This file is indexed.

/usr/lib/python2.7/dist-packages/tifffile.py is in python-tifffile 20150817-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# tifffile.py
# Copyright (c) 2008-2015, Christoph Gohlke
# Copyright (c) 2008-2015, The Regents of the University of California
# Produced at the Laboratory for Fluorescence Dynamics
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright
#   notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
#   notice, this list of conditions and the following disclaimer in the
#   documentation and/or other materials provided with the distribution.
# * Neither the name of the copyright holders nor the names of any
#   contributors may be used to endorse or promote products derived
#   from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
"""Read image and meta data from (bio)TIFF files. Save numpy arrays as TIFF.
Image and metadata can be read from TIFF, BigTIFF, OME-TIFF, STK, LSM, NIH,
SGI, ImageJ, MicroManager, FluoView, SEQ and GEL files.
Only a subset of the TIFF specification is supported, mainly uncompressed
and losslessly compressed 2**(0 to 6) bit integer, 16, 32 and 64-bit float,
grayscale and RGB(A) images, which are commonly used in bio-scientific imaging.
Specifically, reading JPEG and CCITT compressed image data or EXIF, IPTC, GPS,
and XMP metadata is not implemented. Only primary info records are read for
STK, FluoView, MicroManager, and NIH Image formats.
TIFF, the Tagged Image File Format, is under the control of Adobe Systems.
BigTIFF allows for files greater than 4 GB. STK, LSM, FluoView, SGI, SEQ, GEL,
and OME-TIFF, are custom extensions defined by Molecular Devices (Universal
Imaging Corporation), Carl Zeiss MicroImaging, Olympus, Silicon Graphics
International, Media Cybernetics, Molecular Dynamics, and the Open Microscopy
Environment consortium respectively.
For command line usage run `python tifffile.py --help`
:Author:
  `Christoph Gohlke <http://www.lfd.uci.edu/~gohlke/>`_
:Organization:
  Laboratory for Fluorescence Dynamics, University of California, Irvine
:Version: 2015.08.17
Requirements
------------
* `CPython 2.7 or 3.4 <http://www.python.org>`_ (64 bit recommended)
* `Numpy 1.9.2 <http://www.numpy.org>`_
* `Matplotlib 1.4.3 <http://www.matplotlib.org>`_ (optional for plotting)
* `Tifffile.c 2015.08.17 <http://www.lfd.uci.edu/~gohlke/>`_
  (recommended for faster decoding of PackBits and LZW encoded strings)
Revisions
---------
2015.08.17
    Pass 1906 tests.
    Write ImageJ hyperstacks (optional).
    Read and write LZMA compressed data.
    Specify datetime when saving (optional).
    Save tiled and color-mapped images (optional).
    Ignore void byte_counts and offsets if possible.
    Ignore bogus image_depth tag created by ISS Vista software.
    Decode floating point horizontal differencing (not tiled).
    Save image data contiguously if possible.
    Only read first IFD from ImageJ files if possible.
    Read ImageJ 'raw' format (files larger than 4 GB).
    TiffPageSeries class for pages with compatible shape and data type.
    Try to read incomplete tiles.
    Open file dialog if no filename is passed on command line.
    Ignore errors when decoding OME-XML.
    Rename decoder functions (backwards incompatible)
2014.08.24
    TiffWriter class for incremental writing images.
    Simplified examples.
2014.08.19
    Add memmap function to FileHandle.
    Add function to determine if image data in TiffPage is memory-mappable.
    Do not close files if multifile_close parameter is False.
2014.08.10
    Pass 1730 tests.
    Return all extrasamples by default (backwards incompatible).
    Read data from series of pages into memory-mapped array (optional).
    Squeeze OME dimensions (backwards incompatible).
    Workaround missing EOI code in strips.
    Support image and tile depth tags (SGI extension).
    Better handling of STK/UIC tags (backwards incompatible).
    Disable color mapping for STK.
    Julian to datetime converter.
    TIFF ASCII type may be NULL separated.
    Unwrap strip offsets for LSM files greater than 4 GB.
    Correct strip byte counts in compressed LSM files.
    Skip missing files in OME series.
    Read embedded TIFF files.
2014.02.05
    Save rational numbers as type 5 (bug fix).
2013.12.20
    Keep other files in OME multi-file series closed.
    FileHandle class to abstract binary file handle.
    Disable color mapping for bad OME-TIFF produced by bio-formats.
    Read bad OME-XML produced by ImageJ when cropping.
2013.11.03
    Allow zlib compress data in imsave function (optional).
    Memory-map contiguous image data (optional).
2013.10.28
    Read MicroManager metadata and little endian ImageJ tag.
    Save extra tags in imsave function.
    Save tags in ascending order by code (bug fix).
2012.10.18
    Accept file like objects (read from OIB files).
2012.08.21
    Rename TIFFfile to TiffFile and TIFFpage to TiffPage.
    TiffSequence class for reading sequence of TIFF files.
    Read UltraQuant tags.
    Allow float numbers as resolution in imsave function.
2012.08.03
    Read MD GEL tags and NIH Image header.
2012.07.25
    Read ImageJ tags.
    ...
Notes
-----
The API is not stable yet and might change between revisions.
Tested on little-endian platforms only.
Other Python packages and modules for reading bio-scientific TIFF files:
*  `Imread <http://luispedro.org/software/imread>`_
*  `PyLibTiff <http://code.google.com/p/pylibtiff>`_
*  `SimpleITK <http://www.simpleitk.org>`_
*  `PyLSM <https://launchpad.net/pylsm>`_
*  `PyMca.TiffIO.py <http://pymca.sourceforge.net/>`_ (same as fabio.TiffIO)
*  `BioImageXD.Readers <http://www.bioimagexd.net/>`_
*  `Cellcognition.io <http://cellcognition.org/>`_
*  `CellProfiler.bioformats
   <https://github.com/CellProfiler/python-bioformats>`_
Acknowledgements
----------------
*   Egor Zindy, University of Manchester, for cz_lsm_scan_info specifics.
*   Wim Lewis for a bug fix and some read_cz_lsm functions.
*   Hadrien Mary for help on reading MicroManager files.
*   Christian Kliche for help writing tiled and color-mapped files.
References
----------
(1) TIFF 6.0 Specification and Supplements. Adobe Systems Incorporated.
    http://partners.adobe.com/public/developer/tiff/
(2) TIFF File Format FAQ. http://www.awaresystems.be/imaging/tiff/faq.html
(3) MetaMorph Stack (STK) Image File Format.
    http://support.meta.moleculardevices.com/docs/t10243.pdf
(4) Image File Format Description LSM 5/7 Release 6.0 (ZEN 2010).
    Carl Zeiss MicroImaging GmbH. BioSciences. May 10, 2011
(5) File Format Description - LSM 5xx Release 2.0.
    http://ibb.gsf.de/homepage/karsten.rodenacker/IDL/Lsmfile.doc
(6) The OME-TIFF format.
    http://www.openmicroscopy.org/site/support/file-formats/ome-tiff
(7) UltraQuant(r) Version 6.0 for Windows Start-Up Guide.
    http://www.ultralum.com/images%20ultralum/pdf/UQStart%20Up%20Guide.pdf
(8) Micro-Manager File Formats.
    http://www.micro-manager.org/wiki/Micro-Manager_File_Formats
(9) Tags for TIFF and Related Specifications. Digital Preservation.
    http://www.digitalpreservation.gov/formats/content/tiff_tags.shtml
Examples
--------
>>> data = numpy.random.rand(5, 301, 219)
>>> imsave('temp.tif', data)
>>> image = imread('temp.tif')
>>> numpy.testing.assert_array_equal(image, data)
>>> with TiffFile('temp.tif') as tif:
...     images = tif.asarray()
...     for page in tif:
...         for tag in page.tags.values():
...             t = tag.name, tag.value
...         image = page.asarray()
"""
from __future__ import division, print_function
import sys
import os
import re
import glob
import math
import zlib
import time
import json
import struct
import warnings
import tempfile
import datetime
import collections
from fractions import Fraction
from xml.etree import cElementTree as etree
import numpy
try:
    import lzma
except ImportError:
    try:
        import backports.lzma as lzma
    except ImportError:
        lzma = None
try:
    if __package__:
        from . import _tifffile
    else:
        import _tifffile
except ImportError:
    warnings.warn(
        "failed to import the optional _tifffile C extension module.\n"
        "Loading of some compressed images will be very slow.\n"
        "Tifffile.c can be obtained at http://www.lfd.uci.edu/~gohlke/")
__version__ = '2015.08.17'
__docformat__ = 'restructuredtext en'
__all__ = (
    'imsave', 'imread', 'imshow', 'TiffFile', 'TiffWriter', 'TiffSequence',
    # utility functions used in oiffile and czifile
    'FileHandle', 'lazyattr', 'natural_sorted', 'decode_lzw', 'stripnull')
def imsave(filename, data, **kwargs):
    """Write image data to TIFF file.
    Refer to the TiffWriter class and member functions for documentation.
    Parameters
    ----------
    filename : str
        Name of file to write.
    data : array_like
        Input image. The last dimensions are assumed to be image depth,
        height, width, and samples.
    kwargs : dict
        Parameters 'byteorder', 'bigtiff', 'software', and 'imagej', are passed
        to the TiffWriter class.
        Parameters 'photometric', 'planarconfig', 'resolution', 'compress',
        'colormap', 'tile', 'description', 'datetime', 'metadata', 'contiguous'
        and 'extratags' are passed to the TiffWriter.save function.
    Examples
    --------
    >>> data = numpy.random.rand(2, 5, 3, 301, 219)
    >>> metadata = {'axes': 'TZCYX'}
    >>> imsave('temp.tif', data, compress=6, metadata={'axes': 'TZCYX'})
    """
    tifargs = {}
    for key in ('byteorder', 'bigtiff', 'software', 'imagej'):
        if key in kwargs:
            tifargs[key] = kwargs[key]
            del kwargs[key]
    if 'bigtiff' not in tifargs and 'imagej' not in tifargs and (
            data.size*data.dtype.itemsize > 2000*2**20):
        tifargs['bigtiff'] = True
    with TiffWriter(filename, **tifargs) as tif:
        tif.save(data, **kwargs)
class TiffWriter(object):
    """Write image data to TIFF file.
    TiffWriter instances must be closed using the 'close' method, which is
    automatically called when using the 'with' statement.
    Examples
    --------
    >>> data = numpy.random.rand(2, 5, 3, 301, 219)
    >>> with TiffWriter('temp.tif', bigtiff=True) as tif:
    ...     for i in range(data.shape[0]):
    ...         tif.save(data[i], compress=6)
    """
    TYPES = {'B': 1, 's': 2, 'H': 3, 'I': 4, '2I': 5, 'b': 6,
             'h': 8, 'i': 9, 'f': 11, 'd': 12, 'Q': 16, 'q': 17}
    TAGS = {
        'new_subfile_type': 254, 'subfile_type': 255,
        'image_width': 256, 'image_length': 257, 'bits_per_sample': 258,
        'compression': 259, 'photometric': 262, 'fill_order': 266,
        'document_name': 269, 'image_description': 270, 'strip_offsets': 273,
        'orientation': 274, 'samples_per_pixel': 277, 'rows_per_strip': 278,
        'strip_byte_counts': 279, 'x_resolution': 282, 'y_resolution': 283,
        'planar_configuration': 284, 'page_name': 285, 'resolution_unit': 296,
        'software': 305, 'datetime': 306, 'predictor': 317, 'color_map': 320,
        'tile_width': 322, 'tile_length': 323, 'tile_offsets': 324,
        'tile_byte_counts': 325, 'extra_samples': 338, 'sample_format': 339,
        'image_depth': 32997, 'tile_depth': 32998}
    def __init__(self, filename, bigtiff=False, byteorder=None,
                 software='tifffile.py', imagej=False):
        """Create a new TIFF file for writing.
        Use bigtiff=True when creating files greater than 2 GB.
        Parameters
        ----------
        filename : str
            Name of file to write.
        bigtiff : bool
            If True, the BigTIFF format is used.
        byteorder : {'<', '>'}
            The endianness of the data in the file.
            By default this is the system's native byte order.
        software : str
            Name of the software used to create the file.
            Saved with the first page in the file only.
        imagej : bool
            If True, write an ImageJ hyperstack compatible file.
            This format can handle data types uint8, uint16, or float32 and
            data shapes up to 6 dimensions in TZCYXS order.
            RGB images (S=3 or S=4) must be uint8.
            ImageJ's default byte order is big endian but this implementation
            uses the system's native byte order by default.
            ImageJ doesn't support BigTIFF format or LZMA compression.
            The ImageJ file format is undocumented.
        """
        if byteorder not in (None, '<', '>'):
            raise ValueError("invalid byteorder %s" % byteorder)
        if byteorder is None:
            byteorder = '<' if sys.byteorder == 'little' else '>'
        if imagej and bigtiff:
            warnings.warn("writing incompatible bigtiff ImageJ")
        self._byteorder = byteorder
        self._software = software
        self._imagej = bool(imagej)
        self._metadata = None
        self._colormap = None
        self._description_offset = 0
        self._description_len_offset = 0
        self._description_len = 0
        self._tags = None
        self._shape = None  # normalized shape of data in consecutive pages
        self._data_shape = None  # shape of data in consecutive pages
        self._data_dtype = None  # data type
        self._data_offset = None  # offset to data
        self._data_byte_counts = None  # byte counts per plane
        self._tag_offsets = None  # strip or tile offset tag code
        self._fh = open(filename, 'wb')
        self._fh.write({'<': b'II', '>': b'MM'}[byteorder])
        if bigtiff:
            self._bigtiff = True
            self._offset_size = 8
            self._tag_size = 20
            self._numtag_format = 'Q'
            self._offset_format = 'Q'
            self._value_format = '8s'
            self._fh.write(struct.pack(byteorder+'HHH', 43, 8, 0))
        else:
            self._bigtiff = False
            self._offset_size = 4
            self._tag_size = 12
            self._numtag_format = 'H'
            self._offset_format = 'I'
            self._value_format = '4s'
            self._fh.write(struct.pack(byteorder+'H', 42))
        # first IFD
        self._ifd_offset = self._fh.tell()
        self._fh.write(struct.pack(byteorder+self._offset_format, 0))
    def save(self, data, photometric=None, planarconfig=None, resolution=None,
             compress=0, colormap=None, tile=None, datetime=None,
             description='', metadata=None, contiguous=True, extratags=()):
        """Write image data and tags to TIFF file.
        Image data are written in one stripe per plane by default.
        Dimensions larger than 2 to 4 (depending on photometric mode, planar
        configuration, and SGI mode) are flattened and saved as separate pages.
        The 'sample_format' and 'bits_per_sample' tags are derived from
        the data type.
        Parameters
        ----------
        data : numpy.ndarray
            Input image. The last dimensions are assumed to be image depth,
            height (length), width, and samples.
            If a colormap is provided, the dtype must be uint8 or uint16 and
            the data values are indices into the last dimension of the
            colormap.
        photometric : {'minisblack', 'miniswhite', 'rgb', 'palette'}
            The color space of the image data.
            By default this setting is inferred from the data shape and the
            value of colormap.
        planarconfig : {'contig', 'planar'}
            Specifies if samples are stored contiguous or in separate planes.
            By default this setting is inferred from the data shape.
            'contig': last dimension contains samples.
            'planar': third last dimension contains samples.
        resolution : (float, float) or ((int, int), (int, int))
            X and Y resolution in dots per inch as float or rational numbers.
        compress : int or 'lzma'
            Values from 0 to 9 controlling the level of zlib compression.
            If 0, data are written uncompressed (default).
            Compression cannot be used to write contiguous files.
            If 'lzma', LZMA compression is used, which is not available on
            all platforms.
        colormap : numpy.ndarray
            RGB color values for the corresponding data value.
            Must be of shape (3, 2**(data.itemsize*8)) and dtype uint16.
        tile : tuple of int
            The shape (depth, length, width) of image tiles to write.
            If None (default), image data are written in one stripe per plane.
            The tile length and width must be a multiple of 16.
            If the tile depth is provided, the SGI image_depth and tile_depth
            tags are used to save volume data. Few software can read the
            SGI format, e.g. MeVisLab.
        datetime : datetime
            Date and time of image creation. Saved with the first page only.
            If None (default), the current date and time is used.
        description : str
            The subject of the image. Saved with the first page only.
            Cannot be used with the ImageJ format. If None (default),
            the data shape and metadata are saved in JSON or ImageJ format.
        metadata : dict
            Additional meta data passed to the image description functions.
        contiguous : bool
            If True (default) and the data and parameters are compatible with
            previous ones, if any, the data are stored contiguously after
            the previous one. Parameters 'photometric' and 'planarconfig' are
            ignored.
        extratags : sequence of tuples
            Additional tags as [(code, dtype, count, value, writeonce)].
            code : int
                The TIFF tag Id.
            dtype : str
                Data type of items in 'value' in Python struct format.
                One of B, s, H, I, 2I, b, h, i, f, d, Q, or q.
            count : int
                Number of data values. Not used for string values.
            value : sequence
                'Count' values compatible with 'dtype'.
            writeonce : bool
                If True, the tag is written to the first page only.
