c1 The stop point of the path
# @returns The unique key
def get_path_key(c1, c2):
try:
return (get_message_key(c1), get_message_key(c2))
except:
return None
## Base class for all message update rules
class MessageUpdateRule(object):
old_type = ''
old_full_text = ''
new_type = ''
new_full_text = ''
migrated_types = []
order = -1
valid = False
## Initialize class
def __init__(self, migrator, location):
# Every rule needs to hang onto the migrator so we can potentially use it
self.migrator = migrator
self.location = location
if (self.old_type != self.new_type):
self.rename_rule = True
else:
self.rename_rule = False
# Instantiate types dynamically based on definition
try:
if self.old_type == "":
raise Exception
self.old_types = genpy.dynamic.generate_dynamic(self.old_type, self.old_full_text)
self.old_class = self.old_types[self.old_type]
self.old_md5sum = self.old_class._md5sum
except:
self.old_types = []
self.old_class = None
self.old_md5sum = ""
try:
if self.new_type == "":
raise Exception
self.new_types = genpy.dynamic.generate_dynamic(self.new_type, self.new_full_text)
self.new_class = self.new_types[self.new_type]
self.new_md5sum = self.new_class._md5sum
except:
self.new_types = []
self.new_class = None
self.new_md5sum = ""
# We have not populated our sub rules (and ideally should
# wait until the full scaffold exists before doing this)
self.sub_rules_done = False
self.sub_rules_valid = False
self.sub_rules = []
## Find all of the sub paths
#
# For any migrated type the user might want to use, we must make
# sure the migrator had found a path for it. To facilitated this
# check we require that all migrated types must be listed as pairs
# in the migrated_types field.
#
# It would be nice not to need these through performing some kind
# of other inspection of the update rule itself.
def find_sub_paths(self):
self.sub_rules_valid = True
for (t1, t2) in self.migrated_types:
try:
tmp_old_class = self.get_old_class(t1)
except KeyError:
print("WARNING: Within rule [%s], specified migrated type [%s] not found in old message types" % (self.location, t1), file=sys.stderr)
self.sub_rules_valid = False
continue
try:
tmp_new_class = self.get_new_class(t2)
except KeyError:
print("WARNING: Within rule [%s], specified migrated type [%s] not found in new message types" % (self.location, t2), file=sys.stderr)
self.sub_rules_valid = False
continue
# If a rule instantiates itself as a subrule (because the
# author knows the md5sums match), we don't Want to end up
# with an infinite recursion.
if (get_message_key(tmp_old_class) != get_message_key(self.old_class)) or (get_message_key(tmp_new_class) != get_message_key(self.new_class)):
path = self.migrator.find_path(tmp_old_class, tmp_new_class)
rules = [sn.rule for sn in path]
self.sub_rules.extend(rules)
if False in [r.valid for r in self.sub_rules]:
print("WARNING: Within rule [%s] cannot migrate from subtype [%s] to [%s].." % (self.location, t1, t2), file=sys.stderr)
self.sub_rules_valid = False
continue
self.sub_rules = self.migrator.filter_rules_unique(self.sub_rules)
self.sub_rules_done = True
## Helper function to get the class of a submsg for the new type
#
# This function should be used inside of update to access new classes.
#
# @param t The subtype to return the class of
# @returns The class of the new sub type
def get_new_class(self,t):
try:
try:
return self.new_types[t]
except KeyError:
return self.new_types['std_msgs/' + t]
except KeyError:
return self.new_types[self.new_type.split('/')[0] + '/' + t]
## Helper function to get the class of a submsg for the old type
#
# This function should be used inside of update to access old classes.
#
# @param t The subtype to return the class of
# @returns The class of the old sub type
def get_old_class(self,t):
try:
try:
return self.old_types[t]
except KeyError:
return self.old_types['std_msgs/' + t]
except KeyError:
return self.old_types[self.old_type.split('/')[0] + '/' + t]
## Actually migrate one sub_type to another
#
# This function should be used inside of update to migrate sub msgs.
#
# @param msg_from A message instance of the old message type
# @param msg_to A message instance of a new message type to be populated
def migrate(self, msg_from, msg_to):
tmp_msg_from = clean_name(msg_from._type, self.old_type)
tmp_msg_to = clean_name(msg_to._type, self.new_type)
if (tmp_msg_from, tmp_msg_to) not in self.migrated_types:
raise BagMigrationException("Rule [%s] tried to perform a migration from old [%s] to new [%s] not listed in migrated_types"%(self.location, tmp_msg_from, tmp_msg_to))
self.migrator.migrate(msg_from, msg_to)
