/usr/lib/python2.7/dist-packages/shapely/ops.py is in python-shapely 1.5.13-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 | """Support for various GEOS geometry operations
"""
import sys
if sys.version_info[0] < 3:
from itertools import izip
else:
izip = zip
from ctypes import byref, c_void_p, c_double
from shapely.geos import lgeos
from shapely.geometry.base import geom_factory, BaseGeometry
from shapely.geometry import asShape, asLineString, asMultiLineString, Point
__all__ = ['cascaded_union', 'linemerge', 'operator', 'polygonize',
'polygonize_full', 'transform', 'unary_union', 'triangulate']
class CollectionOperator(object):
def shapeup(self, ob):
if isinstance(ob, BaseGeometry):
return ob
else:
try:
return asShape(ob)
except ValueError:
return asLineString(ob)
def polygonize(self, lines):
"""Creates polygons from a source of lines
The source may be a MultiLineString, a sequence of LineString objects,
or a sequence of objects than can be adapted to LineStrings.
"""
source = getattr(lines, 'geoms', None) or lines
try:
source = iter(source)
except TypeError:
source = [source]
finally:
obs = [self.shapeup(l) for l in source]
geom_array_type = c_void_p * len(obs)
geom_array = geom_array_type()
for i, line in enumerate(obs):
geom_array[i] = line._geom
product = lgeos.GEOSPolygonize(byref(geom_array), len(obs))
collection = geom_factory(product)
for g in collection.geoms:
clone = lgeos.GEOSGeom_clone(g._geom)
g = geom_factory(clone)
g._other_owned = False
yield g
def polygonize_full(self, lines):
"""Creates polygons from a source of lines, returning the polygons
and leftover geometries.
The source may be a MultiLineString, a sequence of LineString objects,
or a sequence of objects than can be adapted to LineStrings.
Returns a tuple of objects: (polygons, dangles, cut edges, invalid ring
lines). Each are a geometry collection.
Dangles are edges which have one or both ends which are not incident on
another edge endpoint. Cut edges are connected at both ends but do not
form part of polygon. Invalid ring lines form rings which are invalid
(bowties, etc).
"""
source = getattr(lines, 'geoms', None) or lines
try:
source = iter(source)
except TypeError:
source = [source]
finally:
obs = [self.shapeup(l) for l in source]
L = len(obs)
subs = (c_void_p * L)()
for i, g in enumerate(obs):
subs[i] = g._geom
collection = lgeos.GEOSGeom_createCollection(5, subs, L)
dangles = c_void_p()
cuts = c_void_p()
invalids = c_void_p()
product = lgeos.GEOSPolygonize_full(
collection, byref(dangles), byref(cuts), byref(invalids))
return (
geom_factory(product),
geom_factory(dangles),
geom_factory(cuts),
geom_factory(invalids)
)
def linemerge(self, lines):
"""Merges all connected lines from a source
The source may be a MultiLineString, a sequence of LineString objects,
or a sequence of objects than can be adapted to LineStrings. Returns a
LineString or MultiLineString when lines are not contiguous.
"""
source = None
if hasattr(lines, 'type') and lines.type == 'MultiLineString':
source = lines
elif hasattr(lines, '__iter__'):
try:
source = asMultiLineString([ls.coords for ls in lines])
except AttributeError:
source = asMultiLineString(lines)
if source is None:
raise ValueError("Cannot linemerge %s" % lines)
result = lgeos.GEOSLineMerge(source._geom)
return geom_factory(result)
def cascaded_union(self, geoms):
"""Returns the union of a sequence of geometries
This is the most efficient method of dissolving many polygons.
"""
try:
L = len(geoms)
except TypeError:
geoms = [geoms]
L = 1
subs = (c_void_p * L)()
for i, g in enumerate(geoms):
subs[i] = g._geom
collection = lgeos.GEOSGeom_createCollection(6, subs, L)
return geom_factory(lgeos.methods['cascaded_union'](collection))
def unary_union(self, geoms):
"""Returns the union of a sequence of geometries
This method replaces :meth:`cascaded_union` as the
prefered method for dissolving many polygons.
"""
try:
L = len(geoms)
except TypeError:
geoms = [geoms]
L = 1
subs = (c_void_p * L)()
for i, g in enumerate(geoms):
subs[i] = g._geom
collection = lgeos.GEOSGeom_createCollection(6, subs, L)
return geom_factory(lgeos.methods['unary_union'](collection))
operator = CollectionOperator()
polygonize = operator.polygonize
polygonize_full = operator.polygonize_full
linemerge = operator.linemerge
cascaded_union = operator.cascaded_union
unary_union = operator.unary_union
def triangulate(geom, tolerance=0.0, edges=False):
"""Creates the Delaunay triangulation and returns a list of geometries
The source may be any geometry type. All vertices of the geometry will be
used as the points of the triangulation.