        """
        # TODO: refactor this function
        fh = self._fh
        byteorder = self._byteorder
        numtag_format = self._numtag_format
        value_format = self._value_format
        offset_format = self._offset_format
        offset_size = self._offset_size
        tag_size = self._tag_size
        data = numpy.asarray(data, dtype=byteorder+data.dtype.char, order='C')
        # just append contiguous data if possible
        if self._data_shape:
            if (not contiguous or
                    self._data_shape[1:] != data.shape or
                    self._data_dtype != data.dtype or
                    (compress and self._tags) or
                    tile or
                    not numpy.array_equal(colormap, self._colormap)):
                # incompatible shape, dtype, compression mode, or colormap
                self._write_remaining_pages()
                self._write_image_description()
                self._description_offset = 0
                self._description_len_offset = 0
                self._data_shape = None
                self._colormap = None
                if self._imagej:
                    raise ValueError(
                        "ImageJ does not support non-contiguous data")
            else:
                # consecutive mode
                self._data_shape = (self._data_shape[0] + 1,) + data.shape
                if not compress:
                    # write contiguous data, write ifds/tags later
                    data.tofile(fh)
                    return
        if photometric not in (None, 'minisblack', 'miniswhite',
                               'rgb', 'palette'):
            raise ValueError("invalid photometric %s" % photometric)
        if planarconfig not in (None, 'contig', 'planar'):
            raise ValueError("invalid planarconfig %s" % planarconfig)
        # prepare compression
        if not compress:
            compress = False
            compress_tag = 1
        elif compress == 'lzma':
            compress = lzma.compress
            compress_tag = 34925
            if self._imagej:
                raise ValueError("ImageJ can't handle LZMA compression")
        elif not 0 <= compress <= 9:
            raise ValueError("invalid compression level %s" % compress)
        elif compress:
            def compress(data, level=compress):
                return zlib.compress(data, level)
            compress_tag = 32946
        # prepare ImageJ format
        if self._imagej:
            if description:
                warnings.warn("not writing description to ImageJ file")
                description = None
            volume = False
            if data.dtype.char not in 'BHhf':
                raise ValueError("ImageJ does not support data type '%s'"
                                 % data.dtype.char)
            ijrgb = photometric == 'rgb' if photometric else None
            if data.dtype.char not in 'B':
                ijrgb = False
            ijshape = imagej_shape(data.shape, ijrgb)
            if ijshape[-1] in (3, 4):
                photometric = 'rgb'
                if data.dtype.char not in 'B':
                    raise ValueError("ImageJ does not support data type '%s' "
                                     "for RGB" % data.dtype.char)
            elif photometric is None:
                photometric = 'minisblack'
                planarconfig = None
            if planarconfig == 'planar':
                raise ValueError("ImageJ does not support planar images")
            else:
                planarconfig = 'contig' if ijrgb else None
        # verify colormap and indices
        if colormap is not None:
            if data.dtype.char not in 'BH':
                raise ValueError("invalid data dtype for palette mode")
            colormap = numpy.asarray(colormap, dtype=byteorder+'H')
            if colormap.shape != (3, 2**(data.itemsize * 8)):
                raise ValueError("invalid color map shape")
            self._colormap = colormap
        # verify tile shape
        if tile:
            tile = tuple(int(i) for i in tile[:3])
            volume = len(tile) == 3
            if (len(tile) < 2 or tile[-1] % 16 or tile[-2] % 16 or
                    any(i < 1 for i in tile)):
                raise ValueError("invalid tile shape")
        else:
            tile = ()
            volume = False
        # normalize data shape to 5D or 6D, depending on volume:
        #   (pages, planar_samples, [depth,] height, width, contig_samples)
        data_shape = shape = data.shape
        data = numpy.atleast_2d(data)
        samplesperpixel = 1
        extrasamples = 0
        if volume and data.ndim < 3:
            volume = False
        if colormap is not None:
            photometric = 'palette'
            planarconfig = None
        if photometric is None:
            if planarconfig:
                photometric = 'rgb'
            elif data.ndim > 2 and shape[-1] in (3, 4):
                photometric = 'rgb'
            elif self._imagej:
                photometric = 'minisblack'
            elif volume and data.ndim > 3 and shape[-4] in (3, 4):
                photometric = 'rgb'
            elif data.ndim > 2 and shape[-3] in (3, 4):
                photometric = 'rgb'
            else:
                photometric = 'minisblack'
        if planarconfig and len(shape) <= (3 if volume else 2):
            planarconfig = None
            photometric = 'minisblack'
        if photometric == 'rgb':
            if len(shape) < 3:
                raise ValueError("not a RGB(A) image")
            if len(shape) < 4:
                volume = False
            if planarconfig is None:
                if shape[-1] in (3, 4):
                    planarconfig = 'contig'
                elif shape[-4 if volume else -3] in (3, 4):
                    planarconfig = 'planar'
                elif shape[-1] > shape[-4 if volume else -3]:
                    planarconfig = 'planar'
                else:
                    planarconfig = 'contig'
            if planarconfig == 'contig':
                data = data.reshape((-1, 1) + shape[(-4 if volume else -3):])
                samplesperpixel = data.shape[-1]
            else:
                data = data.reshape(
                    (-1,) + shape[(-4 if volume else -3):] + (1,))
                samplesperpixel = data.shape[1]
            if samplesperpixel > 3:
                extrasamples = samplesperpixel - 3
        elif planarconfig and len(shape) > (3 if volume else 2):
            if planarconfig == 'contig':
                data = data.reshape((-1, 1) + shape[(-4 if volume else -3):])
                samplesperpixel = data.shape[-1]
            else:
                data = data.reshape(
                    (-1,) + shape[(-4 if volume else -3):] + (1,))
                samplesperpixel = data.shape[1]
            extrasamples = samplesperpixel - 1
        else:
            planarconfig = None
            # remove trailing 1s
            while len(shape) > 2 and shape[-1] == 1:
                shape = shape[:-1]
            if len(shape) < 3:
                volume = False
            if False and (
                    photometric != 'palette' and
                    len(shape) > (3 if volume else 2) and shape[-1] < 5 and
                    all(shape[-1] < i
                        for i in shape[(-4 if volume else -3):-1])):
                # DISABLED: non-standard TIFF, e.g. (220, 320, 2)
                planarconfig = 'contig'
                samplesperpixel = shape[-1]
                data = data.reshape((-1, 1) + shape[(-4 if volume else -3):])
            else:
                data = data.reshape(
                    (-1, 1) + shape[(-3 if volume else -2):] + (1,))
        # normalize shape to 6D
        assert len(data.shape) in (5, 6)
        if len(data.shape) == 5:
            data = data.reshape(data.shape[:2] + (1,) + data.shape[2:])
        shape = data.shape
        if tile and not volume:
            tile = (1, tile[-2], tile[-1])
        if photometric == 'palette':
            if (samplesperpixel != 1 or extrasamples or
                    shape[1] != 1 or shape[-1] != 1):
                raise ValueError("invalid data shape for palette mode")
        if samplesperpixel == 2:
            warnings.warn("writing non-standard TIFF (samplesperpixel 2)")
        bytestr = bytes if sys.version[0] == '2' else (
            lambda x: bytes(x, 'utf-8') if isinstance(x, str) else x)
        tags = []  # list of (code, ifdentry, ifdvalue, writeonce)
        strip_or_tile = 'tile' if tile else 'strip'
        tag_byte_counts = TiffWriter.TAGS[strip_or_tile + '_byte_counts']
        tag_offsets = TiffWriter.TAGS[strip_or_tile + '_offsets']
        self._tag_offsets = tag_offsets
        def pack(fmt, *val):
            return struct.pack(byteorder+fmt, *val)
        def addtag(code, dtype, count, value, writeonce=False):
            # Compute ifdentry & ifdvalue bytes from code, dtype, count, value
            # Append (code, ifdentry, ifdvalue, writeonce) to tags list
            code = int(TiffWriter.TAGS.get(code, code))
            try:
                tifftype = TiffWriter.TYPES[dtype]
            except KeyError:
                raise ValueError("unknown dtype %s" % dtype)
            rawcount = count
            if dtype == 's':
                value = bytestr(value) + b'\0'
                count = rawcount = len(value)
                rawcount = value.find(b'\0\0')
                if rawcount < 0:
                    rawcount = count
                else:
                    rawcount += 1  # length of string without buffer
                value = (value,)
            if len(dtype) > 1:
                count *= int(dtype[:-1])
                dtype = dtype[-1]
            ifdentry = [pack('HH', code, tifftype),
                        pack(offset_format, rawcount)]
            ifdvalue = None
            if count == 1:
                if isinstance(value, (tuple, list, numpy.ndarray)):
                    value = value[0]
                ifdentry.append(pack(value_format, pack(dtype, value)))
            elif struct.calcsize(dtype) * count <= offset_size:
                ifdentry.append(pack(value_format,
                                     pack(str(count)+dtype, *value)))
            else:
                ifdentry.append(pack(offset_format, 0))
                if isinstance(value, numpy.ndarray):
                    assert value.size == count
                    assert value.dtype.char == dtype
                    ifdvalue = value.tobytes()
                else:
                    ifdvalue = pack(str(count)+dtype, *value)
            tags.append((code, b''.join(ifdentry), ifdvalue, writeonce))
        def rational(arg, max_denominator=1000000):
            # return nominator and denominator from float or two integers
            try:
                f = Fraction.from_float(arg)
            except TypeError:
                f = Fraction(arg[0], arg[1])
            f = f.limit_denominator(max_denominator)
            return f.numerator, f.denominator
        if description:
            # user provided description
            addtag('image_description', 's', 0, description, writeonce=True)
        # always write shape and metadata to image_description
        self._metadata = {} if metadata is None else metadata
        if self._imagej:
            description = imagej_description(
                data_shape, shape[-1] in (3, 4), self._colormap is not None,
                **self._metadata)
        else:
            description = image_description(
                data_shape, self._colormap is not None, **self._metadata)
        if description:
            # add 32 bytes buffer
            # the image description might be updated later with the final shape
            description += b'\0'*32
            self._description_len = len(description)
            addtag('image_description', 's', 0, description, writeonce=True)
        if self._software:
            addtag('software', 's', 0, self._software, writeonce=True)
            self._software = None  # only save to first page in file
        if datetime is None:
            datetime = self._now()
        addtag('datetime', 's', 0, datetime.strftime("%Y:%m:%d %H:%M:%S"),
               writeonce=True)
        addtag('compression', 'H', 1, compress_tag)
        addtag('image_width', 'I', 1, shape[-2])
        addtag('image_length', 'I', 1, shape[-3])
        if tile:
            addtag('tile_width', 'I', 1, tile[-1])
            addtag('tile_length', 'I', 1, tile[-2])
            if tile[0] > 1:
                addtag('image_depth', 'I', 1, shape[-4])
                addtag('tile_depth', 'I', 1, tile[0])
        addtag('new_subfile_type', 'I', 1, 0)
        addtag('sample_format', 'H', 1,
               {'u': 1, 'i': 2, 'f': 3, 'c': 6}[data.dtype.kind])
        addtag('photometric', 'H', 1, {'miniswhite': 0, 'minisblack': 1,
                                       'rgb': 2, 'palette': 3}[photometric])
        if colormap is not None:
            addtag('color_map', 'H', colormap.size, colormap)
        addtag('samples_per_pixel', 'H', 1, samplesperpixel)
        if planarconfig and samplesperpixel > 1:
            addtag('planar_configuration', 'H', 1, 1
                   if planarconfig == 'contig' else 2)
            addtag('bits_per_sample', 'H', samplesperpixel,
                   (data.dtype.itemsize * 8,) * samplesperpixel)
        else:
            addtag('bits_per_sample', 'H', 1, data.dtype.itemsize * 8)
        if extrasamples:
            if photometric == 'rgb' and extrasamples == 1:
                addtag('extra_samples', 'H', 1, 1)  # associated alpha channel
            else:
                addtag('extra_samples', 'H', extrasamples, (0,) * extrasamples)
        if resolution:
            addtag('x_resolution', '2I', 1, rational(resolution[0]))
            addtag('y_resolution', '2I', 1, rational(resolution[1]))
            addtag('resolution_unit', 'H', 1, 2)
        if not tile:
            addtag('rows_per_strip', 'I', 1, shape[-3])  # * shape[-4]
        if tile:
            # use one chunk per tile per plane
            tiles = ((shape[2] + tile[0] - 1) // tile[0],
                     (shape[3] + tile[1] - 1) // tile[1],
                     (shape[4] + tile[2] - 1) // tile[2])
            numtiles = product(tiles) * shape[1]
            strip_byte_counts = [
                product(tile) * shape[-1] * data.dtype.itemsize] * numtiles
            addtag(tag_byte_counts, offset_format, numtiles, strip_byte_counts)
            addtag(tag_offsets, offset_format, numtiles, [0] * numtiles)
            # allocate tile buffer
            chunk = numpy.empty(tile + (shape[-1],), dtype=data.dtype)
        else:
            # use one strip per plane
            strip_byte_counts = [
                data[0, 0].size * data.dtype.itemsize] * shape[1]
            addtag(tag_byte_counts, offset_format, shape[1], strip_byte_counts)
            addtag(tag_offsets, offset_format, shape[1], [0] * shape[1])
        # add extra tags from user
        for t in extratags:
            addtag(*t)
        # TODO: check TIFFReadDirectoryCheckOrder warning in files containing
        #   multiple tags of same code
        # the entries in an IFD must be sorted in ascending order by tag code
        tags = sorted(tags, key=lambda x: x[0])
        if not (self._bigtiff or self._imagej) and (
                fh.tell() + data.size*data.dtype.itemsize > 2**31-1):
            raise ValueError("data too large for standard TIFF file")
        # if not compressed or tiled, write the first ifd and then all data
        # contiguously; else, write all ifds and data interleaved
        for pageindex in range(shape[0] if (compress or tile) else 1):
            # update pointer at ifd_offset
            pos = fh.tell()
            fh.seek(self._ifd_offset)
            fh.write(pack(offset_format, pos))
            fh.seek(pos)
            # write ifdentries
            fh.write(pack(numtag_format, len(tags)))
            tag_offset = fh.tell()
            fh.write(b''.join(t[1] for t in tags))
            self._ifd_offset = fh.tell()
            fh.write(pack(offset_format, 0))  # offset to next IFD
            # write tag values and patch offsets in ifdentries, if necessary
            for tagindex, tag in enumerate(tags):
                if tag[2]:
                    pos = fh.tell()
                    fh.seek(tag_offset + tagindex*tag_size + offset_size + 4)
                    fh.write(pack(offset_format, pos))
                    fh.seek(pos)
                    if tag[0] == tag_offsets:
                        strip_offsets_offset = pos
                    elif tag[0] == tag_byte_counts:
                        strip_byte_counts_offset = pos
                    elif tag[0] == 270 and tag[2].endswith(b'\0\0\0\0'):
                        # image description buffer
                        self._description_offset = pos
                        self._description_len_offset = (
                            tag_offset + tagindex * tag_size + 4)
                    fh.write(tag[2])
            # write image data
            data_offset = fh.tell()
            if compress:
                strip_byte_counts = []
            if tile:
                for plane in data[pageindex]:
                    for tz in range(tiles[0]):
                        for ty in range(tiles[1]):
                            for tx in range(tiles[2]):
                                c0 = min(tile[0], shape[2] - tz*tile[0])
                                c1 = min(tile[1], shape[3] - ty*tile[1])
                                c2 = min(tile[2], shape[4] - tx*tile[2])
                                chunk[c0:, c1:, c2:] = 0
                                chunk[:c0, :c1, :c2] = plane[
                                    tz*tile[0]:tz*tile[0]+c0,
                                    ty*tile[1]:ty*tile[1]+c1,
                                    tx*tile[2]:tx*tile[2]+c2]
                                if compress:
                                    t = compress(chunk)
                                    strip_byte_counts.append(len(t))
                                    fh.write(t)
                                else:
                                    chunk.tofile(fh)
                                    fh.flush()
            elif compress:
                for plane in data[pageindex]:
                    plane = compress(plane)
                    strip_byte_counts.append(len(plane))
                    fh.write(plane)
            else:
                data.tofile(fh)  # if this fails try update Python and numpy
            # update strip/tile offsets and byte_counts if necessary
            pos = fh.tell()
            for tagindex, tag in enumerate(tags):
                if tag[0] == tag_offsets:  # strip/tile offsets
                    if tag[2]:
                        fh.seek(strip_offsets_offset)
                        strip_offset = data_offset
                        for size in strip_byte_counts:
                            fh.write(pack(offset_format, strip_offset))
                            strip_offset += size
                    else:
                        fh.seek(tag_offset + tagindex*tag_size +
                                offset_size + 4)
                        fh.write(pack(offset_format, data_offset))
                elif tag[0] == tag_byte_counts:  # strip/tile byte_counts
                    if compress:
                        if tag[2]:
                            fh.seek(strip_byte_counts_offset)
                            for size in strip_byte_counts:
                                fh.write(pack(offset_format, size))
                        else:
                            fh.seek(tag_offset + tagindex*tag_size +
                                    offset_size + 4)
                            fh.write(pack(offset_format, strip_byte_counts[0]))
                    break
            fh.seek(pos)
            fh.flush()
            # remove tags that should be written only once
            if pageindex == 0:
                tags = [tag for tag in tags if not tag[-1]]
        # if uncompressed, write remaining ifds/tags later
        if not (compress or tile):
            self._tags = tags
        self._shape = shape
        self._data_shape = (1,) + data_shape
        self._data_dtype = data.dtype
        self._data_offset = data_offset
        self._data_byte_counts = strip_byte_counts
    def _write_remaining_pages(self):
        """Write outstanding IFDs and tags to file."""
        if not self._tags:
            return
        fh = self._fh
        byteorder = self._byteorder
        numtag_format = self._numtag_format
        offset_format = self._offset_format
        offset_size = self._offset_size
        tag_size = self._tag_size
        data_offset = self._data_offset
        page_data_size = sum(self._data_byte_counts)
        tag_bytes = b''.join(t[1] for t in self._tags)
        numpages = self._shape[0] * self._data_shape[0] - 1
        pos = fh.tell()
        if not self._bigtiff and pos + len(tag_bytes) * numpages > 2**32 - 256:
            if self._imagej:
                warnings.warn("truncating ImageJ file")
                return
            raise ValueError("data too large for non-bigtiff file")
        def pack(fmt, *val):
            return struct.pack(byteorder+fmt, *val)
        for _ in range(numpages):
            # update pointer at ifd_offset
            pos = fh.tell()
            fh.seek(self._ifd_offset)
            fh.write(pack(offset_format, pos))
            fh.seek(pos)
            # write ifd entries
            fh.write(pack(numtag_format, len(self._tags)))
            tag_offset = fh.tell()
            fh.write(tag_bytes)
            self._ifd_offset = fh.tell()
            fh.write(pack(offset_format, 0))  # offset to next IFD
            # offset to image data
            data_offset += page_data_size
            # write tag values and patch offsets in ifdentries, if necessary
            for tagindex, tag in enumerate(self._tags):
                if tag[2]:
                    pos = fh.tell()
                    fh.seek(tag_offset + tagindex*tag_size + offset_size + 4)
                    fh.write(pack(offset_format, pos))
                    fh.seek(pos)
                    if tag[0] == self._tag_offsets:
                        strip_offsets_offset = pos
                    fh.write(tag[2])
            # update strip/tile offsets if necessary
            pos = fh.tell()
            for tagindex, tag in enumerate(self._tags):
                if tag[0] == self._tag_offsets:  # strip/tile offsets
                    if tag[2]:
                        fh.seek(strip_offsets_offset)
                        strip_offset = data_offset
                        for size in self._data_byte_counts:
                            fh.write(pack(offset_format, strip_offset))
                            strip_offset += size
                    else:
                        fh.seek(tag_offset + tagindex*tag_size +
                                offset_size + 4)
                        fh.write(pack(offset_format, data_offset))
                    break
            fh.seek(pos)
        self._tags = None
        self._data_dtype = None
        self._data_offset = None
        self._data_byte_counts = None
        # do not reset _shape or _data_shape
    def _write_image_description(self):
        """Write meta data to image_description tag."""
        if (not self._data_shape or self._data_shape[0] == 1 or
                self._description_offset <= 0):
            return
        colormapped = self._colormap is not None
        if self._imagej:
            isrgb = self._shape[-1] in (3, 4)
            description = imagej_description(
                self._data_shape, isrgb, colormapped, **self._metadata)
        else:
            description = image_description(
                self._data_shape, colormapped, **self._metadata)
        # rewrite description and its length to file
        description = description[:self._description_len-1]
        pos = self._fh.tell()
        self._fh.seek(self._description_offset)
        self._fh.write(description)
        self._fh.seek(self._description_len_offset)
        self._fh.write(struct.pack(self._byteorder+self._offset_format,
                                   len(description)+1))
        self._fh.seek(pos)
        self._description_offset = 0
        self._description_len_offset = 0
        self._description_len = 0
    def _now(self):
        """Return current date and time."""
        return datetime.datetime.now()
    def close(self, truncate=False):
        """Write remaining pages (if not truncate) and close file handle."""
        if not truncate:
            self._write_remaining_pages()
        self._write_image_description()
        self._fh.close()
    def __enter__(self):
        return self
    def __exit__(self, exc_type, exc_value, traceback):
        self.close()
def imread(files, **kwargs):
    """Return image data from TIFF file(s) as numpy array.