## Helper function to migrate a whole array of messages
#
# This function should be used inside of update to migrate arrays of sub msgs.
#
# @param msg_from_array An array of messages of the old message type
# @param msg_to_array An array of messages of the new message type (this will be emptied if not already)
# @param msg_to_class The name of the new message type since msg_to_array may be an empty array.
def migrate_array(self, msg_from_array, msg_to_array, msg_to_name):
msg_to_class = self.get_new_class(msg_to_name)
while len(msg_to_array) > 0:
msg_to_array.pop()
if (len(msg_from_array) == 0):
return
tmp_msg_from = clean_name(msg_from_array[0]._type, self.old_type)
tmp_msg_to = clean_name(msg_to_class._type, self.new_type)
if (tmp_msg_from, tmp_msg_to) not in self.migrated_types:
raise BagMigrationException("Rule [%s] tried to perform a migration from old [%s] to new [%s] not listed in migrated_types"%(self.location, tmp_msg_from, tmp_msg_to))
msg_to_array.extend( [msg_to_class() for i in range(len(msg_from_array))] )
self.migrator.migrate_array(msg_from_array, msg_to_array)
## A helper function to print out the definiton of autogenerated messages.
def get_class_def(self):
pass
## The function actually called by the message migrator
#
# @param old_msg An instance of the old message type.
# @returns An instance of a new message type
def apply(self, old_msg):
if not self.valid:
raise BagMigrationException("Attempted to apply an invalid rule")
if not self.sub_rules_done:
raise BagMigrationException("Attempted to apply a rule without building up its sub rules")
if not self.sub_rules_valid:
raise BagMigrationException("Attempted to apply a rule without valid sub-rules")
if (get_message_key(old_msg) != get_message_key(self.old_class)):
raise BagMigrationException("Attempted to apply rule to incorrect class %s %s."%(get_message_key(old_msg),get_message_key(self.old_class)))
# Apply update rule
new_msg = self.new_class()
self.update(old_msg, new_msg)
return new_msg
## The function which a user overrides to actually perform the message update
#
# @param msg_from A message instance of the old message type
# @param msg_to A message instance of a new message type to be populated
def update(self, old_msg, new_msg):
raise BagMigrationException("Tried to use rule without update overidden")
## A class for book-keeping about rule-chains.
#
# Rule chains define the ordered set of update rules, indexed by
# typename, terminated by a rename rule. This class is only used
# temporarily to help us get the ordering right, until all explicit
# rules have been loaded (possibly out of order) and the proper
# scaffold can be built.
class RuleChain(object):
def __init__(self):
self.chain = []
self.order_keys = set()
self.rename = None
## A class for arranging the ordered rules
#
# They provide a scaffolding (essentially a linked list) over which we
# assume we can migrate messages forward. This allows us to verify a
# path exists before actually creating all of the necessary implicit
# rules (mostly migration of sub-messages) that such a path
# necessitates.
class ScaffoldNode(object):
def __init__(self, old_class, new_class, rule):
self.old_class = old_class
self.new_class = new_class
self.rule = rule
self.next = None
## A class to actually migrate messages
#
# This is the big class that actually handles all of the fancy
# migration work. Better documentation to come later.
class MessageMigrator(object):
def __init__(self, input_rule_files=[], plugins=True):
# We use the rulechains to scaffold our initial creation of
# implicit rules. Each RuleChain is keyed off of a type and
# consists of an ordered set of update rules followed by an
# optional rename rule. For the system rule definitions to be
# valid, all members of a rulechains must be connectable via
# implicit rules and all rulechains must terminate in a known
# system type which is also reachable by an implicit rule.
self.rulechains = collections.defaultdict(RuleChain)
# The list of all nodes that we can iterate through in the
# future when making sure all rules have been constructed.
self.base_nodes = []
# The list of extra (non-scaffolded) nodes that we can use
# when determining if all rules are valid and printing invalid
# rules.
self.extra_nodes = []
# A map from typename to the first node of a particular type
self.first_type = {}
# A map from a typename to all other typenames for which
# rename rules exist. This is necessary to determine whether
# an appropriate implicit rule can actually be constructed.
self.rename_map = {}
# The cached set of all found paths, keyed by:
# ((old_type, old_md5), (new_type, new_md5))
self.found_paths = {}
self.found_targets = {}
# Temporary list of the terminal nodes
terminal_nodes = []
# Temporary list of rule modules we are loading
rule_dicts = []
self.false_rule_loaded = False
# To make debugging easy we can pass in a list of local
# rulefiles.
for r in input_rule_files:
try:
scratch_locals = {'MessageUpdateRule':MessageUpdateRule}
with open(r, 'r') as f:
exec(f.read(), scratch_locals)
rule_dicts.append((scratch_locals, r))
except:
print("Cannot load rule file [%s] in local package" % r, file=sys.stderr)
# Alternatively the preferred method is to load definitions
# from the migration ruleset export flag.
if plugins:
rospack = rospkg.RosPack()
for dep,export in [('rosbagmigration','rule_file'),('rosbag','migration_rule_file'),('rosbag_migration_rule','rule_file')]:
for pkg in rospack.get_depends_on(dep, implicit=False):
m = rospack.get_manifest(pkg)
p_rules = m.get_export(dep,export)
pkg_dir = rospack.get_path(pkg)
for r in p_rules:
if dep == 'rosbagmigration':
print("""WARNING: The package: [%s] is using a deprecated rosbagmigration export.