From the GEOS documentation:
tolerance is the snapping tolerance used to improve the robustness of
the triangulation computation. A tolerance of 0.0 specifies that no
snapping will take place.
If edges is False, a list of Polygons (triangles) will be returned.
Otherwise the list of LineString edges is returned.
"""
func = lgeos.methods['delaunay_triangulation']
gc = geom_factory(func(geom._geom, tolerance, int(edges)))
return [g for g in gc.geoms]
class ValidateOp(object):
def __call__(self, this):
return lgeos.GEOSisValidReason(this._geom)
validate = ValidateOp()
def transform(func, geom):
"""Applies `func` to all coordinates of `geom` and returns a new
geometry of the same type from the transformed coordinates.
`func` maps x, y, and optionally z to output xp, yp, zp. The input
parameters may iterable types like lists or arrays or single values.
The output shall be of the same type. Scalars in, scalars out.
Lists in, lists out.
For example, here is an identity function applicable to both types
of input.
def id_func(x, y, z=None):
return tuple(filter(None, [x, y, z]))
g2 = transform(id_func, g1)
A partially applied transform function from pyproj satisfies the
requirements for `func`.
from functools import partial
import pyproj
project = partial(
pyproj.transform,
pyproj.Proj(init='epsg:4326'),
pyproj.Proj(init='epsg:26913'))
g2 = transform(project, g1)
Lambda expressions such as the one in
g2 = transform(lambda x, y, z=None: (x+1.0, y+1.0), g1)
also satisfy the requirements for `func`.
"""
if geom.is_empty:
return geom
if geom.type in ('Point', 'LineString', 'LinearRing', 'Polygon'):
# First we try to apply func to x, y, z sequences. When func is
# optimized for sequences, this is the fastest, though zipping
# the results up to go back into the geometry constructors adds
# extra cost.
try:
if geom.type in ('Point', 'LineString', 'LinearRing'):
return type(geom)(zip(*func(*izip(*geom.coords))))
elif geom.type == 'Polygon':
shell = type(geom.exterior)(
zip(*func(*izip(*geom.exterior.coords))))
holes = list(type(ring)(zip(*func(*izip(*ring.coords))))
for ring in geom.interiors)
return type(geom)(shell, holes)
# A func that assumes x, y, z are single values will likely raise a
# TypeError, in which case we'll try again.
except TypeError:
if geom.type in ('Point', 'LineString', 'LinearRing'):
return type(geom)([func(*c) for c in geom.coords])
elif geom.type == 'Polygon':
shell = type(geom.exterior)(
[func(*c) for c in geom.exterior.coords])
holes = list(type(ring)([func(*c) for c in ring.coords])
for ring in geom.interiors)
return type(geom)(shell, holes)
elif geom.type.startswith('Multi') or geom.type == 'GeometryCollection':
return type(geom)([transform(func, part) for part in geom.geoms])
else:
raise ValueError('Type %r not recognized' % geom.type)
def nearest_points(g1, g2):
"""Returns the calculated nearest points in the input geometries
The points are returned in the same order as the input geometries.
"""
seq = lgeos.methods['nearest_points'](g1._geom, g2._geom)
if seq is None:
if g1.is_empty:
raise ValueError('The first input geometry is empty')
else:
raise ValueError('The second input geometry is empty')
x1 = c_double()
y1 = c_double()
x2 = c_double()
y2 = c_double()
lgeos.GEOSCoordSeq_getX(seq, 0, byref(x1))
lgeos.GEOSCoordSeq_getY(seq, 0, byref(y1))
lgeos.GEOSCoordSeq_getX(seq, 1, byref(x2))
lgeos.GEOSCoordSeq_getY(seq, 1, byref(y2))
p1 = Point(x1.value, y1.value)
p2 = Point(x2.value, y2.value)
return (p1, p2)
def snap(g1, g2, tolerance):
"""Snap one geometry to another with a given tolerance
Vertices of the first geometry are snapped to vertices of the second
geometry. The resulting snapped geometry is returned. The input geometries
are not modified.
Parameters
----------
g1 : geometry
The first geometry
g2 : geometry
The second geometry
tolerence : float
The snapping tolerance
Example
-------
>>> square = Polygon([(1,1), (2, 1), (2, 2), (1, 2), (1, 1)])
>>> line = LineString([(0,0), (0.8, 0.8), (1.8, 0.95), (2.6, 0.5)])
>>> result = snap(line, square, 0.5)
>>> result.wkt
'LINESTRING (0 0, 1 1, 2 1, 2.6 0.5)'
"""
return(geom_factory(lgeos.methods['snap'](g1._geom, g2._geom, tolerance)))
|