    The first image series is returned if no arguments are provided.
    Parameters
    ----------
    files : str or list
        File name, glob pattern, or list of file names.
    key : int, slice, or sequence of page indices
        Defines which pages to return as array.
    series : int
        Defines which series of pages in file to return as array.
    multifile : bool
        If True (default), OME-TIFF data may include pages from multiple files.
    pattern : str
        Regular expression pattern that matches axes names and indices in
        file names.
    kwargs : dict
        Additional parameters passed to the TiffFile or TiffSequence asarray
        function.
    Examples
    --------
    >>> imsave('temp.tif', numpy.random.rand(3, 4, 301, 219))
    >>> im = imread('temp.tif', key=0)
    >>> im.shape
    (4, 301, 219)
    >>> ims = imread(['temp.tif', 'temp.tif'])
    >>> ims.shape
    (2, 3, 4, 301, 219)
    """
    kwargs_file = {}
    if 'multifile' in kwargs:
        kwargs_file['multifile'] = kwargs['multifile']
        del kwargs['multifile']
    else:
        kwargs_file['multifile'] = True
    kwargs_seq = {}
    if 'pattern' in kwargs:
        kwargs_seq['pattern'] = kwargs['pattern']
        del kwargs['pattern']
    if isinstance(files, basestring) and any(i in files for i in '?*'):
        files = glob.glob(files)
    if not files:
        raise ValueError('no files found')
    if len(files) == 1:
        files = files[0]
    if isinstance(files, basestring):
        with TiffFile(files, **kwargs_file) as tif:
            return tif.asarray(**kwargs)
    else:
        with TiffSequence(files, **kwargs_seq) as imseq:
            return imseq.asarray(**kwargs)
class lazyattr(object):
    """Lazy object attribute whose value is computed on first access."""
    __slots__ = ('func',)
    def __init__(self, func):
        self.func = func
    def __get__(self, instance, owner):
        if instance is None:
            return self
        value = self.func(instance)
        if value is NotImplemented:
            return getattr(super(owner, instance), self.func.__name__)
        setattr(instance, self.func.__name__, value)
        return value
class TiffFile(object):
    """Read image and metadata from TIFF, STK, LSM, and FluoView files.
    TiffFile instances must be closed using the 'close' method, which is
    automatically called when using the 'with' statement.
    Attributes
    ----------
    pages : list of TiffPage
        All TIFF pages in file.
    series : list of TiffPageSeries
        TIFF pages with compatible shapes and types.
    micromanager_metadata: dict
        Extra MicroManager non-TIFF metadata in the file, if exists.
    All attributes are read-only.
    Examples
    --------
    >>> with TiffFile('temp.tif') as tif:
    ...     data = tif.asarray()
    ...     data.shape
    (5, 301, 219)
    """
    def __init__(self, arg, name=None, offset=None, size=None,
                 multifile=True, multifile_close=True, maxpages=None,
                 fastij=True):
        """Initialize instance from file.
        Parameters
        ----------
        arg : str or open file
            Name of file or open file object.
            The file objects are closed in TiffFile.close().
        name : str
            Optional name of file in case 'arg' is a file handle.
        offset : int
            Optional start position of embedded file. By default this is
            the current file position.
        size : int
            Optional size of embedded file. By default this is the number
            of bytes from the 'offset' to the end of the file.
        multifile : bool
            If True (default), series may include pages from multiple files.
            Currently applies to OME-TIFF only.
        multifile_close : bool
            If True (default), keep the handles of other files in multifile
            series closed. This is inefficient when few files refer to
            many pages. If False, the C runtime may run out of resources.
        maxpages : int
            Number of pages to read (default: no limit).
        fastij : bool
            If True (default), try to use only the metadata from the first page
            of ImageJ files. Significantly speeds up loading movies with
            thousands of pages.
        """
        self._fh = FileHandle(arg, name=name, offset=offset, size=size)
        self.offset_size = None
        self.pages = []
        self._multifile = bool(multifile)
        self._multifile_close = bool(multifile_close)
        self._files = {self._fh.name: self}  # cache of TiffFiles
        try:
            self._fromfile(maxpages, fastij)
        except Exception:
            self._fh.close()
            raise
    @property
    def filehandle(self):
        """Return file handle."""
        return self._fh
    @property
    def filename(self):
        """Return name of file handle."""
        return self._fh.name
    def close(self):
        """Close open file handle(s)."""
        for tif in self._files.values():
            tif._fh.close()
        self._files = {}
    def _fromfile(self, maxpages=None, fastij=True):
        """Read TIFF header and all page records from file."""
        self._fh.seek(0)
        try:
            self.byteorder = {b'II': '<', b'MM': '>'}[self._fh.read(2)]
        except KeyError:
            raise ValueError("not a valid TIFF file")
        self._is_native = self.byteorder == {'big': '>',
                                             'little': '<'}[sys.byteorder]
        version = struct.unpack(self.byteorder+'H', self._fh.read(2))[0]
        if version == 43:
            # BigTiff
            self.offset_size, zero = struct.unpack(self.byteorder+'HH',
                                                   self._fh.read(4))
            if zero or self.offset_size != 8:
                raise ValueError("not a valid BigTIFF file")
        elif version == 42:
            self.offset_size = 4
        else:
            raise ValueError("not a TIFF file")
        self.pages = []
        while True:
            try:
                page = TiffPage(self)
                self.pages.append(page)
            except StopIteration:
                break
            if maxpages and len(self.pages) > maxpages:
                break
            if fastij and page.is_imagej:
                if page._patch_imagej():
                    break  # only read the first page of ImageJ files
                fastij = False
        if not self.pages:
            raise ValueError("empty TIFF file")
        # TODO? sort pages by page_number value
        if self.is_micromanager:
            # MicroManager files contain metadata not stored in TIFF tags.
            self.micromanager_metadata = read_micromanager_metadata(self._fh)
        if self.is_lsm:
            self._fix_lsm_strip_offsets()
            self._fix_lsm_strip_byte_counts()
    def _fix_lsm_strip_offsets(self):
        """Unwrap strip offsets for LSM files greater than 4 GB."""
        for series in self.series:
            wrap = 0
            previous_offset = 0
            for page in series.pages:
                strip_offsets = []
                for current_offset in page.strip_offsets:
                    if current_offset < previous_offset:
                        wrap += 2**32
                    strip_offsets.append(current_offset + wrap)
                    previous_offset = current_offset
                page.strip_offsets = tuple(strip_offsets)
    def _fix_lsm_strip_byte_counts(self):
        """Set strip_byte_counts to size of compressed data.
        The strip_byte_counts tag in LSM files contains the number of bytes
        for the uncompressed data.
        """
        if not self.pages:
            return
        strips = {}
        for page in self.pages:
            assert len(page.strip_offsets) == len(page.strip_byte_counts)
            for offset, bytecount in zip(page.strip_offsets,
                                         page.strip_byte_counts):
                strips[offset] = bytecount
        offsets = sorted(strips.keys())
        offsets.append(min(offsets[-1] + strips[offsets[-1]], self._fh.size))
        for i, offset in enumerate(offsets[:-1]):
            strips[offset] = min(strips[offset], offsets[i+1] - offset)
        for page in self.pages:
            if page.compression:
                page.strip_byte_counts = tuple(
                    strips[offset] for offset in page.strip_offsets)
    def asarray(self, key=None, series=None, memmap=False):
        """Return image data from multiple TIFF pages as numpy array.
        By default the first image series is returned.
        Parameters
        ----------
        key : int, slice, or sequence of page indices
            Defines which pages to return as array.
        series : int or TiffPageSeries
            Defines which series of pages to return as array.
        memmap : bool
            If True, return an array stored in a binary file on disk
            if possible.
        """
        if key is None and series is None:
            series = 0
        if series is not None:
            try:
                series = self.series[series]
            except (KeyError, TypeError):
                pass
            pages = series.pages
        else:
            pages = self.pages
        if key is None:
            pass
        elif isinstance(key, int):
            pages = [pages[key]]
        elif isinstance(key, slice):
            pages = pages[key]
        elif isinstance(key, collections.Iterable):
            pages = [pages[k] for k in key]
        else:
            raise TypeError("key must be an int, slice, or sequence")
        if not len(pages):
            raise ValueError("no pages selected")
        if self.is_nih:
            if pages[0].is_palette:
                result = stack_pages(pages, colormapped=False, squeeze=False)
                result = numpy.take(pages[0].color_map, result, axis=1)
                result = numpy.swapaxes(result, 0, 1)
            else:
                result = stack_pages(pages, memmap=memmap,
                                     colormapped=False, squeeze=False)
        elif len(pages) == 1:
            result = pages[0].asarray(memmap=memmap)
        elif self.is_ome:
            assert not self.is_palette, "color mapping disabled for ome-tiff"
            if any(p is None for p in pages):
                # zero out missing pages
                firstpage = next(p for p in pages if p)
                nopage = numpy.zeros_like(
                    firstpage.asarray(memmap=False))
            if memmap:
                with tempfile.NamedTemporaryFile() as fh:
                    result = numpy.memmap(fh, series.dtype, shape=series.shape)
                    result = result.reshape(-1)
            else:
                result = numpy.empty(series.shape, series.dtype).reshape(-1)
            index = 0
            class KeepOpen:
                # keep Tiff files open between consecutive pages
                def __init__(self, parent, close):
                    self.master = parent
                    self.parent = parent
                    self._close = close
                def open(self, page):
                    if self._close and page and page.parent != self.parent:
                        if self.parent != self.master:
                            self.parent.filehandle.close()
                        self.parent = page.parent
                        self.parent.filehandle.open()
                def close(self):
                    if self._close and self.parent != self.master:
                        self.parent.filehandle.close()
            keep = KeepOpen(self, self._multifile_close)
            for page in pages:
                keep.open(page)
                if page:
                    a = page.asarray(memmap=False, colormapped=False,
                                     reopen=False)
                else:
                    a = nopage
                try:
                    result[index:index + a.size] = a.reshape(-1)
                except ValueError as e:
                    warnings.warn("ome-tiff: %s" % e)
                    break
                index += a.size
            keep.close()
        else:
            result = stack_pages(pages, memmap=memmap)
        if key is None:
            try:
                result.shape = series.shape
            except ValueError:
                try:
                    warnings.warn("failed to reshape %s to %s" % (
                        result.shape, series.shape))
                    # try series of expected shapes
                    result.shape = (-1,) + series.shape
                except ValueError:
                    # revert to generic shape
                    result.shape = (-1,) + pages[0].shape
        elif len(pages) == 1:
            result.shape = pages[0].shape
        else:
            result.shape = (-1,) + pages[0].shape
        return result
    @lazyattr
    def series(self):
        """Return series of TiffPage with compatible shape and properties."""
        if not self.pages:
            return []
        series = []
        if self.is_ome:
            series = self._ome_series()
        elif self.is_fluoview:
            series = self._fluoview_series()
        elif self.is_lsm:
            series = self._lsm_series()
        elif self.is_imagej:
            series = self._imagej_series()
        elif self.is_nih:
            series = self._nih_series()
        if not series:
            # generic detection of series
            shapes = []
            pages = {}
            index = 0
            for page in self.pages:
                if not page.shape:
                    continue
                if page.is_shaped:
                    index += 1  # shape starts a new series
                shape = page.shape + (index, page.axes,
                                      page.compression in TIFF_DECOMPESSORS)
                if shape in pages:
                    pages[shape].append(page)
                else:
                    shapes.append(shape)
                    pages[shape] = [page]
            series = []
            for s in shapes:
                shape = ((len(pages[s]),) + s[:-3] if len(pages[s]) > 1
                         else s[:-3])
                axes = (('I' + s[-2]) if len(pages[s]) > 1 else s[-2])
                page0 = pages[s][0]
                if page0.is_shaped:
                    description = page0.is_shaped
                    metadata = image_description_dict(description)
                    if product(metadata.get('shape', shape)) == product(shape):
                        shape = metadata.get('shape', shape)
                    else:
                        warnings.warn(
                            "metadata shape doesn't match data shape")
                    if 'axes' in metadata:
                        axes = metadata['axes']
                        if len(axes) != len(shape):
                            warnings.warn("axes don't match shape")
                    axes = 'Q'*(len(shape)-len(axes)) + axes[-len(shape):]
                series.append(
                    TiffPageSeries(pages[s], shape, page0.dtype, axes))
        # remove empty series, e.g. in MD Gel files
        series = [s for s in series if sum(s.shape) > 0]
        return series
    def _fluoview_series(self):
        """Return image series in FluoView file."""
        page0 = self.pages[0]
        dims = {
            b'X': 'X', b'Y': 'Y', b'Z': 'Z', b'T': 'T',
            b'WAVELENGTH': 'C', b'TIME': 'T', b'XY': 'R',
            b'EVENT': 'V', b'EXPOSURE': 'L'}
        mmhd = list(reversed(page0.mm_header.dimensions))
        axes = ''.join(dims.get(i[0].strip().upper(), 'Q')
                       for i in mmhd if i[1] > 1)
        shape = tuple(int(i[1]) for i in mmhd if i[1] > 1)
        return [TiffPageSeries(self.pages, shape, page0.dtype, axes)]
    def _lsm_series(self):
        """Return image series in LSM file."""
        page0 = self.pages[0]
        lsmi = page0.cz_lsm_info
        axes = CZ_SCAN_TYPES[lsmi.scan_type]
        if page0.is_rgb:
            axes = axes.replace('C', '').replace('XY', 'XYC')
        axes = axes[::-1]
        shape = tuple(getattr(lsmi, CZ_DIMENSIONS[i]) for i in axes)
        pages = [p for p in self.pages if not p.is_reduced]
        dtype = pages[0].dtype
        series = [TiffPageSeries(pages, shape, dtype, axes)]
        if len(pages) != len(self.pages):  # reduced RGB pages
            pages = [p for p in self.pages if p.is_reduced]
            cp = 1
            i = 0
            while cp < len(pages) and i < len(shape)-2:
                cp *= shape[i]
                i += 1
            shape = shape[:i] + pages[0].shape
            axes = axes[:i] + 'CYX'
            dtype = pages[0].dtype
            series.append(TiffPageSeries(pages, shape, dtype, axes))
        return series
    def _imagej_series(self):
        """Return image series in ImageJ file."""
        # ImageJ's dimension order is always TZCYXS
        # TODO: fix loading of color, composite or palette images
        shape = []
        axes = []
        page0 = self.pages[0]
        ij = page0.imagej_tags
        if 'frames' in ij:
            shape.append(ij['frames'])
            axes.append('T')
        if 'slices' in ij:
            shape.append(ij['slices'])
            axes.append('Z')
        if 'channels' in ij and not (self.is_rgb and not
                                     ij.get('hyperstack', False)):
            shape.append(ij['channels'])
            axes.append('C')
        remain = ij.get('images', len(self.pages)) // (product(shape)
                                                       if shape else 1)
        if remain > 1:
            shape.append(remain)
            axes.append('I')
        if page0.axes[0] == 'I':
            # contiguous multiple images
            shape.extend(page0.shape[1:])
            axes.extend(page0.axes[1:])
        elif page0.axes[:2] == 'SI':
            # color-mapped contiguous multiple images
            shape = page0.shape[0:1] + tuple(shape) + page0.shape[2:]
            axes = list(page0.axes[0]) + axes + list(page0.axes[2:])
        else:
            shape.extend(page0.shape)
            axes.extend(page0.axes)
        return [TiffPageSeries(self.pages, shape, page0.dtype, axes)]
    def _nih_series(self):
        """Return image series in NIH file."""
        page0 = self.pages[0]
        if len(self.pages) == 1:
            shape = page0.shape
            axes = page0.axes
        else:
            shape = (len(self.pages),) + page0.shape
            axes = 'I' + page0.axes
        return [TiffPageSeries(self.pages, shape, page0.dtype, axes)]
    def _ome_series(self):
        """Return image series in OME-TIFF file(s)."""
        omexml = self.pages[0].tags['image_description'].value
        omexml = omexml.decode('UTF-8', 'ignore')
        root = etree.fromstring(omexml)
        uuid = root.attrib.get('UUID', None)
        self._files = {uuid: self}
        dirname = self._fh.dirname
        modulo = {}
        series = []
        for element in root:
            if element.tag.endswith('BinaryOnly'):
                warnings.warn("ome-xml: not an ome-tiff master file")
                break
            if element.tag.endswith('StructuredAnnotations'):
                for annot in element:
                    if not annot.attrib.get('Namespace',
                                            '').endswith('modulo'):
                        continue
                    for value in annot:
                        for modul in value:
                            for along in modul:
                                if not along.tag[:-1].endswith('Along'):
                                    continue
                                axis = along.tag[-1]
                                newaxis = along.attrib.get('Type', 'other')
                                newaxis = AXES_LABELS[newaxis]
                                if 'Start' in along.attrib:
                                    labels = range(
                                        int(along.attrib['Start']),
                                        int(along.attrib['End']) + 1,
                                        int(along.attrib.get('Step', 1)))
                                else:
                                    labels = [label.text for label in along
                                              if label.tag.endswith('Label')]
                                modulo[axis] = (newaxis, labels)
            if not element.tag.endswith('Image'):
                continue
            for pixels in element:
                if not pixels.tag.endswith('Pixels'):
                    continue
                atr = pixels.attrib
                dtype = atr.get('Type', None)
                axes = ''.join(reversed(atr['DimensionOrder']))
                shape = list(int(atr['Size'+ax]) for ax in axes)
                size = product(shape[:-2])
                ifds = [None] * size
                for data in pixels:
                    if not data.tag.endswith('TiffData'):
                        continue
                    atr = data.attrib
                    ifd = int(atr.get('IFD', 0))
                    num = int(atr.get('NumPlanes', 1 if 'IFD' in atr else 0))
                    num = int(atr.get('PlaneCount', num))
                    idx = [int(atr.get('First'+ax, 0)) for ax in axes[:-2]]
                    try:
                        idx = numpy.ravel_multi_index(idx, shape[:-2])
                    except ValueError:
                        # ImageJ produces invalid ome-xml when cropping
                        warnings.warn("ome-xml: invalid TiffData index")
                        continue
                    for uuid in data:
                        if not uuid.tag.endswith('UUID'):
                            continue
                        if uuid.text not in self._files:
                            if not self._multifile:
                                # abort reading multifile OME series
                                # and fall back to generic series
                                return []
                            fname = uuid.attrib['FileName']
                            try:
                                tif = TiffFile(os.path.join(dirname, fname))
                            except (IOError, ValueError):
                                tif.close()
                                warnings.warn(
                                    "ome-xml: failed to read '%s'" % fname)
                                break
                            self._files[uuid.text] = tif
                            if self._multifile_close:
                                tif.close()
                        pages = self._files[uuid.text].pages
                        try:
                            for i in range(num if num else len(pages)):
                                ifds[idx + i] = pages[ifd + i]
                        except IndexError:
                            warnings.warn("ome-xml: index out of range")
                        # only process first uuid
                        break
                    else:
                        pages = self.pages
                        try:
                            for i in range(num if num else len(pages)):
                                ifds[idx + i] = pages[ifd + i]
                        except IndexError:
                            warnings.warn("ome-xml: index out of range")
                if all(i is None for i in ifds):
                    # skip images without data
                    continue
                dtype = next(i for i in ifds if i).dtype
                series.append(TiffPageSeries(ifds, shape, dtype, axes, self))
        for serie in series:
            shape = list(serie.shape)
            for axis, (newaxis, labels) in modulo.items():
                i = serie.axes.index(axis)
                size = len(labels)
                if shape[i] == size:
                    serie.axes = serie.axes.replace(axis, newaxis, 1)
                else:
                    shape[i] //= size
                    shape.insert(i+1, size)
                    serie.axes = serie.axes.replace(axis, axis+newaxis, 1)
            serie.shape = tuple(shape)
        # squeeze dimensions
        for serie in series:
            serie.shape, serie.axes = squeeze_axes(serie.shape, serie.axes)
        return series
    def __len__(self):
        """Return number of image pages in file."""