The export in the manifest should be changed to:
<rosbag migration_rule_file="%s"/>
""" % (pkg, r), file=sys.stderr)
try:
scratch_locals = {'MessageUpdateRule':MessageUpdateRule}
exec(open(pkg_dir + "/" + r).read(), scratch_locals)
rule_dicts.append((scratch_locals, r))
except ImportError:
print("Cannot load rule file [%s] in package [%s]" % (r, pkg), file=sys.stderr)
for (rule_dict, location_base) in rule_dicts:
for (n,c) in rule_dict.items():
if inspect.isclass(c):
if (not c == MessageUpdateRule) and issubclass(c, MessageUpdateRule):
self.add_update_rule(c(self, location_base + ':' + n))
if self.false_rule_loaded:
raise BagMigrationException("Cannot instantiate MessageMigrator with invalid rules")
# Now, go through and build up a better scaffolded
# representation, deferring implicit rule generation until
# complete, since the implicit rule generation and sub-rule
# population makes use of the scaffold.
# First we each particular type chain (now including implicit
# rules). Additionally, we build up our name remapping lists.
# For Each rulechain
for (type,rulechain) in self.rulechains.items():
first = True
sn = None
prev_sn = None
# Find name remapping list
rename_set = set([type])
tmp = rulechain.rename
while tmp:
rename_set.add(tmp.new_type)
if tmp.new_type in self.rulechains:
tmp = self.rulechains[tmp.new_type].rename
else:
break
self.rename_map[type] = rename_set
# For each element in the rulechain chain,
for r in rulechain.chain:
# Create a scaffoldnode
sn = ScaffoldNode(r.old_class, r.new_class, r)
self.base_nodes.append(sn)
# If it's the first one, stick it in our first_type map
if first:
self.first_type[type] = sn
first = False
# If there was a previous node, link them if keys
# match, or else create an implicit SN
if prev_sn:
if get_message_key(prev_sn.new_class) == get_message_key(sn.old_class):
prev_sn.next = sn
else:
implicit_sn = ScaffoldNode(prev_sn.new_class, sn.old_class, None)
self.base_nodes.append(implicit_sn)
prev_sn.next = implicit_sn
implicit_sn.next = sn
# The just-created node now becomes the previous
prev_sn = sn
# If there is a rename rule
if rulechain.rename:
# Create a scaffoldnode
sn = ScaffoldNode(rulechain.rename.old_class, rulechain.rename.new_class, rulechain.rename)
self.base_nodes.append(sn)
# Same rules apply here as when we created each node
# from chain. Link if possible, otherwise create
# implicit
if first:
self.first_type[type] = sn
first = False
if prev_sn:
if get_message_key(prev_sn.new_class) == get_message_key(sn.old_class):
prev_sn.next = sn
else:
implicit_sn = ScaffoldNode(prev_sn.new_class, sn.old_class, None)
self.base_nodes.append(implicit_sn)
prev_sn.next = implicit_sn
implicit_sn.next = sn
prev_sn = sn
terminal_nodes.append(sn)
# If there was not a rename rule, this must be a terminal node
else:
if prev_sn:
terminal_nodes.append(prev_sn)
# Between our partial scaffold and name remapping list, we can
# now GENERATE rules, though we cannot yet populate the
# subrules.
for sn in terminal_nodes:
key = get_message_key(sn.new_class)
renamed = (sn.old_class._type != sn.new_class._type)
sys_class = genpy.message.get_message_class(sn.new_class._type)
# If we map directly to a system-defined class we're done
if sys_class:
new_rule = self.make_update_rule(sn.new_class, sys_class)
R = new_rule(self, 'GENERATED.' + new_rule.__name__)
if R.valid:
sn.next = ScaffoldNode(sn.new_class, sys_class, R)
self.base_nodes.append(sn.next)
if renamed:
tmp_sns = self.scaffold_range(sn.new_class._type, sn.new_class._type)
# If we don't map to a scaffold range, we appear to be done
if tmp_sns == []:
if sys_class is not None:
sn.next = ScaffoldNode(sn.new_class, sys_class, None)
self.base_nodes.append(sn.next)
continue
# Otherwise look for trivial bridges
for tmp_sn in reversed(tmp_sns):
tmp_key = get_message_key(tmp_sn.old_class)
if (key == tmp_key):
sn.next = tmp_sn
break
# If we did not find a trivial bridge, we instead need
# to create the right implicit rule ourselves. This
# is based on the ability to create a valid implicit
# rule as LATE in the chain as possible. We do this
# to avoid extra conversions in some boundary
# circumstances.
if (sn.next is None):
for tmp_sn in reversed(tmp_sns):
new_rule = self.make_update_rule(sn.new_class, tmp_sn.old_class)
R = new_rule(self, 'GENERATED.' + new_rule.__name__)
if R.valid:
sn.next = ScaffoldNode(sn.new_class, tmp_sn.old_class, R)
self.base_nodes.append(sn.next)
break
# If we have still failed we need to create a placeholder.
if (sn.next is None):
if sys_class:
new_rule = self.make_update_rule(sn.new_class, sys_class)
else:
new_rule = self.make_old_half_rule(sn.new_class)
R = new_rule(self, 'GENERATED.' + new_rule.__name__)
sn.next = ScaffoldNode(sn.new_class, None, R)
self.base_nodes.append(sn.next)
# Now that our scaffolding is actually complete, we iterate
# through all of our rules and generate the rules for which we
# have scaffoldnodes, but no rule yet
for sn in self.base_nodes:
if (sn.rule is None):
new_rule = self.make_update_rule(sn.old_class, sn.new_class)
sn.rule = new_rule(self, 'GENERATED.' + new_rule.__name__)
# Finally, we go through and try to find sub_paths for every
# rule in the system so far
for sn in self.base_nodes:
sn.rule.find_sub_paths()
# Construction should be done, we can now use the system in
# the event that we don't have invalid update rules.
self.class_dict = {}
for sn in self.base_nodes + self.extra_nodes:
self.class_dict[get_message_key(sn.old_class)] = sn.old_class
self.class_dict[get_message_key(sn.new_class)] = sn.new_class
def lookup_type(self, key):
if key in self.class_dict:
return self.class_dict[key]
else:
return None
# Add an update rule to our set of rule chains
def add_update_rule(self, r):
if r.valid == False:
print("ERROR: Update rule [%s] has valid set to False." % (r.location), file=sys.stderr)
self.false_rule_loaded = True
return
rulechain = self.rulechains[r.old_type]
if r.rename_rule:
if (rulechain.rename != None):
print("WARNING: Update rules [%s] and [%s] both attempting to rename type [%s]. Ignoring [%s]" % (rulechain.rename.location, r.location, r.old_type, r.location), file=sys.stderr)
return
# Search forward to make sure we havn't created a cycle
cycle = []
tmp = r
while tmp:
cycle.append(tmp)
if (tmp.new_type == r.old_type):
print("WARNING: Update rules %s introduce a renaming cycle. Ignoring [%s]" % ([x.location for x in cycle], r.location), file=sys.stderr)
return
if tmp.new_type in self.rulechains:
tmp = self.rulechains[tmp.new_type].rename
else:
break
if rulechain.chain and (r.order <= rulechain.chain[-1].order):
print("WARNING: Update rule [%s] which performs rename does not have largest order number. Ignoring" % r.location, file=sys.stderr)
return
rulechain.rename = r
else:
if r.order in rulechain.order_keys:
otherind = [x.order for x in rulechain.chain].index(r.order)
print("WARNING: Update rules [%s] and [%s] for type [%s] have the same order number. Ignoring [%s]" % (rulechain.chain[otherind].location, r.location, r.old_type, r.location), file=sys.stderr)
return
else:
if rulechain.rename and (r.order >= rulechain.rename.order):
print("WARNING: Update rule [%s] has order number larger than rename rule [%s]. Ignoring" % (r.location, rulechain.rename.location), file=sys.stderr)
return
# Insert the rule into a rule chain
rulechain.order_keys.add(r.order)
rulechain.chain.append(r)
rulechain.chain.sort(key=lambda x: x.order)
# Helper function to determine if all rules are valid
def all_rules_valid(self):
base_valid = not False in [sn.rule.valid for sn in self.base_nodes]
extra_valid = not False in [sn.rule.valid for sn in self.extra_nodes]
return base_valid and extra_valid
# Helper function to print out the definitions for all invalid rules (which include definitions)
def get_invalid_rules(self):
invalid_rules = []
invalid_rule_cache = []
for sn in self.base_nodes:
if not sn.rule.valid:
path_key = get_path_key(sn.old_class, sn.new_class)
if (path_key not in invalid_rule_cache):
invalid_rules.append(sn.rule)
invalid_rule_cache.append(path_key)