        return len(self.pages)
    def __getitem__(self, key):
        """Return specified page."""
        return self.pages[key]
    def __iter__(self):
        """Return iterator over pages."""
        return iter(self.pages)
    def __str__(self):
        """Return string containing information about file."""
        result = [
            self._fh.name.capitalize(),
            format_size(self._fh.size),
            {'<': 'little endian', '>': 'big endian'}[self.byteorder]]
        if self.is_bigtiff:
            result.append("bigtiff")
        if len(self.pages) > 1:
            result.append("%i pages" % len(self.pages))
        if len(self.series) > 1:
            result.append("%i series" % len(self.series))
        if len(self._files) > 1:
            result.append("%i files" % (len(self._files)))
        return ", ".join(result)
    def __enter__(self):
        return self
    def __exit__(self, exc_type, exc_value, traceback):
        self.close()
    @lazyattr
    def fstat(self):
        try:
            return os.fstat(self._fh.fileno())
        except Exception:  # io.UnsupportedOperation
            return None
    @lazyattr
    def is_bigtiff(self):
        """File has BigTIFF format."""
        return self.offset_size != 4
    @lazyattr
    def is_rgb(self):
        """File contains only RGB images."""
        return all(p.is_rgb for p in self.pages)
    @lazyattr
    def is_palette(self):
        """File contains only color-mapped images."""
        return all(p.is_palette for p in self.pages)
    @lazyattr
    def is_mdgel(self):
        """File has MD Gel format."""
        return any(p.is_mdgel for p in self.pages)
    @lazyattr
    def is_mediacy(self):
        """File was created by Media Cybernetics software."""
        return any(p.is_mediacy for p in self.pages)
    @lazyattr
    def is_stk(self):
        """File has MetaMorph STK format."""
        return all(p.is_stk for p in self.pages)
    @lazyattr
    def is_lsm(self):
        """File was created by Carl Zeiss software."""
        return len(self.pages) and self.pages[0].is_lsm
    @lazyattr
    def is_vista(self):
        """File was created by ISS Vista."""
        return len(self.pages) and self.pages[0].is_vista
    @lazyattr
    def is_imagej(self):
        """File has ImageJ format."""
        return len(self.pages) and self.pages[0].is_imagej
    @lazyattr
    def is_micromanager(self):
        """File was created by MicroManager."""
        return len(self.pages) and self.pages[0].is_micromanager
    @lazyattr
    def is_nih(self):
        """File has NIH Image format."""
        return len(self.pages) and self.pages[0].is_nih
    @lazyattr
    def is_fluoview(self):
        """File was created by Olympus FluoView."""
        return len(self.pages) and self.pages[0].is_fluoview
    @lazyattr
    def is_ome(self):
        """File has OME-TIFF format."""
        return len(self.pages) and self.pages[0].is_ome
class TiffPage(object):
    """A TIFF image file directory (IFD).
    Attributes
    ----------
    index : int
        Index of page in file.
    dtype : str {TIFF_SAMPLE_DTYPES}
        Data type of image, color-mapped if applicable.
    shape : tuple
        Dimensions of the image array in TIFF page,
        color-mapped and with extra samples if applicable.
    axes : str
        Axes label codes:
        'X' width, 'Y' height, 'S' sample, 'I' image series|page|plane,
        'Z' depth, 'C' color|em-wavelength|channel, 'E' ex-wavelength|lambda,
        'T' time, 'R' region|tile, 'A' angle, 'P' phase, 'H' lifetime,
        'L' exposure, 'V' event, 'Q' unknown, '_' missing
    tags : TiffTags
        Dictionary of tags in page.
        Tag values are also directly accessible as attributes.
    color_map : numpy.ndarray
        Color look up table, if exists.
    cz_lsm_scan_info: Record(dict)
        LSM scan info attributes, if exists.
    imagej_tags: Record(dict)
        Consolidated ImageJ description and metadata tags, if exists.
    uic_tags: Record(dict)
        Consolidated MetaMorph STK/UIC tags, if exists.
    All attributes are read-only.
    Notes
    -----
    The internal, normalized '_shape' attribute is 6 dimensional:
    0. number planes/images  (stk, ij).
    1. planar samples_per_pixel.
    2. image_depth Z  (sgi).
    3. image_length Y.
    4. image_width X.
    5. contig samples_per_pixel.
    """
    def __init__(self, parent):
        """Initialize instance from file."""
        self.parent = parent
        self.index = len(parent.pages)
        self.shape = self._shape = ()
        self.dtype = self._dtype = None
        self.axes = ""
        self.tags = TiffTags()
        self._offset = 0
        self._fromfile()
        self._process_tags()
    def _fromfile(self):
        """Read TIFF IFD structure and its tags from file.
        File cursor must be at storage position of IFD offset and is left at
        offset to next IFD.
        Raises StopIteration if offset (first bytes read) is 0
        or a corrupted page list is encountered.
        """
        fh = self.parent.filehandle
        byteorder = self.parent.byteorder
        offset_size = self.parent.offset_size
        # read offset to this IFD
        fmt = {4: 'I', 8: 'Q'}[offset_size]
        offset = struct.unpack(byteorder + fmt, fh.read(offset_size))[0]
        if not offset:
            raise StopIteration()
        if offset >= fh.size:
            warnings.warn("invalid page offset > file size")
            raise StopIteration()
        self._offset = offset
        # read standard tags
        tags = self.tags
        fh.seek(offset)
        fmt, size = {4: ('H', 2), 8: ('Q', 8)}[offset_size]
        try:
            numtags = struct.unpack(byteorder + fmt, fh.read(size))[0]
            if numtags > 4096:
                raise ValueError("suspicious number of tags")
        except Exception:
            warnings.warn("corrupted page list at offset %i" % offset)
            raise StopIteration()
        tagcode = 0
        for _ in range(numtags):
            try:
                tag = TiffTag(self.parent)
            except TiffTag.Error as e:
                warnings.warn(str(e))
                continue
            if tagcode > tag.code:
                # expected for early LSM and tifffile versions
                warnings.warn("tags are not ordered by code")
            tagcode = tag.code
            if tag.name not in tags:
                tags[tag.name] = tag
            else:
                # some files contain multiple IFD with same code
                # e.g. MicroManager files contain two image_description
                i = 1
                while True:
                    name = "%s_%i" % (tag.name, i)
                    if name not in tags:
                        tags[name] = tag
                        break
        pos = fh.tell()  # where offset to next IFD can be found
        if self.is_lsm or (self.index and self.parent.is_lsm):
            # correct non standard LSM bitspersample tags
            self.tags['bits_per_sample']._fix_lsm_bitspersample(self)
        if self.is_lsm:
            # read LSM info subrecords
            for name, reader in CZ_LSM_INFO_READERS.items():
                try:
                    offset = self.cz_lsm_info['offset_'+name]
                except KeyError:
                    continue
                if offset < 8:
                    # older LSM revision
                    continue
                fh.seek(offset)
                try:
                    setattr(self, 'cz_lsm_'+name, reader(fh))
                except ValueError:
                    pass
        elif self.is_stk and 'uic1tag' in tags and not tags['uic1tag'].value:
            # read uic1tag now that plane count is known
            uic1tag = tags['uic1tag']
            fh.seek(uic1tag.value_offset)
            tags['uic1tag'].value = Record(
                read_uic1tag(fh, byteorder, uic1tag.dtype, uic1tag.count,
                             tags['uic2tag'].count))
        fh.seek(pos)
    def _process_tags(self):
        """Validate standard tags and initialize attributes.
        Raise ValueError if tag values are not supported.
        """
        tags = self.tags
        for code, (name, default, dtype, count, validate) in TIFF_TAGS.items():
            if not (name in tags or default is None):
                tags[name] = TiffTag(code, dtype=dtype, count=count,
                                     value=default, name=name)
            if name in tags and validate:
                try:
                    if tags[name].count == 1:
                        setattr(self, name, validate[tags[name].value])
                    else:
                        setattr(self, name, tuple(
                            validate[value] for value in tags[name].value))
                except KeyError:
                    raise ValueError("%s.value (%s) not supported" %
                                     (name, tags[name].value))
        tag = tags['bits_per_sample']
        if tag.count == 1:
            self.bits_per_sample = tag.value
        else:
            # LSM might list more items than samples_per_pixel
            value = tag.value[:self.samples_per_pixel]
            if any((v-value[0] for v in value)):
                self.bits_per_sample = value
            else:
                self.bits_per_sample = value[0]
        tag = tags['sample_format']
        if tag.count == 1:
            self.sample_format = TIFF_SAMPLE_FORMATS[tag.value]
        else:
            value = tag.value[:self.samples_per_pixel]
            if any((v-value[0] for v in value)):
                self.sample_format = [TIFF_SAMPLE_FORMATS[v] for v in value]
            else:
                self.sample_format = TIFF_SAMPLE_FORMATS[value[0]]
        if 'photometric' not in tags:
            self.photometric = None
        if 'image_depth' not in tags:
            self.image_depth = 1
        if 'image_length' in tags:
            self.strips_per_image = int(math.floor(
                float(self.image_length + self.rows_per_strip - 1) /
                self.rows_per_strip))
        else:
            self.strips_per_image = 0
        key = (self.sample_format, self.bits_per_sample)
        self.dtype = self._dtype = TIFF_SAMPLE_DTYPES.get(key, None)
        if 'image_length' not in self.tags or 'image_width' not in self.tags:
            # some GEL file pages are missing image data
            self.image_length = 0
            self.image_width = 0
            self.image_depth = 0
            self.strip_offsets = 0
            self._shape = ()
            self.shape = ()
            self.axes = ''
        if self.is_vista or self.parent.is_vista:
            # ISS Vista writes wrong image_depth tag
            self.image_depth = 1
        if self.is_palette:
            self.dtype = self.tags['color_map'].dtype[1]
            self.color_map = numpy.array(self.color_map, self.dtype)
            dmax = self.color_map.max()
            if dmax < 256:
                self.dtype = numpy.uint8
                self.color_map = self.color_map.astype(self.dtype)
            #else:
            #    self.dtype = numpy.uint8
            #    self.color_map >>= 8
            #    self.color_map = self.color_map.astype(self.dtype)
            self.color_map.shape = (3, -1)
        # determine shape of data
        image_length = self.image_length
        image_width = self.image_width
        image_depth = self.image_depth
        samples_per_pixel = self.samples_per_pixel
        if self.is_stk:
            assert self.image_depth == 1
            planes = self.tags['uic2tag'].count
            if self.is_contig:
                self._shape = (planes, 1, 1, image_length, image_width,
                               samples_per_pixel)
                if samples_per_pixel == 1:
                    self.shape = (planes, image_length, image_width)
                    self.axes = 'YX'
                else:
                    self.shape = (planes, image_length, image_width,
                                  samples_per_pixel)
                    self.axes = 'YXS'
            else:
                self._shape = (planes, samples_per_pixel, 1, image_length,
                               image_width, 1)
                if samples_per_pixel == 1:
                    self.shape = (planes, image_length, image_width)
                    self.axes = 'YX'
                else:
                    self.shape = (planes, samples_per_pixel, image_length,
                                  image_width)
                    self.axes = 'SYX'
            # detect type of series
            if planes == 1:
                self.shape = self.shape[1:]
            elif numpy.all(self.uic2tag.z_distance != 0):
                self.axes = 'Z' + self.axes
            elif numpy.all(numpy.diff(self.uic2tag.time_created) != 0):
                self.axes = 'T' + self.axes
            else:
                self.axes = 'I' + self.axes
            # DISABLED
            if self.is_palette:
                assert False, "color mapping disabled for stk"
                if self.color_map.shape[1] >= 2**self.bits_per_sample:
                    if image_depth == 1:
                        self.shape = (3, planes, image_length, image_width)
                    else:
                        self.shape = (3, planes, image_depth, image_length,
                                      image_width)
                    self.axes = 'S' + self.axes
                else:
                    warnings.warn("palette cannot be applied")
                    self.is_palette = False
        elif self.is_palette:
            samples = 1
            if 'extra_samples' in self.tags:
                samples += len(self.extra_samples)
            if self.is_contig:
                self._shape = (1, 1, image_depth, image_length, image_width,
                               samples)
            else:
                self._shape = (1, samples, image_depth, image_length,
                               image_width, 1)
            if self.color_map.shape[1] >= 2**self.bits_per_sample:
                if image_depth == 1:
                    self.shape = (3, image_length, image_width)
                    self.axes = 'SYX'
                else:
                    self.shape = (3, image_depth, image_length, image_width)
                    self.axes = 'SZYX'
            else:
                warnings.warn("palette cannot be applied")
                self.is_palette = False
                if image_depth == 1:
                    self.shape = (image_length, image_width)
                    self.axes = 'YX'
                else:
                    self.shape = (image_depth, image_length, image_width)
                    self.axes = 'ZYX'
        elif self.is_rgb or samples_per_pixel > 1:
            if self.is_contig:
                self._shape = (1, 1, image_depth, image_length, image_width,
                               samples_per_pixel)
                if image_depth == 1:
                    self.shape = (image_length, image_width, samples_per_pixel)
                    self.axes = 'YXS'
                else:
                    self.shape = (image_depth, image_length, image_width,
                                  samples_per_pixel)
                    self.axes = 'ZYXS'
            else:
                self._shape = (1, samples_per_pixel, image_depth,
                               image_length, image_width, 1)
                if image_depth == 1:
                    self.shape = (samples_per_pixel, image_length, image_width)
                    self.axes = 'SYX'
                else:
                    self.shape = (samples_per_pixel, image_depth,
                                  image_length, image_width)
                    self.axes = 'SZYX'
            if False and self.is_rgb and 'extra_samples' in self.tags:
                # DISABLED: only use RGB and first alpha channel if exists
                extra_samples = self.extra_samples
                if self.tags['extra_samples'].count == 1:
                    extra_samples = (extra_samples,)
                for exs in extra_samples:
                    if exs in ('unassalpha', 'assocalpha', 'unspecified'):
                        if self.is_contig:
                            self.shape = self.shape[:-1] + (4,)
                        else:
                            self.shape = (4,) + self.shape[1:]
                        break
        else:
            self._shape = (1, 1, image_depth, image_length, image_width, 1)
            if image_depth == 1:
                self.shape = (image_length, image_width)
                self.axes = 'YX'
            else:
                self.shape = (image_depth, image_length, image_width)
                self.axes = 'ZYX'
        if not self.compression and 'strip_byte_counts' not in tags:
            self.strip_byte_counts = (
                product(self.shape) * (self.bits_per_sample // 8),)
        assert len(self.shape) == len(self.axes)
    def _patch_imagej(self):
        """Return if ImageJ data are contiguous and adjust page attributes.
        Patch 'strip_offsets' and 'strip_byte_counts' tags to span the
        complete contiguous data.
        ImageJ stores all image metadata in the first page and image data is
        stored contiguously before the second page, if any. No need to
        read other pages.
        """
        if not self.is_imagej or not self.is_contiguous:
            return
        images = self.imagej_tags.get('images', 0)
        if images <= 1:
            return
        pre = 'tile' if self.is_tiled else 'strip'
        self.tags[pre+'_offsets'].value = (self.is_contiguous[0],)
        self.tags[pre+'_byte_counts'].value = (self.is_contiguous[1] * images,)
        self.shape = (images,) + self.shape
        self._shape = (images,) + self._shape[1:]
        self.axes = 'I' + self.axes
        if self.is_palette:
            # swap first two dimensions
            self.axes = self.axes[1::-1] + self.axes[2:]
            self.shape = self.shape[1::-1] + self.shape[2:]
        return True
    def asarray(self, squeeze=True, colormapped=True, rgbonly=False,
                scale_mdgel=False, memmap=False, reopen=True,
                maxsize=64*1024*1024*1024):
        """Read image data from file and return as numpy array.
        Raise ValueError if format is unsupported.
        If any of 'squeeze', 'colormapped', or 'rgbonly' are not the default,
        the shape of the returned array might be different from the page shape.
        Parameters
        ----------
        squeeze : bool
            If True, all length-1 dimensions (except X and Y) are
            squeezed out from result.
        colormapped : bool
            If True, color mapping is applied for palette-indexed images.
        rgbonly : bool
            If True, return RGB(A) image without additional extra samples.
        memmap : bool
            If True, use numpy.memmap to read arrays from file if possible.
            For use on 64 bit systems and files with few huge contiguous data.
        reopen : bool
            If True and the parent file handle is closed, the file is
            temporarily re-opened (and closed if no exception occurs).
        scale_mdgel : bool
            If True, MD Gel data will be scaled according to the private
            metadata in the second TIFF page. The dtype will be float32.
        maxsize: int or None
            Maximum size of data before a ValueError is raised.
            Can be used to catch DOS. Default: 64 GB.