for sn in self.extra_nodes:
if not sn.rule.valid:
path_key = get_path_key(sn.old_class, sn.new_class)
if (path_key not in invalid_rule_cache):
invalid_rules.append(sn.rule)
invalid_rule_cache.append(path_key)
return invalid_rules
# Helper function to remove non-unique rules
def filter_rules_unique(self, rules):
rule_cache = []
new_rules = []
for r in rules:
path_key = get_path_key(r.old_class, r.new_class)
if (path_key not in rule_cache):
new_rules.append(r)
return new_rules
# Helper function to expand a list of rules to include subrules
def expand_rules(self, rules):
filtered = self.filter_rules_unique(rules)
expanded = []
for r in filtered:
expanded.append(r)
#print "For rule %s --> %s"%(r.old_class._type, r.new_class._type)
expanded.extend(self.expand_rules(r.sub_rules))
filtered = self.filter_rules_unique(expanded)
return filtered
def scaffold_range(self, old_type, new_type):
try:
first_sn = self.first_type[old_type]
sn_range = [first_sn]
found_new_type = False
tmp_sn = first_sn
while (tmp_sn.next is not None and tmp_sn.next.new_class is not None):
# print sn_range
tmp_sn = tmp_sn.next
if (tmp_sn != first_sn):
sn_range.append(tmp_sn)
if (tmp_sn.new_class._type == new_type):
found_new_type == True
if (found_new_type and tmp_sn.new_class._type != new_type):
break
return sn_range
except KeyError:
return []
def find_target(self, old_class):
key = get_message_key(old_class)
last_class = old_class
try:
return self.found_targets[key]
except KeyError:
sys_class = genpy.message.get_message_class(old_class._type)
if sys_class is not None:
self.found_targets[key] = sys_class
return sys_class
try:
tmp_sn = self.first_type[old_class._type]
if tmp_sn.new_class is not None:
last_class = tmp_sn.new_class
while tmp_sn.next is not None:
tmp_sn = tmp_sn.next
if tmp_sn.new_class is not None:
last_class = tmp_sn.new_class
sys_class = genpy.message.get_message_class(tmp_sn.new_class._type)
else:
sys_class = None
if sys_class is not None:
self.found_targets[key] = sys_class
return sys_class
except KeyError:
pass
self.found_targets[key] = None
return None
# This function determines the set of rules which must be created
# to get from the old type to the new type.
def find_path(self, old_class, new_class):
key = get_path_key(old_class, new_class)
# Return any path already found in the cache
try:
return self.found_paths[key]
except KeyError:
pass
# If the new_class is none, e.g., a message has been moved and
# we are lacking a proper rename rule, such that find-target
# failed, the best we can do is create a half-rule from the
# end-point
if new_class is None:
sn_range = self.scaffold_range(old_class._type, "")
found_start = False
for (ind, tmp_sn) in reversed(list(zip(range(len(sn_range)), sn_range))):
# Skip until we find the class we're trying to match
if (tmp_sn.old_class._type != old_class._type):
continue
if get_message_key(tmp_sn.old_class) == get_message_key(old_class):
sn_range = sn_range[ind:]
found_start = True
break
# Next see if we can create a valid rule
if not found_start:
for (ind, tmp_sn) in reversed(list(zip(range(len(sn_range)), sn_range))):
if (tmp_sn.old_class._type != old_class._type):
continue
new_rule = self.make_update_rule(old_class, tmp_sn.old_class)
R = new_rule(self, 'GENERATED.' + new_rule.__name__)
if R.valid:
R.find_sub_paths()
sn = ScaffoldNode(old_class, tmp_sn.old_class, R)
self.extra_nodes.append(sn)
sn_range = sn_range[ind:]
sn_range.insert(0,sn)
found_start = True
break
if sn_range == []:
tmp_class = old_class
else:
tmp_class = sn_range[-1].new_class
new_rule = self.make_old_half_rule(tmp_class)
R = new_rule(self, 'GENERATED.' + new_rule.__name__)
sn = ScaffoldNode(tmp_class, None, R)
sn_range.append(sn)
self.extra_nodes.append(sn)
self.found_paths[key] = sn_range
return sn_range
# If the messages are the same, there is no actually path
if (old_class._type == new_class._type and old_class._full_text.strip() == new_class._full_text.strip()):
self.found_paths[key] = []
return []
sn_range = self.scaffold_range(old_class._type, new_class._type)
# If we have no scaffolding, we just try to create the one path
if sn_range == []:
new_rule = self.make_update_rule(old_class, new_class)
R = new_rule(self, 'GENERATED.' + new_rule.__name__)
R.find_sub_paths()
sn = ScaffoldNode(old_class, new_class, R)
self.extra_nodes.append(sn)
self.found_paths[key] = [sn]
return [sn]
# Search for the stop point in the scaffold
found_stop = False
# First look for a trivial match
for (ind, tmp_sn) in reversed(list(zip(range(len(sn_range)), sn_range))):
# Stop looking early if the classes don't match
if (tmp_sn.new_class._type != new_class._type):
break
if get_message_key(tmp_sn.new_class) == get_message_key(new_class):
sn_range = sn_range[:ind+1]
found_stop = True
break
# Next see if we can create a valid rule
if not found_stop:
for (ind, tmp_sn) in reversed(list(zip(range(len(sn_range)), sn_range))):
if (tmp_sn.new_class._type != new_class._type):
break
new_rule = self.make_update_rule(tmp_sn.new_class, new_class)
R = new_rule(self, 'GENERATED.' + new_rule.__name__)
if R.valid:
R.find_sub_paths()
sn = ScaffoldNode(tmp_sn.new_class, new_class, R)
self.extra_nodes.append(sn)
sn_range = sn_range[:ind+1]
sn_range.append(sn)
found_stop = True
break
# If there were no valid implicit rules, we suggest a new one from to the end
if not found_stop:
new_rule = self.make_update_rule(sn_range[-1].new_class, new_class)
R = new_rule(self, 'GENERATED.' + new_rule.__name__)
R.find_sub_paths()
sn = ScaffoldNode(sn_range[-1].new_class, new_class, R)
self.extra_nodes.append(sn)
sn_range.append(sn)
# Search for the start point in the scaffold
found_start = False
# First look for a trivial match
for (ind, tmp_sn) in reversed(list(zip(range(len(sn_range)), sn_range))):
# Skip until we find the class we're trying to match
if (tmp_sn.old_class._type != old_class._type):
continue
if get_message_key(tmp_sn.old_class) == get_message_key(old_class):
sn_range = sn_range[ind:]
found_start = True
break
# Next see if we can create a valid rule
if not found_start:
for (ind, tmp_sn) in reversed(list(zip(range(len(sn_range)), sn_range))):
if (tmp_sn.old_class._type != old_class._type):
continue
new_rule = self.make_update_rule(old_class, tmp_sn.old_class)
R = new_rule(self, 'GENERATED.' + new_rule.__name__)
if R.valid:
R.find_sub_paths()
sn = ScaffoldNode(old_class, tmp_sn.old_class, R)
self.extra_nodes.append(sn)
sn_range = sn_range[ind:]
sn_range.insert(0,sn)
found_start = True
break
# If there were no valid implicit rules, we suggest a new one from the beginning
if not found_start:
new_rule = self.make_update_rule(old_class, sn_range[0].old_class)
R = new_rule(self, 'GENERATED.' + new_rule.__name__)
R.find_sub_paths()
sn = ScaffoldNode(old_class, sn_range[0].old_class, R)
self.extra_nodes.append(sn)
sn_range.insert(0,sn)
self.found_paths[key] = sn_range
return sn_range
def migrate_raw(self, msg_from, msg_to):
path = self.find_path(msg_from[4], msg_to[4])
if False in [sn.rule.valid for sn in path]:
raise BagMigrationException("Migrate called, but no valid migration path from [%s] to [%s]"%(msg_from._type, msg_to._type))
# Short cut to speed up case of matching md5sum:
if path == [] or msg_from[2] == msg_to[2]:
return (msg_to[0], msg_from[1], msg_to[2], msg_to[3], msg_to[4])
tmp_msg = path[0].old_class()
tmp_msg.deserialize(msg_from[1])
for sn in path:
tmp_msg = sn.rule.apply(tmp_msg)
buff = StringIO()
tmp_msg.serialize(buff)
return (msg_to[0], buff.getvalue(), msg_to[2], msg_to[3], msg_to[4])
def migrate(self, msg_from, msg_to):
path = self.find_path(msg_from.__class__, msg_to.__class__)
if False in [sn.rule.valid for sn in path]:
raise BagMigrationException("Migrate called, but no valid migration path from [%s] to [%s]"%(msg_from._type, msg_to._type))
# Short cut to speed up case of matching md5sum:
if path == [] or msg_from._md5sum == msg_to._md5sum:
buff = StringIO()
msg_from.serialize(buff)
msg_to.deserialize(buff.getvalue())
return
if len(path) > 0:
buff = StringIO()
msg_from.serialize(buff)
tmp_msg = path[0].old_class()
tmp_msg.deserialize(buff.getvalue())
for sn in path:
tmp_msg = sn.rule.apply(tmp_msg)
else:
tmp_msg = msg_from
buff = StringIO()
tmp_msg.serialize(buff)
msg_to.deserialize(buff.getvalue())
def migrate_array(self, msg_from_array, msg_to_array):
if len(msg_from_array) != len(msg_to_array):
raise BagMigrationException("Migrate array called on on arrays of unequal length.")