        """
        if not self._shape:
            return
        if maxsize and product(self._shape) > maxsize:
            raise ValueError("data is too large %s" % str(self._shape))
        if self.dtype is None:
            raise ValueError("data type not supported: %s%i" % (
                self.sample_format, self.bits_per_sample))
        if self.compression not in TIFF_DECOMPESSORS:
            raise ValueError("cannot decompress %s" % self.compression)
        tag = self.tags['sample_format']
        if tag.count != 1 and any((i-tag.value[0] for i in tag.value)):
            raise ValueError("sample formats don't match %s" % str(tag.value))
        fh = self.parent.filehandle
        closed = fh.closed
        if closed:
            if reopen:
                fh.open()
            else:
                raise IOError("file handle is closed")
        dtype = self._dtype
        shape = self._shape
        image_width = self.image_width
        image_length = self.image_length
        image_depth = self.image_depth
        typecode = self.parent.byteorder + dtype
        bits_per_sample = self.bits_per_sample
        byte_counts, offsets = self._byte_counts_offsets
        if self.is_tiled:
            tile_width = self.tile_width
            tile_length = self.tile_length
            tile_depth = self.tile_depth if 'tile_depth' in self.tags else 1
            tw = (image_width + tile_width - 1) // tile_width
            tl = (image_length + tile_length - 1) // tile_length
            td = (image_depth + tile_depth - 1) // tile_depth
            shape = (shape[0], shape[1],
                     td*tile_depth, tl*tile_length, tw*tile_width, shape[-1])
            tile_shape = (tile_depth, tile_length, tile_width, shape[-1])
            runlen = tile_width
        else:
            runlen = image_width
        if memmap and self._is_memmappable(rgbonly, colormapped):
            result = fh.memmap_array(typecode, shape, offset=offsets[0])
        elif self.is_contiguous:
            fh.seek(offsets[0])
            result = fh.read_array(typecode, product(shape))
            result = result.astype('=' + dtype)
        else:
            if self.is_contig:
                runlen *= self.samples_per_pixel
            if bits_per_sample in (8, 16, 32, 64, 128):
                if (bits_per_sample * runlen) % 8:
                    raise ValueError("data and sample size mismatch")
                def unpack(x, typecode=typecode):
                    if self.predictor == 'float':
                        # the floating point horizontal differencing decoder
                        # needs the raw byte order
                        typecode = dtype
                    try:
                        return numpy.fromstring(x, typecode)
                    except ValueError as e:
                        # strips may be missing EOI
                        warnings.warn("unpack: %s" % e)
                        xlen = ((len(x) // (bits_per_sample // 8)) *
                                (bits_per_sample // 8))
                        return numpy.fromstring(x[:xlen], typecode)
            elif isinstance(bits_per_sample, tuple):
                def unpack(x):
                    return unpack_rgb(x, typecode, bits_per_sample)
            else:
                def unpack(x):
                    return unpack_ints(x, typecode, bits_per_sample, runlen)
            decompress = TIFF_DECOMPESSORS[self.compression]
            if self.compression == 'jpeg':
                table = self.jpeg_tables if 'jpeg_tables' in self.tags else b''
                def decompress(x):
                    return decode_jpeg(x, table, self.photometric)
            if self.is_tiled:
                result = numpy.empty(shape, dtype)
                tw, tl, td, pl = 0, 0, 0, 0
                for offset, bytecount in zip(offsets, byte_counts):
                    fh.seek(offset)
                    tile = unpack(decompress(fh.read(bytecount)))
                    try:
                        tile.shape = tile_shape
                    except ValueError:
                        # incomplete tiles; see gdal issue #1179
                        warnings.warn("invalid tile data")
                        t = numpy.zeros(tile_shape, dtype).reshape(-1)
                        s = min(tile.size, t.size)
                        t[:s] = tile[:s]
                        tile = t.reshape(tile_shape)
                    if self.predictor == 'horizontal':
                        numpy.cumsum(tile, axis=-2, dtype=dtype, out=tile)
                    elif self.predictor == 'float':
                        raise NotImplementedError()
                    result[0, pl, td:td+tile_depth,
                           tl:tl+tile_length, tw:tw+tile_width, :] = tile
                    del tile
                    tw += tile_width
                    if tw >= shape[4]:
                        tw, tl = 0, tl + tile_length
                        if tl >= shape[3]:
                            tl, td = 0, td + tile_depth
                            if td >= shape[2]:
                                td, pl = 0, pl + 1
                result = result[...,
                                :image_depth, :image_length, :image_width, :]
            else:
                strip_size = (self.rows_per_strip * self.image_width *
                              self.samples_per_pixel)
                result = numpy.empty(shape, dtype).reshape(-1)
                index = 0
                for offset, bytecount in zip(offsets, byte_counts):
                    fh.seek(offset)
                    strip = fh.read(bytecount)
                    strip = decompress(strip)
                    strip = unpack(strip)
                    size = min(result.size, strip.size, strip_size,
                               result.size - index)
                    result[index:index+size] = strip[:size]
                    del strip
                    index += size
        result.shape = self._shape
        if self.predictor and not (self.is_tiled and not self.is_contiguous):
            if self.parent.is_lsm and not self.compression:
                pass  # work around bug in LSM510 software
            elif self.predictor == 'horizontal':
                numpy.cumsum(result, axis=-2, dtype=dtype, out=result)
            elif self.predictor == 'float':
                result = decode_floats(result)
        if colormapped and self.is_palette:
            if self.color_map.shape[1] >= 2**bits_per_sample:
                # FluoView and LSM might fail here
                result = numpy.take(self.color_map,
                                    result[:, 0:1, :, :, :, 0:1], axis=1)
        elif rgbonly and self.is_rgb and 'extra_samples' in self.tags:
            # return only RGB and first alpha channel if exists
            extra_samples = self.extra_samples
            if self.tags['extra_samples'].count == 1:
                extra_samples = (extra_samples,)
            for i, exs in enumerate(extra_samples):
                if exs in ('unassalpha', 'assocalpha', 'unspecified'):
                    if self.is_contig:
                        result = result[..., [0, 1, 2, 3+i]]
                    else:
                        result = result[:, [0, 1, 2, 3+i]]
                    break
            else:
                if self.is_contig:
                    result = result[..., :3]
                else:
                    result = result[:, :3]
        if squeeze:
            try:
                result.shape = self.shape
            except ValueError:
                warnings.warn("failed to reshape from %s to %s" % (
                    str(result.shape), str(self.shape)))
        if scale_mdgel and self.parent.is_mdgel:
            # MD Gel stores private metadata in the second page
            tags = self.parent.pages[1]
            if tags.md_file_tag in (2, 128):
                scale = tags.md_scale_pixel
                scale = scale[0] / scale[1]  # rational
                result = result.astype('float32')
                if tags.md_file_tag == 2:
                    result **= 2  # squary root data format
                result *= scale
        if closed:
            # TODO: file should remain open if an exception occurred above
            fh.close()
        return result
    @lazyattr
    def _byte_counts_offsets(self):
        """Return simplified byte_counts and offsets."""
        if 'tile_offsets' in self.tags:
            byte_counts = self.tile_byte_counts
            offsets = self.tile_offsets
        else:
            byte_counts = self.strip_byte_counts
            offsets = self.strip_offsets
        j = 0
        for i, (b, o) in enumerate(zip(byte_counts, offsets)):
            if b > 0 and o > 0:
                if i > j:
                    byte_counts[j] = b
                    offsets[j] = o
                j += 1
            elif b > 0 and o <= 0:
                raise ValueError("invalid offset")
            else:
                warnings.warn("empty byte count")
        if j == 0:
            j = 1
        return byte_counts[:j], offsets[:j]
    def _is_memmappable(self, rgbonly, colormapped):
        """Return if page's image data in file can be memory-mapped."""
        return (self.parent.filehandle.is_file and
                self.is_contiguous and
                (self.bits_per_sample == 8 or
                 self.parent._is_native) and
                not self.predictor and
                not (rgbonly and 'extra_samples' in self.tags) and
                not (colormapped and self.is_palette))
    @lazyattr
    def is_contiguous(self):
        """Return offset and size of contiguous data, else None.
        Excludes prediction and colormapping.
        """
        if self.compression or self.bits_per_sample not in (8, 16, 32, 64):
            return
        if self.is_tiled:
            if (self.image_width != self.tile_width or
                    self.image_length % self.tile_length or
                    self.tile_width % 16 or self.tile_length % 16):
                return
            if ('image_depth' in self.tags and 'tile_depth' in self.tags and
                    (self.image_length != self.tile_length or
                     self.image_depth % self.tile_depth)):
                return
            offsets = self.tile_offsets
            byte_counts = self.tile_byte_counts
        else:
            offsets = self.strip_offsets
            byte_counts = self.strip_byte_counts
        if len(offsets) == 1:
            return offsets[0], byte_counts[0]
        if self.is_stk or all(offsets[i] + byte_counts[i] == offsets[i+1] or
                              byte_counts[i+1] == 0  # no data/ignore offset
                              for i in range(len(offsets)-1)):
            return offsets[0], sum(byte_counts)
    def __str__(self):
        """Return string containing information about page."""
        s = ', '.join(s for s in (
            ' x '.join(str(i) for i in self.shape),
            str(numpy.dtype(self.dtype)),
            '%s bit' % str(self.bits_per_sample),
            self.photometric if 'photometric' in self.tags else '',
            self.compression if self.compression else 'raw',
            '|'.join(t[3:] for t in (
                'is_stk', 'is_lsm', 'is_nih', 'is_ome', 'is_imagej',
                'is_micromanager', 'is_fluoview', 'is_mdgel', 'is_mediacy',
                'is_sgi', 'is_reduced', 'is_tiled',
                'is_contiguous') if getattr(self, t))) if s)
        return "Page %i: %s" % (self.index, s)
    def __getattr__(self, name):
        """Return tag value."""
        if name in self.tags:
            value = self.tags[name].value
            setattr(self, name, value)
            return value
        raise AttributeError(name)
    @lazyattr
    def uic_tags(self):
        """Consolidate UIC tags."""
        if not self.is_stk:
            raise AttributeError("uic_tags")
        tags = self.tags
        result = Record()
        result.number_planes = tags['uic2tag'].count
        if 'image_description' in tags:
            result.plane_descriptions = self.image_description.split(b'\x00')
        if 'uic1tag' in tags:
            result.update(tags['uic1tag'].value)
        if 'uic3tag' in tags:
            result.update(tags['uic3tag'].value)  # wavelengths
        if 'uic4tag' in tags:
            result.update(tags['uic4tag'].value)  # override uic1 tags
        uic2tag = tags['uic2tag'].value
        result.z_distance = uic2tag.z_distance
        result.time_created = uic2tag.time_created
        result.time_modified = uic2tag.time_modified
        try:
            result.datetime_created = [
                julian_datetime(*dt) for dt in
                zip(uic2tag.date_created, uic2tag.time_created)]
            result.datetime_modified = [
                julian_datetime(*dt) for dt in
                zip(uic2tag.date_modified, uic2tag.time_modified)]
        except ValueError as e:
            warnings.warn("uic_tags: %s" % e)
        return result
    @lazyattr
    def imagej_tags(self):
        """Consolidate ImageJ metadata."""
        if not self.is_imagej:
            raise AttributeError("imagej_tags")
        result = imagej_description_dict(self.is_imagej)
        if 'imagej_metadata' in self.tags:
            try:
                result.update(imagej_metadata(
                    self.tags['imagej_metadata'].value,
                    self.tags['imagej_byte_counts'].value,
                    self.parent.byteorder))
            except Exception as e:
                warnings.warn(str(e))
        return Record(result)
    @lazyattr
    def is_rgb(self):
        """Page contains a RGB image."""
        return ('photometric' in self.tags and
                self.tags['photometric'].value == 2)
    @lazyattr
    def is_contig(self):
        """Page contains contiguous image."""
        return ('planar_configuration' in self.tags and
                self.tags['planar_configuration'].value == 1)
    @lazyattr
    def is_palette(self):
        """Page contains palette-colored image and is not OME or STK."""
        # turn off color mapping for OME-TIFF and STK
        if self.is_stk or self.is_ome or self.parent.is_ome:
            return False
        return ('photometric' in self.tags and
                self.tags['photometric'].value == 3)
    @lazyattr
    def is_tiled(self):
        """Page contains tiled image."""
        return 'tile_width' in self.tags
    @lazyattr
    def is_reduced(self):
        """Page is reduced image of another image."""
        return bool(self.tags['new_subfile_type'].value & 1)
    @lazyattr
    def is_mdgel(self):
        """Page contains md_file_tag tag."""
        return 'md_file_tag' in self.tags
    @lazyattr
    def is_mediacy(self):
        """Page contains Media Cybernetics Id tag."""
        return ('mc_id' in self.tags and
                self.tags['mc_id'].value.startswith(b'MC TIFF'))
    @lazyattr
    def is_stk(self):
        """Page contains UIC2Tag tag."""
        return 'uic2tag' in self.tags
    @lazyattr
    def is_lsm(self):
        """Page contains LSM CZ_LSM_INFO tag."""
        return 'cz_lsm_info' in self.tags
    @lazyattr
    def is_fluoview(self):
        """Page contains FluoView MM_STAMP tag."""
        return 'mm_stamp' in self.tags
    @lazyattr
    def is_nih(self):
        """Page contains NIH image header."""
        return 'nih_image_header' in self.tags
    @lazyattr
    def is_sgi(self):
        """Page contains SGI image and tile depth tags."""
        return 'image_depth' in self.tags and 'tile_depth' in self.tags
    @lazyattr
    def is_vista(self):
        """Software tag is 'ISS Vista'."""
        return ('software' in self.tags and
                self.tags['software'].value == b'ISS Vista')
    @lazyattr
    def is_ome(self):
        """Page contains OME-XML in image_description tag."""
        if 'image_description' not in self.tags:
            return False
        d = self.tags['image_description'].value.strip()
        return d.startswith(b'<?xml version=') and d.endswith(b'</OME>')
    @lazyattr
    def is_shaped(self):
        """Return description containing shape if exists, else None."""
        if 'image_description' in self.tags:
            description = self.tags['image_description'].value
            if b'"shape":' in description or b'shape=(' in description:
                return description
        if 'image_description_1' in self.tags:
            description = self.tags['image_description_1'].value
            if b'"shape":' in description or b'shape=(' in description:
                return description
    @lazyattr
    def is_imagej(self):
        """Return ImageJ description if exists, else None."""
        if 'image_description' in self.tags:
            description = self.tags['image_description'].value
            if description.startswith(b'ImageJ='):
                return description
        if 'image_description_1' in self.tags:
            # Micromanager
            description = self.tags['image_description_1'].value
            if description.startswith(b'ImageJ='):
                return description
    @lazyattr
    def is_micromanager(self):
        """Page contains Micro-Manager metadata."""
        return 'micromanager_metadata' in self.tags
class TiffTag(object):
    """A TIFF tag structure.
    Attributes
    ----------
    name : string
        Attribute name of tag.
    code : int
        Decimal code of tag.
    dtype : str
        Datatype of tag data. One of TIFF_DATA_TYPES.
    count : int
        Number of values.
    value : various types
        Tag data as Python object.
    value_offset : int
        Location of value in file, if any.
    All attributes are read-only.
    """
    __slots__ = ('code', 'name', 'count', 'dtype', 'value', 'value_offset',
                 '_offset', '_value', '_type')
    class Error(Exception):
        pass
    def __init__(self, arg, **kwargs):
        """Initialize instance from file or arguments."""
        self._offset = None
        if hasattr(arg, '_fh'):
            self._fromfile(arg, **kwargs)
        else:
            self._fromdata(arg, **kwargs)
    def _fromdata(self, code, dtype, count, value, name=None):
        """Initialize instance from arguments."""
        self.code = int(code)
        self.name = name if name else str(code)
        self.dtype = TIFF_DATA_TYPES[dtype]
        self.count = int(count)
        self.value = value
        self._value = value
        self._type = dtype
    def _fromfile(self, parent):
        """Read tag structure from open file. Advance file cursor."""
        fh = parent.filehandle
        byteorder = parent.byteorder
        self._offset = fh.tell()
        self.value_offset = self._offset + parent.offset_size + 4
        fmt, size = {4: ('HHI4s', 12), 8: ('HHQ8s', 20)}[parent.offset_size]
        data = fh.read(size)
        code, dtype = struct.unpack(byteorder + fmt[:2], data[:4])
        count, value = struct.unpack(byteorder + fmt[2:], data[4:])
        self._value = value
        self._type = dtype
        if code in TIFF_TAGS:
            name = TIFF_TAGS[code][0]
        elif code in CUSTOM_TAGS:
            name = CUSTOM_TAGS[code][0]
        else:
            name = str(code)
        try:
            dtype = TIFF_DATA_TYPES[self._type]
        except KeyError:
            raise TiffTag.Error("unknown tag data type %i" % self._type)
        fmt = '%s%i%s' % (byteorder, count*int(dtype[0]), dtype[1])
        size = struct.calcsize(fmt)
        if size > parent.offset_size or code in CUSTOM_TAGS:
            pos = fh.tell()
            tof = {4: 'I', 8: 'Q'}[parent.offset_size]
            self.value_offset = offset = struct.unpack(byteorder+tof, value)[0]
            if offset < 0 or offset > parent.filehandle.size:
                raise TiffTag.Error("corrupt file - invalid tag value offset")
            elif offset < 4:
                raise TiffTag.Error("corrupt value offset for tag %i" % code)
            fh.seek(offset)
            if code in CUSTOM_TAGS:
                readfunc = CUSTOM_TAGS[code][1]
                value = readfunc(fh, byteorder, dtype, count)
                if isinstance(value, dict):  # numpy.core.records.record
                    value = Record(value)
            elif code in TIFF_TAGS or dtype[-1] == 's':
                value = struct.unpack(fmt, fh.read(size))
            else:
                value = read_numpy(fh, byteorder, dtype, count)
            fh.seek(pos)
        else:
            value = struct.unpack(fmt, value[:size])
        if code not in CUSTOM_TAGS and code not in (273, 279, 324, 325):
            # scalar value if not strip/tile offsets/byte_counts
            if len(value) == 1:
                value = value[0]
        if (dtype.endswith('s') and isinstance(value, bytes) and
                self._type != 7):
            # TIFF ASCII fields can contain multiple strings,
            # each terminated with a NUL
            value = stripascii(value)
        self.code = code
        self.name = name
        self.dtype = dtype
        self.count = count
        self.value = value
    def _fix_lsm_bitspersample(self, parent):
        """Correct LSM bitspersample tag.
        Old LSM writers may use a separate region for two 16-bit values,
        although they fit into the tag value element of the tag.
        """
        if self.code == 258 and self.count == 2:
            # TODO: test this case; need example file
            warnings.warn("correcting LSM bitspersample tag")
            fh = parent.filehandle
            tof = {4: '<I', 8: '<Q'}[parent.offset_size]
            self.value_offset = struct.unpack(tof, self._value)[0]
            fh.seek(self.value_offset)
            self.value = struct.unpack("<HH", fh.read(4))
    def as_str(self):
        """Return value as human readable string."""
        return ((str(self.value).split('\n', 1)[0]) if (self._type != 7)
                else '<undefined>')
    def __str__(self):
        """Return string containing information about tag."""
        return ' '.join(str(getattr(self, s)) for s in self.__slots__)
class TiffPageSeries(object):
    """Series of TIFF pages with compatible shape and data type.