if len(msg_from_array) == 0:
return
path = self.find_path(msg_from_array[0].__class__, msg_to_array[0].__class__)
if path is None:
raise BagMigrationException("Migrate called, but no migration path from [%s] to [%s]"%(msg_from._type, msg_to._type))
# Short cut to speed up case of matching md5sum:
if path == []:
for i in range(len(msg_from_array)):
buff = StringIO()
msg_from_array[i].serialize(buff)
msg_to_array[i].deserialize(buff.getvalue())
return
for i in range(len(msg_from_array)):
buff = StringIO()
tmp_msg = path[0].old_class()
msg_from_array[i].serialize(buff)
tmp_msg.deserialize(buff.getvalue())
for sn in path:
tmp_msg = sn.rule.apply(tmp_msg)
buff = StringIO()
tmp_msg.serialize(buff)
msg_to_array[i].deserialize(buff.getvalue())
def make_update_rule(self, old_class, new_class):
name = "update_%s_%s"%(old_class._type.replace("/","_"), old_class._md5sum)
# We assemble the class as a string and then exec it to end up with a class
# that can essentially print its own definition.
classdef = "class %s(MessageUpdateRule):\n"%name
classdef += "\told_type = \"%s\"\n"%old_class._type
classdef += "\told_full_text = \"\"\"\n%s\n\"\"\"\n\n"%old_class._full_text.strip()
classdef += "\tnew_type = \"%s\"\n"%new_class._type
classdef += "\tnew_full_text = \"\"\"\n%s\n\"\"\"\n"%new_class._full_text.strip()
classdef += "\n"
classdef += "\torder = 0"
classdef += "\n"
validdef = "\tvalid = True\n"
migratedefs = "\tmigrated_types = ["
updatedef = "\tdef update(self, old_msg, new_msg):\n"
old_consts = constants_from_def(old_class._type, old_class._full_text)
new_consts = constants_from_def(new_class._type, new_class._full_text)
if (not new_consts >= old_consts):
validdef = "\tvalid = False\n"
for c in (old_consts - new_consts):
updatedef += "\t\t#Constant '%s' has changed\n"%(c[0],)
old_slots = []
old_slots.extend(old_class.__slots__)
migrations_seen = []
# Assign across primitives, self.migrate or self.migrate_array non-primitives
for (s,t) in zip(new_class.__slots__, new_class._slot_types):
warn_msg = None
new_base_type, new_is_array, new_array_len = genmsg.msgs.parse_type(t)
try:
ind = old_class.__slots__.index(s)
old_slots.remove(s)
old_base_type, old_is_array, old_array_len = genmsg.msgs.parse_type(old_class._slot_types[ind])
if new_is_array != old_is_array:
warn_msg = "Could not match array with nonarray"
elif new_array_len != old_array_len:
if old_array_len is None:
warn_msg = "Converted from variable length array to fixed array of length %d"%(new_array_len)
elif new_array_len is None:
warn_msg = "Converted from fixed array of length %d to variable length"%(old_array_len)
else:
warn_msg = "Fixed length array converted from %d to %d"%(old_array_len,new_array_len)
elif genmsg.msgs.is_builtin(new_base_type):
if new_base_type != old_base_type:
warn_msg = "Primitive type changed"
else:
updatedef += "\t\tnew_msg.%s = old_msg.%s\n"%(s,s)
else:
tmp_old_type = clean_name(old_base_type, old_class._type)
tmp_new_type = clean_name(new_base_type, new_class._type)
tmp_qualified_old_type = qualified_name(old_base_type, old_class._type)
tmp_qualified_new_type = qualified_name(new_base_type, new_class._type)
# Verify the type can theoretically be migrated
if (tmp_qualified_old_type == tmp_qualified_new_type) or \
(tmp_qualified_old_type in self.rename_map and
tmp_qualified_new_type in self.rename_map[tmp_qualified_old_type]):
if (tmp_old_type, tmp_new_type) not in migrations_seen:
migratedefs += "\n\t\t(\"%s\",\"%s\"),"%(tmp_old_type, tmp_new_type)
migrations_seen.append((tmp_old_type, tmp_new_type))
if not new_is_array:
updatedef += "\t\tself.migrate(old_msg.%s, new_msg.%s)\n"%(s,s)
else:
updatedef += "\t\tself.migrate_array(old_msg.%s, new_msg.%s, \"%s\")\n"%(s,s,new_base_type)
else:
warn_msg = "No migration path between [%s] and [%s]"%(tmp_old_type, tmp_new_type)
except ValueError:
warn_msg = "No matching field name in old message"
if warn_msg is not None:
validdef = "\tvalid = False\n"
updatedef += "\t\t#%s\n"%warn_msg
updatedef += "\t\tnew_msg.%s = %s\n"%(s,migration_default_value(t))
migratedefs += "]\n"
if old_slots:
validdef = "\tvalid = False\n"
for s in old_slots:
updatedef += "\t\t#No field to match field %s from old message\n"%(s)
classdef += migratedefs + '\n' + validdef + '\n' + updatedef
printclassdef = classdef + "\tdef get_class_def(self):\n\t\treturn \'\'\'%s\'\'\'\n"%classdef
# This is probably a TERRIBLE idea?
exec(printclassdef)
return locals()[name]
def make_old_half_rule(self, old_class):
name = "update__%s__%s"%(old_class._type.replace("/","_"), old_class._md5sum)
# We assemble the class as a string and then exec it to end up with a class
# that can essentially print its own definition.
classdef = "class %s(MessageUpdateRule):\n"%name
classdef += "\told_type = \"%s\"\n"%old_class._type
classdef += "\told_full_text = \"\"\"\n%s\n\"\"\"\n\n"%old_class._full_text.strip()
classdef += "\tnew_type = \"\"\n"
classdef += "\tnew_full_text = \"\"\"\n\n\"\"\"\n"
classdef += "\n"
classdef += "\torder = 0"
classdef += "\n"
validdef = "\tvalid = False\n"
migratedefs = "\tmigrated_types = []\n"
updatedef = "\tdef update(self, old_msg, new_msg):\n"
updatedef += "\t\tpass\n"
classdef += migratedefs + '\n' + validdef + '\n' + updatedef
printclassdef = classdef + "\tdef get_class_def(self):\n\t\treturn \'\'\'%s\'\'\'\n"%classdef
# This is probably a TERRIBLE idea?
exec(printclassdef)
return locals()[name]
def make_new_half_rule(self, new_class):
name = "update_to_%s_%s"%(new_class._type.replace("/","_"), new_class._md5sum)
# We assemble the class as a string and then exec it to end up with a class
# that can essentially print its own definition.
classdef = "class %s(MessageUpdateRule):\n"%name
classdef += "\told_type = \"\"\n"
classdef += "\told_full_text = \"\"\"\n\n\"\"\"\n\n"
classdef += "\tnew_type = \"%s\"\n"%new_class._type
classdef += "\tnew_full_text = \"\"\"\n%s\n\"\"\"\n"%new_class._full_text.strip()
classdef += "\n"
classdef += "\torder = 0"
classdef += "\n"
validdef = "\tvalid = False\n"
migratedefs = "\tmigrated_types = []\n"
updatedef = "\tdef update(self, old_msg, new_msg):\n"
updatedef += "\t\tpass\n"
classdef += migratedefs + '\n' + validdef + '\n' + updatedef
printclassdef = classdef + "\tdef get_class_def(self):\n\t\treturn \'\'\'%s\'\'\'\n"%classdef
# This is probably a TERRIBLE idea?
exec(printclassdef)
return locals()[name]
def migration_default_value(field_type):
if field_type in ['bool', 'byte', 'int8', 'int16', 'int32', 'int64',\
'char', 'uint8', 'uint16', 'uint32', 'uint64']:
return '0'
elif field_type in ['float32', 'float64']:
return '0.'
elif field_type == 'string':
# strings, byte[], and uint8s are all optimized to be strings
return "''"
elif field_type.endswith(']'): # array type
base_type, is_array, array_len = genmsg.msgs.parse_type(field_type)
if base_type in ['byte', 'uint8']:
# strings, byte[], and uint8s are all optimized to be strings
if array_len is not None:
return "chr(0)*%s"%array_len
else:
return "''"
elif array_len is None: #var-length
return '[]'
else: # fixed-length, fill values
def_val = migration_default_value(base_type)
return '[' + ','.join(itertools.repeat(def_val, array_len)) + ']'
else:
return "self.get_new_class('%s')()"%field_type
def constants_from_def(core_type, msg_def):
core_pkg, core_base_type = genmsg.package_resource_name(core_type)
splits = msg_def.split('\n' + '=' * 80 + '\n')
core_msg = splits[0]
deps_msgs = splits[1:]
# create MsgSpec representations of .msg text
from genmsg import MsgContext
context = MsgContext.create_default()
specs = { core_type: genmsg.msg_loader.load_msg_from_string(context, core_msg, core_pkg) }
# - dependencies
# for dep_msg in deps_msgs:
# # dependencies require more handling to determine type name
# dep_type, dep_spec = _generate_dynamic_specs(specs, dep_msg)
# specs[dep_type] = dep_spec
return set([(x.name, x.val, x.type) for x in specs[core_type].constants])
|