    Attributes
    ----------
    pages : list of TiffPage
        Sequence of TiffPages in series.
    dtype : numpy.dtype or str
        Data type of the image array in series.
    shape : tuple
        Dimensions of the image array in series.
    axes : str
        Labels of axes in shape. See TiffPage.axes.
    """
    __slots__ = 'pages', 'shape', 'dtype', 'axes', 'parent'
    def __init__(self, pages, shape, dtype, axes, parent=None):
        self.pages = pages
        self.shape = tuple(shape)
        self.axes = ''.join(axes)
        self.dtype = numpy.dtype(dtype)
        if parent:
            self.parent = parent
        elif len(pages):
            self.parent = pages[0].parent
        else:
            self.parent = None
    def asarray(self, memmap=False):
        """Return image data from series of TIFF pages as numpy array.
        Parameters
        ----------
        memmap : bool
            If True, return an array stored in a binary file on disk
            if possible.
        """
        if self.parent:
            return self.parent.asarray(series=self, memmap=memmap)
    def __len__(self):
        """Return number of TiffPages in series."""
        return len(self.pages)
    def __getitem__(self, key):
        """Return specified TiffPage."""
        return self.pages[key]
    def __iter__(self):
        """Return iterator over TiffPages in series."""
        return iter(self.pages)
    def __str__(self):
        """Return string with information about series."""
        return "* pages: %i\n* dtype: %s\n* shape: %s\n* axes: %s" % (
            len(self.pages), str(self.dtype), str(self.shape), self.axes)
class TiffSequence(object):
    """Sequence of image files.
    The data shape and dtype of all files must match.
    Attributes
    ----------
    files : list
        List of file names.
    shape : tuple
        Shape of image sequence.
    axes : str
        Labels of axes in shape.
    Examples
    --------
    >>> tifs = TiffSequence("test.oif.files/*.tif")
    >>> tifs.shape, tifs.axes
    ((2, 100), 'CT')
    >>> data = tifs.asarray()
    >>> data.shape
    (2, 100, 256, 256)
    """
    _patterns = {
        'axes': r"""
            # matches Olympus OIF and Leica TIFF series
            _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4}))
            _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4}))?
            _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4}))?
            _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4}))?
            _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4}))?
            _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4}))?
            _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4}))?
            """}
    class ParseError(Exception):
        pass
    def __init__(self, files, imread=TiffFile, pattern='axes',
                 *args, **kwargs):
        """Initialize instance from multiple files.
        Parameters
        ----------
        files : str, or sequence of str
            Glob pattern or sequence of file names.
        imread : function or class
            Image read function or class with asarray function returning numpy
            array from single file.
        pattern : str
            Regular expression pattern that matches axes names and sequence
            indices in file names.
            By default this matches Olympus OIF and Leica TIFF series.
        """
        if isinstance(files, basestring):
            files = natural_sorted(glob.glob(files))
        files = list(files)
        if not files:
            raise ValueError("no files found")
        #if not os.path.isfile(files[0]):
        #    raise ValueError("file not found")
        self.files = files
        if hasattr(imread, 'asarray'):
            # redefine imread
            _imread = imread
            def imread(fname, *args, **kwargs):
                with _imread(fname) as im:
                    return im.asarray(*args, **kwargs)
        self.imread = imread
        self.pattern = self._patterns.get(pattern, pattern)
        try:
            self._parse()
            if not self.axes:
                self.axes = 'I'
        except self.ParseError:
            self.axes = 'I'
            self.shape = (len(files),)
            self._start_index = (0,)
            self._indices = tuple((i,) for i in range(len(files)))
    def __str__(self):
        """Return string with information about image sequence."""
        return "\n".join([
            self.files[0],
            '* files: %i' % len(self.files),
            '* axes: %s' % self.axes,
            '* shape: %s' % str(self.shape)])
    def __len__(self):
        return len(self.files)
    def __enter__(self):
        return self
    def __exit__(self, exc_type, exc_value, traceback):
        self.close()
    def close(self):
        pass
    def asarray(self, memmap=False, *args, **kwargs):
        """Read image data from all files and return as single numpy array.
        If memmap is True, return an array stored in a binary file on disk.
        The args and kwargs parameters are passed to the imread function.
        Raise IndexError or ValueError if image shapes don't match.
        """
        im = self.imread(self.files[0], *args, **kwargs)
        shape = self.shape + im.shape
        if memmap:
            with tempfile.NamedTemporaryFile() as fh:
                result = numpy.memmap(fh, dtype=im.dtype, shape=shape)
        else:
            result = numpy.zeros(shape, dtype=im.dtype)
        result = result.reshape(-1, *im.shape)
        for index, fname in zip(self._indices, self.files):
            index = [i-j for i, j in zip(index, self._start_index)]
            index = numpy.ravel_multi_index(index, self.shape)
            im = self.imread(fname, *args, **kwargs)
            result[index] = im
        result.shape = shape
        return result
    def _parse(self):
        """Get axes and shape from file names."""
        if not self.pattern:
            raise self.ParseError("invalid pattern")
        pattern = re.compile(self.pattern, re.IGNORECASE | re.VERBOSE)
        matches = pattern.findall(self.files[0])
        if not matches:
            raise self.ParseError("pattern doesn't match file names")
        matches = matches[-1]
        if len(matches) % 2:
            raise self.ParseError("pattern doesn't match axis name and index")
        axes = ''.join(m for m in matches[::2] if m)
        if not axes:
            raise self.ParseError("pattern doesn't match file names")
        indices = []
        for fname in self.files:
            matches = pattern.findall(fname)[-1]
            if axes != ''.join(m for m in matches[::2] if m):
                raise ValueError("axes don't match within the image sequence")
            indices.append([int(m) for m in matches[1::2] if m])
        shape = tuple(numpy.max(indices, axis=0))
        start_index = tuple(numpy.min(indices, axis=0))
        shape = tuple(i-j+1 for i, j in zip(shape, start_index))
        if product(shape) != len(self.files):
            warnings.warn("files are missing. Missing data are zeroed")
        self.axes = axes.upper()
        self.shape = shape
        self._indices = indices
        self._start_index = start_index
class Record(dict):
    """Dictionary with attribute access.
    Can also be initialized with numpy.core.records.record.
    """
    __slots__ = ()
    def __init__(self, arg=None, **kwargs):
        if kwargs:
            arg = kwargs
        elif arg is None:
            arg = {}
        try:
            dict.__init__(self, arg)
        except (TypeError, ValueError):
            for i, name in enumerate(arg.dtype.names):
                v = arg[i]
                self[name] = v if v.dtype.char != 'S' else stripnull(v)
    def __getattr__(self, name):
        return self[name]
    def __setattr__(self, name, value):
        self.__setitem__(name, value)
    def __str__(self):
        """Pretty print Record."""
        s = []
        lists = []
        for k in sorted(self):
            try:
                if k.startswith('_'):  # does not work with byte
                    continue
            except AttributeError:
                pass
            v = self[k]
            if isinstance(v, (list, tuple)) and len(v):
                if isinstance(v[0], Record):
                    lists.append((k, v))
                    continue
                elif isinstance(v[0], TiffPage):
                    v = [i.index for i in v if i]
            s.append(
                ("* %s: %s" % (k, str(v))).split("\n", 1)[0]
                [:PRINT_LINE_LEN].rstrip())
        for k, v in lists:
            l = []
            for i, w in enumerate(v):
                l.append("* %s[%i]\n  %s" % (k, i,
                                             str(w).replace("\n", "\n  ")))
            s.append('\n'.join(l))
        return '\n'.join(s)
class TiffTags(Record):
    """Dictionary of TiffTag with attribute access."""
    def __str__(self):
        """Return string with information about all tags."""
        s = []
        for tag in sorted(self.values(), key=lambda x: x.code):
            typecode = "%i%s" % (tag.count * int(tag.dtype[0]), tag.dtype[1])
            line = "* %i %s (%s) %s" % (
                tag.code, tag.name, typecode, tag.as_str())
            s.append(line[:PRINT_LINE_LEN].lstrip())
        return '\n'.join(s)
class FileHandle(object):
    """Binary file handle.
    * Handle embedded files (for CZI within CZI files).
    * Allow to re-open closed files (for multi file formats such as OME-TIFF).
    * Read numpy arrays and records from file like objects.
    Only binary read, seek, tell, and close are supported on embedded files.
    When initialized from another file handle, do not use it unless this
    FileHandle is closed.
    Attributes
    ----------
    name : str
        Name of the file.
    path : str
        Absolute path to file.
    size : int
        Size of file in bytes.
    is_file : bool
        If True, file has a filno and can be memory-mapped.
    All attributes are read-only.
    """
    __slots__ = ('_fh', '_arg', '_mode', '_name', '_dir',
                 '_offset', '_size', '_close', 'is_file')
    def __init__(self, arg, mode='rb', name=None, offset=None, size=None):
        """Initialize file handle from file name or another file handle.
        Parameters
        ----------
        arg : str, File, or FileHandle
            File name or open file handle.
        mode : str
            File open mode in case 'arg' is a file name.
        name : str
            Optional name of file in case 'arg' is a file handle.
        offset : int
            Optional start position of embedded file. By default this is
            the current file position.
        size : int
            Optional size of embedded file. By default this is the number
            of bytes from the 'offset' to the end of the file.
        """
        self._fh = None
        self._arg = arg
        self._mode = mode
        self._name = name
        self._dir = ''
        self._offset = offset
        self._size = size
        self._close = True
        self.is_file = False
        self.open()
    def open(self):
        """Open or re-open file."""
        if self._fh:
            return  # file is open
        if isinstance(self._arg, basestring):
            # file name
            self._arg = os.path.abspath(self._arg)
            self._dir, self._name = os.path.split(self._arg)
            self._fh = open(self._arg, self._mode)
            self._close = True
            if self._offset is None:
                self._offset = 0
        elif isinstance(self._arg, FileHandle):
            # FileHandle
            self._fh = self._arg._fh
            if self._offset is None:
                self._offset = 0
            self._offset += self._arg._offset
            self._close = False
            if not self._name:
                if self._offset:
                    name, ext = os.path.splitext(self._arg._name)
                    self._name = "%s@%i%s" % (name, self._offset, ext)
                else:
                    self._name = self._arg._name
            self._dir = self._arg._dir
        else:
            # open file object
            self._fh = self._arg
            if self._offset is None:
                self._offset = self._arg.tell()
            self._close = False
            if not self._name:
                try:
                    self._dir, self._name = os.path.split(self._fh.name)
                except AttributeError:
                    self._name = "Unnamed stream"
        if self._offset:
            self._fh.seek(self._offset)
        if self._size is None:
            pos = self._fh.tell()
            self._fh.seek(self._offset, 2)
            self._size = self._fh.tell()
            self._fh.seek(pos)
        try:
            self._fh.fileno()
            self.is_file = True
        except Exception:
            self.is_file = False
    def read(self, size=-1):
        """Read 'size' bytes from file, or until EOF is reached."""
        if size < 0 and self._offset:
            size = self._size
        return self._fh.read(size)
    def memmap_array(self, dtype, shape, offset=0, mode='r', order='C'):
        """Return numpy.memmap of data stored in file."""
        if not self.is_file:
            raise ValueError("Can not memory-map file without fileno.")
        return numpy.memmap(self._fh, dtype=dtype, mode=mode,
                            offset=self._offset + offset,
                            shape=shape, order=order)
    def read_array(self, dtype, count=-1, sep=""):
        """Return numpy array from file.
        Work around numpy issue #2230, "numpy.fromfile does not accept
        StringIO object" https://github.com/numpy/numpy/issues/2230.
        """
        try:
            return numpy.fromfile(self._fh, dtype, count, sep)
        except IOError:
            if count < 0:
                size = self._size
            else:
                size = count * numpy.dtype(dtype).itemsize
            data = self._fh.read(size)
            return numpy.fromstring(data, dtype, count, sep)
    def read_record(self, dtype, shape=1, byteorder=None):
        """Return numpy record from file."""
        try:
            rec = numpy.rec.fromfile(self._fh, dtype, shape,
                                     byteorder=byteorder)
        except Exception:
            dtype = numpy.dtype(dtype)
            if shape is None:
                shape = self._size // dtype.itemsize
            size = product(sequence(shape)) * dtype.itemsize
            data = self._fh.read(size)
            return numpy.rec.fromstring(data, dtype, shape,
                                        byteorder=byteorder)
        return rec[0] if shape == 1 else rec
    def tell(self):
        """Return file's current position."""
        return self._fh.tell() - self._offset
    def seek(self, offset, whence=0):
        """Set file's current position."""
        if self._offset:
            if whence == 0:
                self._fh.seek(self._offset + offset, whence)
                return
            elif whence == 2:
                self._fh.seek(self._offset + self._size + offset, 0)
                return
        self._fh.seek(offset, whence)
    def close(self):
        """Close file."""
        if self._close and self._fh:
            self._fh.close()
            self._fh = None
            self.is_file = False
    def __enter__(self):
        return self
    def __exit__(self, exc_type, exc_value, traceback):
        self.close()
    def __getattr__(self, name):
        """Return attribute from underlying file object."""
        if self._offset:
            warnings.warn(
                "FileHandle: '%s' not implemented for embedded files" % name)
        return getattr(self._fh, name)
    @property
    def name(self):
        return self._name
    @property
    def dirname(self):
        return self._dir
    @property
    def path(self):
        return os.path.join(self._dir, self._name)
    @property
    def size(self):
        return self._size
    @property
    def closed(self):
        return self._fh is None
def read_bytes(fh, byteorder, dtype, count):
    """Read tag data from file and return as byte string."""
    dtype = 'b' if dtype[-1] == 's' else byteorder+dtype[-1]
    return fh.read_array(dtype, count).tostring()
def read_numpy(fh, byteorder, dtype, count):
    """Read tag data from file and return as numpy array."""
    dtype = 'b' if dtype[-1] == 's' else byteorder+dtype[-1]
    return fh.read_array(dtype, count)
def read_json(fh, byteorder, dtype, count):
    """Read JSON tag data from file and return as object."""
    data = fh.read(count)
    try:
        return json.loads(unicode(stripnull(data), 'utf-8'))
    except ValueError:
        warnings.warn("invalid JSON '%s'" % data)
def read_mm_header(fh, byteorder, dtype, count):
    """Read MM_HEADER tag from file and return as numpy.rec.array."""
    return fh.read_record(MM_HEADER, byteorder=byteorder)
def read_mm_stamp(fh, byteorder, dtype, count):
    """Read MM_STAMP tag from file and return as numpy.ndarray."""
    return fh.read_array(byteorder+'f8', 8)
def read_uic1tag(fh, byteorder, dtype, count, plane_count=None):
    """Read MetaMorph STK UIC1Tag from file and return as dictionary.
    Return empty dictionary if plane_count is unknown.
    """
    assert dtype in ('2I', '1I') and byteorder == '<'
    result = {}
    if dtype == '2I':
        # pre MetaMorph 2.5 (not tested)
        values = fh.read_array('<u4', 2*count).reshape(count, 2)
        result = {'z_distance': values[:, 0] / values[:, 1]}
    elif plane_count:
        for _ in range(count):
            tagid = struct.unpack('<I', fh.read(4))[0]
            if tagid in (28, 29, 37, 40, 41):
                # silently skip unexpected tags
                fh.read(4)
                continue
            name, value = read_uic_tag(fh, tagid, plane_count, offset=True)
            result[name] = value
    return result
def read_uic2tag(fh, byteorder, dtype, plane_count):
    """Read MetaMorph STK UIC2Tag from file and return as dictionary."""
    assert dtype == '2I' and byteorder == '<'
    values = fh.read_array('<u4', 6*plane_count).reshape(plane_count, 6)
    return {
        'z_distance': values[:, 0] / values[:, 1],
        'date_created': values[:, 2],  # julian days
        'time_created': values[:, 3],  # milliseconds
        'date_modified': values[:, 4],  # julian days
        'time_modified': values[:, 5],  # milliseconds
    }
def read_uic3tag(fh, byteorder, dtype, plane_count):
    """Read MetaMorph STK UIC3Tag from file and return as dictionary."""
    assert dtype == '2I' and byteorder == '<'
    values = fh.read_array('<u4', 2*plane_count).reshape(plane_count, 2)
    return {'wavelengths': values[:, 0] / values[:, 1]}
def read_uic4tag(fh, byteorder, dtype, plane_count):
    """Read MetaMorph STK UIC4Tag from file and return as dictionary."""
    assert dtype == '1I' and byteorder == '<'
    result = {}
    while True:
        tagid = struct.unpack('<H', fh.read(2))[0]
        if tagid == 0:
            break
        name, value = read_uic_tag(fh, tagid, plane_count, offset=False)
        result[name] = value
    return result
def read_uic_tag(fh, tagid, plane_count, offset):
    """Read a single UIC tag value from file and return tag name and value.
    UIC1Tags use an offset.
    """
    def read_int(count=1):
        value = struct.unpack('<%iI' % count, fh.read(4*count))
        return value[0] if count == 1 else value
    try:
        name, dtype = UIC_TAGS[tagid]
    except KeyError:
        # unknown tag
        return '_tagid_%i' % tagid, read_int()
    if offset:
        pos = fh.tell()
        if dtype not in (int, None):
            off = read_int()
            if off < 8:
                warnings.warn("invalid offset for uic tag '%s': %i"
                              % (name, off))
                return name, off
            fh.seek(off)
    if dtype is None:
        # skip
        name = '_' + name
        value = read_int()
    elif dtype is int:
        # int
        value = read_int()
    elif dtype is Fraction:
        # fraction
        value = read_int(2)
        value = value[0] / value[1]
    elif dtype is julian_datetime:
        # datetime
        value = julian_datetime(*read_int(2))
    elif dtype is read_uic_image_property:
        # ImagePropertyEx
        value = read_uic_image_property(fh)
    elif dtype is str:
        # pascal string
        size = read_int()
        if 0 <= size < 2**10:
            value = struct.unpack('%is' % size, fh.read(size))[0][:-1]
            value = stripnull(value)
        elif offset:
            value = ''
            warnings.warn("corrupt string in uic tag '%s'" % name)
        else:
            raise ValueError("invalid string size %i" % size)
    elif dtype == '%ip':
        # sequence of pascal strings
        value = []
        for _ in range(plane_count):
            size = read_int()
            if 0 <= size < 2**10:
                string = struct.unpack('%is' % size, fh.read(size))[0][:-1]
                string = stripnull(string)
                value.append(string)
            elif offset:
                warnings.warn("corrupt string in uic tag '%s'" % name)
            else:
                raise ValueError("invalid string size %i" % size)
    else:
        # struct or numpy type
        dtype = '<' + dtype
        if '%i' in dtype:
            dtype = dtype % plane_count
        if '(' in dtype:
            # numpy type
            value = fh.read_array(dtype, 1)[0]
            if value.shape[-1] == 2:
                # assume fractions
                value = value[..., 0] / value[..., 1]
        else:
            # struct format
            value = struct.unpack(dtype, fh.read(struct.calcsize(dtype)))
            if len(value) == 1:
                value = value[0]
    if offset:
        fh.seek(pos + 4)
    return name, value
def read_uic_image_property(fh):
    """Read UIC ImagePropertyEx tag from file and return as dict."""
    # TODO: test this
    size = struct.unpack('B', fh.read(1))[0]
    name = struct.unpack('%is' % size, fh.read(size))[0][:-1]
    flags, prop = struct.unpack('<IB', fh.read(5))
    if prop == 1:
        value = struct.unpack('II', fh.read(8))
        value = value[0] / value[1]
    else:
        size = struct.unpack('B', fh.read(1))[0]
        value = struct.unpack('%is' % size, fh.read(size))[0]
    return dict(name=name, flags=flags, value=value)
def read_cz_lsm_info(fh, byteorder, dtype, count):
    """Read CS_LSM_INFO tag from file and return as numpy.rec.array."""
    assert byteorder == '<'
    magic_number, structure_size = struct.unpack('<II', fh.read(8))
    if magic_number not in (50350412, 67127628):
        raise ValueError("not a valid CS_LSM_INFO structure")
    fh.seek(-8, 1)
    if structure_size < numpy.dtype(CZ_LSM_INFO).itemsize:
        # adjust structure according to structure_size
        cz_lsm_info = []
        size = 0
        for name, dtype in CZ_LSM_INFO:
            size += numpy.dtype(dtype).itemsize
            if size > structure_size:
                break
            cz_lsm_info.append((name, dtype))
    else:
        cz_lsm_info = CZ_LSM_INFO
    return fh.read_record(cz_lsm_info, byteorder=byteorder)
def read_cz_lsm_floatpairs(fh):
    """Read LSM sequence of float pairs from file and return as list."""
    size = struct.unpack('<i', fh.read(4))[0]
    return fh.read_array('<2f8', count=size)
def read_cz_lsm_positions(fh):
    """Read LSM positions from file and return as list."""
    size = struct.unpack('<I', fh.read(4))[0]
    return fh.read_array('<2f8', count=size)
def read_cz_lsm_time_stamps(fh):
    """Read LSM time stamps from file and return as list."""
    size, count = struct.unpack('<ii', fh.read(8))
    if size != (8 + 8 * count):
        raise ValueError("lsm_time_stamps block is too short")
    # return struct.unpack('<%dd' % count, fh.read(8*count))
    return fh.read_array('<f8', count=count)
def read_cz_lsm_event_list(fh):
    """Read LSM events from file and return as list of (time, type, text)."""
    count = struct.unpack('<II', fh.read(8))[1]
    events = []
    while count > 0:
        esize, etime, etype = struct.unpack('<IdI', fh.read(16))
        etext = stripnull(fh.read(esize - 16))
        events.append((etime, etype, etext))
        count -= 1
    return events
def read_cz_lsm_scan_info(fh):
    """Read LSM scan information from file and return as Record."""
    block = Record()
    blocks = [block]
    unpack = struct.unpack
    if 0x10000000 != struct.unpack('<I', fh.read(4))[0]:
        # not a Recording sub block
        raise ValueError("not a lsm_scan_info structure")
    fh.read(8)
    while True:
        entry, dtype, size = unpack('<III', fh.read(12))
        if dtype == 2:
            # ascii
            value = stripnull(fh.read(size))
        elif dtype == 4:
            # long
            value = unpack('<i', fh.read(4))[0]
        elif dtype == 5:
            # rational
            value = unpack('<d', fh.read(8))[0]
        else:
            value = 0
        if entry in CZ_LSM_SCAN_INFO_ARRAYS:
            blocks.append(block)
            name = CZ_LSM_SCAN_INFO_ARRAYS[entry]
            newobj = []
            setattr(block, name, newobj)
            block = newobj
        elif entry in CZ_LSM_SCAN_INFO_STRUCTS:
            blocks.append(block)
            newobj = Record()
            block.append(newobj)
            block = newobj
        elif entry in CZ_LSM_SCAN_INFO_ATTRIBUTES:
            name = CZ_LSM_SCAN_INFO_ATTRIBUTES[entry]
            setattr(block, name, value)
        elif entry == 0xffffffff:
            # end sub block
            block = blocks.pop()
        else:
            # unknown entry
            setattr(block, "entry_0x%x" % entry, value)
        if not blocks:
            break
    return block
def read_nih_image_header(fh, byteorder, dtype, count):
    """Read NIH_IMAGE_HEADER tag from file and return as numpy.rec.array."""
    a = fh.read_record(NIH_IMAGE_HEADER, byteorder=byteorder)
    a = a.newbyteorder(byteorder)
    a.xunit = a.xunit[:a._xunit_len]
    a.um = a.um[:a._um_len]
    return a
def read_micromanager_metadata(fh):
    """Read MicroManager non-TIFF settings from open file and return as dict.
    The settings can be used to read image data without parsing the TIFF file.
    Raise ValueError if file does not contain valid MicroManager metadata.
    """
    fh.seek(0)
    try:
        byteorder = {b'II': '<', b'MM': '>'}[fh.read(2)]
    except IndexError:
        raise ValueError("not a MicroManager TIFF file")
    results = {}
    fh.seek(8)
    (index_header, index_offset, display_header, display_offset,
     comments_header, comments_offset, summary_header, summary_length
     ) = struct.unpack(byteorder + "IIIIIIII", fh.read(32))
    if summary_header != 2355492:
        raise ValueError("invalid MicroManager summary_header")
    results['summary'] = read_json(fh, byteorder, None, summary_length)
    if index_header != 54773648:
        raise ValueError("invalid MicroManager index_header")
    fh.seek(index_offset)
    header, count = struct.unpack(byteorder + "II", fh.read(8))
    if header != 3453623:
        raise ValueError("invalid MicroManager index_header")
    data = struct.unpack(byteorder + "IIIII"*count, fh.read(20*count))
    results['index_map'] = {
        'channel': data[::5], 'slice': data[1::5], 'frame': data[2::5],
        'position': data[3::5], 'offset': data[4::5]}
    if display_header != 483765892:
        raise ValueError("invalid MicroManager display_header")
    fh.seek(display_offset)
    header, count = struct.unpack(byteorder + "II", fh.read(8))
    if header != 347834724:
        raise ValueError("invalid MicroManager display_header")
    results['display_settings'] = read_json(fh, byteorder, None, count)
    if comments_header != 99384722:
        raise ValueError("invalid MicroManager comments_header")
    fh.seek(comments_offset)
    header, count = struct.unpack(byteorder + "II", fh.read(8))
    if header != 84720485:
        raise ValueError("invalid MicroManager comments_header")
    results['comments'] = read_json(fh, byteorder, None, count)
    return results
def imagej_metadata(data, bytecounts, byteorder):
    """Return dictionary from ImageJ metadata tag value."""
    _str = str if sys.version_info[0] < 3 else lambda x: str(x, 'cp1252')
    def read_string(data, byteorder):
        return _str(stripnull(data[0 if byteorder == '<' else 1::2]))
    def read_double(data, byteorder):
        return struct.unpack(byteorder+('d' * (len(data) // 8)), data)
    def read_bytes(data, byteorder):
        #return struct.unpack('b' * len(data), data)
        return numpy.fromstring(data, 'uint8')
    metadata_types = {  # big endian
        b'info': ('info', read_string),
        b'labl': ('labels', read_string),
        b'rang': ('ranges', read_double),
        b'luts': ('luts', read_bytes),
        b'roi ': ('roi', read_bytes),
        b'over': ('overlays', read_bytes)}
    metadata_types.update(  # little endian
        dict((k[::-1], v) for k, v in metadata_types.items()))
    if not bytecounts:
        raise ValueError("no ImageJ metadata")
    if not data[:4] in (b'IJIJ', b'JIJI'):
        raise ValueError("invalid ImageJ metadata")
    header_size = bytecounts[0]
    if header_size < 12 or header_size > 804:
        raise ValueError("invalid ImageJ metadata header size")
    ntypes = (header_size - 4) // 8
    header = struct.unpack(byteorder+'4sI'*ntypes, data[4:4+ntypes*8])
    pos = 4 + ntypes * 8
    counter = 0
    result = {}
    for mtype, count in zip(header[::2], header[1::2]):
        values = []
        name, func = metadata_types.get(mtype, (_str(mtype), read_bytes))
        for _ in range(count):
            counter += 1
            pos1 = pos + bytecounts[counter]
            values.append(func(data[pos:pos1], byteorder))
            pos = pos1
        result[name.strip()] = values[0] if count == 1 else values
    return result
def imagej_description_dict(description):
    """Return dictionary from ImageJ image description byte string.
    Raise ValueError if not a valid ImageJ description.
    >>> description = b'ImageJ=1.11a\\nimages=510\\nhyperstack=true\\n'
    >>> imagej_description_dict(description)  # doctest: +SKIP
    {'ImageJ': '1.11a', 'images': 510, 'hyperstack': True}
    """
    def _bool(val):
        return {b'true': True, b'false': False}[val.lower()]
    _str = str if sys.version_info[0] < 3 else lambda x: str(x, 'cp1252')
    result = {}
    for line in description.splitlines():
        try:
            key, val = line.split(b'=')
        except Exception:
            continue
        key = key.strip()
        val = val.strip()
        for dtype in (int, float, _bool, _str):
            try:
                val = dtype(val)
                break
            except Exception:
                pass
        result[_str(key)] = val
    if 'ImageJ' not in result:
        raise ValueError("not a ImageJ image description")
    return result
def imagej_description(shape, rgb=None, colormaped=False, version='1.11a',
                       hyperstack=None, mode=None, loop=None, kwargs={}):
    """Return ImageJ image decription from data shape as byte string.
    ImageJ can handle up to 6 dimensions in order TZCYXS.
    >>> imagej_description((51, 5, 2, 196, 171))  # doctest: +SKIP
    ImageJ=1.11a
    images=510
    channels=2
    slices=5
    frames=51
    hyperstack=true
    mode=grayscale
    loop=false
    """
    if colormaped:
        raise NotImplementedError("ImageJ colormapping not supported")
    shape = imagej_shape(shape, rgb=rgb)
    rgb = shape[-1] in (3, 4)
    result = ['ImageJ=%s' % version]
    append = []
    result.append('images=%i' % product(shape[:-3]))
    if hyperstack is None:
        #if product(shape[:-3]) > 1:
        hyperstack = True
        append.append('hyperstack=true')
    else:
        append.append('hyperstack=%s' % bool(hyperstack))
    if shape[2] > 1:
        result.append('channels=%i' % shape[2])
    if mode is None and not rgb:
        mode = 'grayscale'
    if hyperstack and mode:
        append.append('mode=%s' % mode)
    if shape[1] > 1:
        result.append('slices=%i' % shape[1])
    if shape[0] > 1:
        result.append("frames=%i" % shape[0])
        if loop is None:
            append.append('loop=false')
    if loop is not None:
        append.append('loop=%s' % bool(loop))
    for key, value in kwargs.items():
        append.append('%s=%s' % (key.lower(), value))
    return str2bytes('\n'.join(result + append + ['']))
def imagej_shape(shape, rgb=None):
    """Return shape normalized to 6D ImageJ hyperstack TZCYXS.
    Raise ValueError if not a valid ImageJ hyperstack shape.
    >>> imagej_shape((2, 3, 4, 5, 3), False)
    (2, 3, 4, 5, 3, 1)
    """
    shape = tuple(int(i) for i in shape)
    ndim = len(shape)
    if 1 > ndim > 6:
        raise ValueError("invalid ImageJ hyperstack: not 2 to 6 dimensional")
    if rgb is None:
        rgb = shape[-1] in (3, 4) and ndim > 2
    if rgb and shape[-1] not in (3, 4):
        raise ValueError("invalid ImageJ hyperstack: not a RGB image")
    if not rgb and ndim == 6 and shape[-1] != 1:
        raise ValueError("invalid ImageJ hyperstack: not a non-RGB image")
    if rgb or shape[-1] == 1:
        return (1, ) * (6 - ndim) + shape
    else:
        return (1, ) * (5 - ndim) + shape + (1,)
def image_description_dict(description):
    """Return dictionary from image description byte string.
    Raise ValuError if description is of unknown format.
    >>> image_description_dict(b'shape=(256, 256, 3)')
    {'shape': (256, 256, 3)}
    >>> description = b'{"shape": [256, 256, 3], "axes": "YXS"}'
    >>> image_description_dict(description)  # doctest: +SKIP
    {'shape': [256, 256, 3], 'axes': 'YXS'}
    """
    if description.startswith(b'shape='):
        # old style 'shaped' description
        shape = tuple(int(i) for i in description[7:-1].split(b','))
        return dict(shape=shape)
    if description.startswith(b'{') and description.endswith(b'}'):
        # JSON description
        return json.loads(description.decode('utf-8'))
    raise ValueError("unknown image description")
def image_description(shape, colormaped=False, **metadata):
    """Return image description from data shape and meta data.
    Return UTF-8 encoded JSON.
    >>> image_description((256, 256, 3), axes='YXS')  # doctest: +SKIP
    b'{"shape": [256, 256, 3], "axes": "YXS"}'
    """
    if colormaped:
        shape = (3,) + shape
    metadata.update({'shape': shape})
    return json.dumps(metadata).encode('utf-8')
def _replace_by(module_function, package=__package__, warn=False):
    """Try replace decorated function by module.function."""
    try:
        from importlib import import_module
    except ImportError:
        warnings.warn('could not import module importlib')
        return lambda func: func
    def decorate(func, module_function=module_function, warn=warn):
        try:
            module, function = module_function.split('.')
            if package:
                module = import_module('.' + module, package=package)
            else:
                module = import_module(module)
            func, oldfunc = getattr(module, function), func
            globals()['__old_' + func.__name__] = oldfunc
        except Exception:
            if warn:
                warnings.warn("failed to import %s" % module_function)
        return func
    return decorate
def decode_floats(data):
    """Decode floating point horizontal differencing.
    The TIFF predictor type 3 reorders the bytes of the image values and
    applies horizontal byte differencing to improve compression of floating
    point images. The ordering of interleaved color channels is preserved.
    Parameters
    ----------
    data : numpy.ndarray
        The image to be decoded. The dtype must be a floating point.
        The shape must include the number of contiguous samples per pixel
        even if 1.
    """
    shape = data.shape
    dtype = data.dtype
    if len(shape) < 3:
        raise ValueError('invalid data shape')
    if dtype.char not in 'dfe':
        raise ValueError('not a floating point image')
    littleendian = data.dtype.byteorder == '<' or (
        sys.byteorder == 'little' and data.dtype.byteorder == '=')
    # undo horizontal byte differencing
    data = data.view('uint8')
    data.shape = shape[:-2] + (-1,) + shape[-1:]
    numpy.cumsum(data, axis=-2, dtype='uint8', out=data)
    # reorder bytes
    if littleendian:
        data.shape = shape[:-2] + (-1,) + shape[-2:]
    data = numpy.swapaxes(data, -3, -2)
    data = numpy.swapaxes(data, -2, -1)
    data = data[..., ::-1]
    # back to float
    data = numpy.ascontiguousarray(data)
    data = data.view(dtype)
    data.shape = shape
    return data
def decode_jpeg(encoded, tables=b'', photometric=None,
                ycbcr_subsampling=None, ycbcr_positioning=None):
    """Decode JPEG encoded byte string (using _czifile extension module)."""
    from czifile import _czifile
    image = _czifile.decode_jpeg(encoded, tables)
    if photometric == 'rgb' and ycbcr_subsampling and ycbcr_positioning:
        # TODO: convert YCbCr to RGB
        pass
    return image.tostring()
@_replace_by('_tifffile.decode_packbits')
def decode_packbits(encoded):
    """Decompress PackBits encoded byte string.
    PackBits is a simple byte-oriented run-length compression scheme.
    """
    func = ord if sys.version[0] == '2' else lambda x: x
    result = []
    result_extend = result.extend
    i = 0
    try:
        while True:
            n = func(encoded[i]) + 1
            i += 1
            if n < 129:
                result_extend(encoded[i:i+n])
                i += n
            elif n > 129:
                result_extend(encoded[i:i+1] * (258-n))
                i += 1
    except IndexError:
        pass
    return b''.join(result) if sys.version[0] == '2' else bytes(result)
@_replace_by('_tifffile.decode_lzw')
def decode_lzw(encoded):
    """Decompress LZW (Lempel-Ziv-Welch) encoded TIFF strip (byte string).
    The strip must begin with a CLEAR code and end with an EOI code.
    This is an implementation of the LZW decoding algorithm described in (1).
    It is not compatible with old style LZW compressed files like quad-lzw.tif.
    """
    len_encoded = len(encoded)
    bitcount_max = len_encoded * 8
    unpack = struct.unpack
    if sys.version[0] == '2':
        newtable = [chr(i) for i in range(256)]
    else:
        newtable = [bytes([i]) for i in range(256)]
    newtable.extend((0, 0))
    def next_code():
        """Return integer of 'bitw' bits at 'bitcount' position in encoded."""
        start = bitcount // 8
        s = encoded[start:start+4]
        try:
            code = unpack('>I', s)[0]
        except Exception:
            code = unpack('>I', s + b'\x00'*(4-len(s)))[0]
        code <<= bitcount % 8
        code &= mask
        return code >> shr
    switchbitch = {  # code: bit-width, shr-bits, bit-mask
        255: (9, 23, int(9*'1'+'0'*23, 2)),
        511: (10, 22, int(10*'1'+'0'*22, 2)),
        1023: (11, 21, int(11*'1'+'0'*21, 2)),
        2047: (12, 20, int(12*'1'+'0'*20, 2)), }
    bitw, shr, mask = switchbitch[255]
    bitcount = 0
    if len_encoded < 4:
        raise ValueError("strip must be at least 4 characters long")
    if next_code() != 256:
        raise ValueError("strip must begin with CLEAR code")
    code = 0
    oldcode = 0
    result = []
    result_append = result.append
    while True:
        code = next_code()  # ~5% faster when inlining this function
        bitcount += bitw
        if code == 257 or bitcount >= bitcount_max:  # EOI
            break
        if code == 256:  # CLEAR
            table = newtable[:]
            table_append = table.append
            lentable = 258
            bitw, shr, mask = switchbitch[255]
            code = next_code()
            bitcount += bitw
            if code == 257:  # EOI
                break
            result_append(table[code])
        else:
            if code < lentable:
                decoded = table[code]
                newcode = table[oldcode] + decoded[:1]
            else:
                newcode = table[oldcode]
                newcode += newcode[:1]
                decoded = newcode
            result_append(decoded)
            table_append(newcode)
            lentable += 1
        oldcode = code
        if lentable in switchbitch:
            bitw, shr, mask = switchbitch[lentable]
    if code != 257:
        warnings.warn("unexpected end of lzw stream (code %i)" % code)
    return b''.join(result)
@_replace_by('_tifffile.unpack_ints')
def unpack_ints(data, dtype, itemsize, runlen=0):
    """Decompress byte string to array of integers of any bit size <= 32.
    Parameters
    ----------
    data : byte str
        Data to decompress.
    dtype : numpy.dtype or str
        A numpy boolean or integer type.
    itemsize : int
        Number of bits per integer.
    runlen : int
        Number of consecutive integers, after which to start at next byte.
    """
    if itemsize == 1:  # bitarray
        data = numpy.fromstring(data, '|B')
        data = numpy.unpackbits(data)
        if runlen % 8:
            data = data.reshape(-1, runlen + (8 - runlen % 8))
            data = data[:, :runlen].reshape(-1)
        return data.astype(dtype)
    dtype = numpy.dtype(dtype)
    if itemsize in (8, 16, 32, 64):
        return numpy.fromstring(data, dtype)
    if itemsize < 1 or itemsize > 32:
        raise ValueError("itemsize out of range: %i" % itemsize)
    if dtype.kind not in "biu":
        raise ValueError("invalid dtype")
    itembytes = next(i for i in (1, 2, 4, 8) if 8 * i >= itemsize)
    if itembytes != dtype.itemsize:
        raise ValueError("dtype.itemsize too small")
    if runlen == 0:
        runlen = len(data) // itembytes
    skipbits = runlen*itemsize % 8
    if skipbits:
        skipbits = 8 - skipbits
    shrbits = itembytes*8 - itemsize
    bitmask = int(itemsize*'1'+'0'*shrbits, 2)
    dtypestr = '>' + dtype.char  # dtype always big endian?
    unpack = struct.unpack
    l = runlen * (len(data)*8 // (runlen*itemsize + skipbits))
    result = numpy.empty((l,), dtype)
    bitcount = 0
    for i in range(len(result)):
        start = bitcount // 8
        s = data[start:start+itembytes]
        try:
            code = unpack(dtypestr, s)[0]
        except Exception:
            code = unpack(dtypestr, s + b'\x00'*(itembytes-len(s)))[0]
        code <<= bitcount % 8
        code &= bitmask
        result[i] = code >> shrbits
        bitcount += itemsize
        if (i+1) % runlen == 0:
            bitcount += skipbits
    return result
def unpack_rgb(data, dtype='<B', bitspersample=(5, 6, 5), rescale=True):
    """Return array from byte string containing packed samples.
    Use to unpack RGB565 or RGB555 to RGB888 format.
    Parameters
    ----------
    data : byte str
        The data to be decoded. Samples in each pixel are stored consecutively.
        Pixels are aligned to 8, 16, or 32 bit boundaries.
    dtype : numpy.dtype
        The sample data type. The byteorder applies also to the data stream.
    bitspersample : tuple
        Number of bits for each sample in a pixel.
    rescale : bool
        Upscale samples to the number of bits in dtype.
    Returns
    -------
    result : ndarray
        Flattened array of unpacked samples of native dtype.
    Examples
    --------
    >>> data = struct.pack('BBBB', 0x21, 0x08, 0xff, 0xff)
    >>> print(unpack_rgb(data, '<B', (5, 6, 5), False))
    [ 1  1  1 31 63 31]
    >>> print(unpack_rgb(data, '<B', (5, 6, 5)))
    [  8   4   8 255 255 255]
    >>> print(unpack_rgb(data, '<B', (5, 5, 5)))
    [ 16   8   8 255 255 255]
    """
    dtype = numpy.dtype(dtype)
    bits = int(numpy.sum(bitspersample))
    if not (bits <= 32 and all(i <= dtype.itemsize*8 for i in bitspersample)):
        raise ValueError("sample size not supported %s" % str(bitspersample))
    dt = next(i for i in 'BHI' if numpy.dtype(i).itemsize*8 >= bits)
    data = numpy.fromstring(data, dtype.byteorder+dt)
    result = numpy.empty((data.size, len(bitspersample)), dtype.char)
    for i, bps in enumerate(bitspersample):
        t = data >> int(numpy.sum(bitspersample[i+1:]))
        t &= int('0b'+'1'*bps, 2)
        if rescale:
            o = ((dtype.itemsize * 8) // bps + 1) * bps
            if o > data.dtype.itemsize * 8:
                t = t.astype('I')
            t *= (2**o - 1) // (2**bps - 1)
            t //= 2**(o - (dtype.itemsize * 8))
        result[:, i] = t
    return result.reshape(-1)
def reorient(image, orientation):
    """Return reoriented view of image array.
    Parameters
    ----------
    image : numpy.ndarray
        Non-squeezed output of asarray() functions.
        Axes -3 and -2 must be image length and width respectively.
    orientation : int or str
        One of TIFF_ORIENTATIONS keys or values.
    """
    o = TIFF_ORIENTATIONS.get(orientation, orientation)
    if o == 'top_left':
        return image
    elif o == 'top_right':
        return image[..., ::-1, :]
    elif o == 'bottom_left':
        return image[..., ::-1, :, :]
    elif o == 'bottom_right':
        return image[..., ::-1, ::-1, :]
    elif o == 'left_top':
        return numpy.swapaxes(image, -3, -2)
    elif o == 'right_top':
        return numpy.swapaxes(image, -3, -2)[..., ::-1, :]
    elif o == 'left_bottom':
        return numpy.swapaxes(image, -3, -2)[..., ::-1, :, :]
    elif o == 'right_bottom':
        return numpy.swapaxes(image, -3, -2)[..., ::-1, ::-1, :]
def squeeze_axes(shape, axes, skip='XY'):
    """Return shape and axes with single-dimensional entries removed.
    Remove unused dimensions unless their axes are listed in 'skip'.
    >>> squeeze_axes((5, 1, 2, 1, 1), 'TZYXC')
    ((5, 2, 1), 'TYX')
    """
    if len(shape) != len(axes):
        raise ValueError("dimensions of axes and shape don't match")
    shape, axes = zip(*(i for i in zip(shape, axes)
                        if i[0] > 1 or i[1] in skip))
    return tuple(shape), ''.join(axes)
def transpose_axes(data, axes, asaxes='CTZYX'):
    """Return data with its axes permuted to match specified axes.
    A view is returned if possible.
    >>> transpose_axes(numpy.zeros((2, 3, 4, 5)), 'TYXC', asaxes='CTZYX').shape
    (5, 2, 1, 3, 4)
    """
    for ax in axes:
        if ax not in asaxes:
            raise ValueError("unknown axis %s" % ax)
    # add missing axes to data
    shape = data.shape
    for ax in reversed(asaxes):
        if ax not in axes:
            axes = ax + axes
            shape = (1,) + shape
    data = data.reshape(shape)
    # transpose axes
    data = data.transpose([axes.index(ax) for ax in asaxes])
    return data
def stack_pages(pages, memmap=False, *args, **kwargs):
    """Read data from sequence of TiffPage and stack them vertically.
    If memmap is True, return an array stored in a binary file on disk.
    Additional parameters are passsed to the page asarray function.
    """
    if len(pages) == 0:
        raise ValueError("no pages")
    if len(pages) == 1:
        return pages[0].asarray(memmap=memmap, *args, **kwargs)
    result = pages[0].asarray(*args, **kwargs)
    shape = (len(pages),) + result.shape
    if memmap:
        with tempfile.NamedTemporaryFile() as fh:
            result = numpy.memmap(fh, dtype=result.dtype, shape=shape)
    else:
        result = numpy.empty(shape, dtype=result.dtype)
    for i, page in enumerate(pages):
        result[i] = page.asarray(*args, **kwargs)
    return result
def stripnull(string):
    """Return string truncated at first null character.
    Clean NULL terminated C strings.
    >>> stripnull(b'string\\x00')
    b'string'
    """
    i = string.find(b'\x00')
    return string if (i < 0) else string[:i]
def stripascii(string):
    """Return string truncated at last byte that is 7bit ASCII.
    Clean NULL separated and terminated TIFF strings.
    >>> stripascii(b'string\\x00string\\n\\x01\\x00')
    b'string\\x00string\\n'
    >>> stripascii(b'\\x00')
    b''
    """
    # TODO: pythonize this
    ord_ = ord if sys.version_info[0] < 3 else lambda x: x
    i = len(string)
    while i:
        i -= 1
        if 8 < ord_(string[i]) < 127:
            break
    else:
        i = -1
    return string[:i+1]
def format_size(size):
    """Return file size as string from byte size."""
    for unit in ('B', 'KB', 'MB', 'GB', 'TB'):
        if size < 2048:
            return "%.f %s" % (size, unit)
        size /= 1024.0
def sequence(value):
    """Return tuple containing value if value is not a sequence.
    >>> sequence(1)
    (1,)
    >>> sequence([1])
    [1]
    """
    try:
        len(value)
        return value
    except TypeError:
        return (value,)
def product(iterable):
    """Return product of sequence of numbers.
    Equivalent of functools.reduce(operator.mul, iterable, 1).
    >>> product([2**8, 2**30])
    274877906944
    >>> product([])
    1
    """
    prod = 1
    for i in iterable:
        prod *= i
    return prod
def natural_sorted(iterable):
    """Return human sorted list of strings.
    E.g. for sorting file names.
    >>> natural_sorted(['f1', 'f2', 'f10'])
    ['f1', 'f2', 'f10']
    """
    def sortkey(x):
        return [(int(c) if c.isdigit() else c) for c in re.split(numbers, x)]
    numbers = re.compile(r'(\d+)')
    return sorted(iterable, key=sortkey)
def excel_datetime(timestamp, epoch=datetime.datetime.fromordinal(693594)):
    """Return datetime object from timestamp in Excel serial format.
    Convert LSM time stamps.
    >>> excel_datetime(40237.029999999795)
    datetime.datetime(2010, 2, 28, 0, 43, 11, 999982)
    """
    return epoch + datetime.timedelta(timestamp)
def julian_datetime(julianday, milisecond=0):
    """Return datetime from days since 1/1/4713 BC and ms since midnight.
    Convert Julian dates according to MetaMorph.
    >>> julian_datetime(2451576, 54362783)
    datetime.datetime(2000, 2, 2, 15, 6, 2, 783)
    """
    if julianday <= 1721423:
        # no datetime before year 1
        return None
    a = julianday + 1
    if a > 2299160:
        alpha = math.trunc((a - 1867216.25) / 36524.25)
        a += 1 + alpha - alpha // 4
    b = a + (1524 if a > 1721423 else 1158)
    c = math.trunc((b - 122.1) / 365.25)
    d = math.trunc(365.25 * c)
    e = math.trunc((b - d) / 30.6001)
    day = b - d - math.trunc(30.6001 * e)
    month = e - (1 if e < 13.5 else 13)
    year = c - (4716 if month > 2.5 else 4715)
    hour, milisecond = divmod(milisecond, 1000 * 60 * 60)
    minute, milisecond = divmod(milisecond, 1000 * 60)
    second, milisecond = divmod(milisecond, 1000)
    return datetime.datetime(year, month, day,
                             hour, minute, second, milisecond)
def test_tifffile(directory='testimages', verbose=True):
    """Read all images in directory.
    Print error message on failure.
    >>> test_tifffile(verbose=False)
    """
    successful = 0
    failed = 0
    start = time.time()
    for f in glob.glob(os.path.join(directory, '*.*')):
        if verbose:
            print("\n%s>\n" % f.lower(), end='')
        t0 = time.time()
        try:
            tif = TiffFile(f, multifile=True)
        except Exception as e:
            if not verbose:
                print(f, end=' ')
            print("ERROR:", e)
            failed += 1
            continue
        try:
            img = tif.asarray()
        except ValueError:
            try:
                img = tif[0].asarray()
            except Exception as e:
                if not verbose:
                    print(f, end=' ')
                print("ERROR:", e)
                failed += 1
                continue
        finally:
            tif.close()
        successful += 1
        if verbose:
            print("%s, %s %s, %s, %.0f ms" % (
                str(tif), str(img.shape), img.dtype, tif[0].compression,
                (time.time()-t0) * 1e3))
    if verbose:
        print("\nSuccessfully read %i of %i files in %.3f s\n" % (
            successful, successful+failed, time.time()-start))
class TIFF_SUBFILE_TYPES(object):
    def __getitem__(self, key):
        result = []
        if key & 1:
            result.append('reduced_image')
        if key & 2:
            result.append('page')
        if key & 4:
            result.append('mask')
        return tuple(result)
TIFF_PHOTOMETRICS = {
    0: 'miniswhite',
    1: 'minisblack',
    2: 'rgb',
    3: 'palette',
    4: 'mask',
    5: 'separated',  # CMYK
    6: 'ycbcr',
    8: 'cielab',
    9: 'icclab',
    10: 'itulab',
    32803: 'cfa',  # Color Filter Array
    32844: 'logl',
    32845: 'logluv',
    34892: 'linear_raw'
}
TIFF_COMPESSIONS = {
    1: None,
    2: 'ccittrle',
    3: 'ccittfax3',
    4: 'ccittfax4',
    5: 'lzw',
    6: 'ojpeg',
    7: 'jpeg',
    8: 'adobe_deflate',
    9: 't85',
    10: 't43',
    32766: 'next',
    32771: 'ccittrlew',
    32773: 'packbits',
    32809: 'thunderscan',
    32895: 'it8ctpad',
    32896: 'it8lw',
    32897: 'it8mp',
    32898: 'it8bl',
    32908: 'pixarfilm',
    32909: 'pixarlog',
    32946: 'deflate',
    32947: 'dcs',
    34661: 'jbig',
    34676: 'sgilog',
    34677: 'sgilog24',
    34712: 'jp2000',
    34713: 'nef',
    34925: 'lzma',
}
TIFF_DECOMPESSORS = {
    None: lambda x: x,
    'adobe_deflate': zlib.decompress,
    'deflate': zlib.decompress,
    'packbits': decode_packbits,
    'lzw': decode_lzw,
    # 'jpeg': decode_jpeg
}
if lzma:
    TIFF_DECOMPESSORS['lzma'] = lzma.decompress
TIFF_DATA_TYPES = {
    1: '1B',   # BYTE 8-bit unsigned integer.
    2: '1s',   # ASCII 8-bit byte that contains a 7-bit ASCII code;
               #   the last byte must be NULL (binary zero).
    3: '1H',   # SHORT 16-bit (2-byte) unsigned integer
    4: '1I',   # LONG 32-bit (4-byte) unsigned integer.
    5: '2I',   # RATIONAL Two LONGs: the first represents the numerator of
               #   a fraction; the second, the denominator.
    6: '1b',   # SBYTE An 8-bit signed (twos-complement) integer.
    7: '1s',   # UNDEFINED An 8-bit byte that may contain anything,
               #   depending on the definition of the field.
    8: '1h',   # SSHORT A 16-bit (2-byte) signed (twos-complement) integer.
    9: '1i',   # SLONG A 32-bit (4-byte) signed (twos-complement) integer.
    10: '2i',  # SRATIONAL Two SLONGs: the first represents the numerator
               #   of a fraction, the second the denominator.
    11: '1f',  # FLOAT Single precision (4-byte) IEEE format.
    12: '1d',  # DOUBLE Double precision (8-byte) IEEE format.
    13: '1I',  # IFD unsigned 4 byte IFD offset.
    #14: '',   # UNICODE
    #15: '',   # COMPLEX
    16: '1Q',  # LONG8 unsigned 8 byte integer (BigTiff)
    17: '1q',  # SLONG8 signed 8 byte integer (BigTiff)
    18: '1Q',  # IFD8 unsigned 8 byte IFD offset (BigTiff)
}
TIFF_SAMPLE_FORMATS = {
    1: 'uint',
    2: 'int',
    3: 'float',
    #4: 'void',
    #5: 'complex_int',
    6: 'complex',
}
TIFF_SAMPLE_DTYPES = {
    ('uint', 1): '?',  # bitmap
    ('uint', 2): 'B',
    ('uint', 3): 'B',
    ('uint', 4): 'B',
    ('uint', 5): 'B',
    ('uint', 6): 'B',
    ('uint', 7): 'B',
    ('uint', 8): 'B',
    ('uint', 9): 'H',
    ('uint', 10): 'H',
    ('uint', 11): 'H',
    ('uint', 12): 'H',
    ('uint', 13): 'H',
    ('uint', 14): 'H',
    ('uint', 15): 'H',
    ('uint', 16): 'H',
    ('uint', 17): 'I',
    ('uint', 18): 'I',
    ('uint', 19): 'I',
    ('uint', 20): 'I',
    ('uint', 21): 'I',
    ('uint', 22): 'I',
    ('uint', 23): 'I',
    ('uint', 24): 'I',
    ('uint', 25): 'I',
    ('uint', 26): 'I',
    ('uint', 27): 'I',
    ('uint', 28): 'I',
    ('uint', 29): 'I',
    ('uint', 30): 'I',
    ('uint', 31): 'I',
    ('uint', 32): 'I',
    ('uint', 64): 'Q',
    ('int', 8): 'b',
    ('int', 16): 'h',
    ('int', 32): 'i',
    ('int', 64): 'q',
    ('float', 16): 'e',
    ('float', 32): 'f',
    ('float', 64): 'd',
    ('complex', 64): 'F',
    ('complex', 128): 'D',
    ('uint', (5, 6, 5)): 'B',
}
TIFF_ORIENTATIONS = {
    1: 'top_left',
    2: 'top_right',
    3: 'bottom_right',
    4: 'bottom_left',
    5: 'left_top',
    6: 'right_top',
    7: 'right_bottom',
    8: 'left_bottom',
}
# TODO: is there a standard for character axes labels?
AXES_LABELS = {
    'X': 'width',
    'Y': 'height',
    'Z': 'depth',
    'S': 'sample',  # rgb(a)
    'I': 'series',  # general sequence, plane, page, IFD
    'T': 'time',
    'C': 'channel',  # color, emission wavelength
    'A': 'angle',
    'P': 'phase',  # formerly F    # P is Position in LSM!
    'R': 'tile',  # region, point, mosaic
    'H': 'lifetime',  # histogram
    'E': 'lambda',  # excitation wavelength
    'L': 'exposure',  # lux
    'V': 'event',
    'Q': 'other',
    #'M': 'mosaic',  # LSM 6
}
AXES_LABELS.update(dict((v, k) for k, v in AXES_LABELS.items()))
# Map OME pixel types to numpy dtype
OME_PIXEL_TYPES = {
    'int8': 'i1',
    'int16': 'i2',
    'int32': 'i4',
    'uint8': 'u1',
    'uint16': 'u2',
    'uint32': 'u4',
    'float': 'f4',
    # 'bit': 'bit',
    'double': 'f8',
    'complex': 'c8',
    'double-complex': 'c16',
}
# NIH Image PicHeader v1.63
NIH_IMAGE_HEADER = [
    ('fileid', 'a8'),
    ('nlines', 'i2'),
    ('pixelsperline', 'i2'),
    ('version', 'i2'),
    ('oldlutmode', 'i2'),
    ('oldncolors', 'i2'),
    ('colors', 'u1', (3, 32)),
    ('oldcolorstart', 'i2'),
    ('colorwidth', 'i2'),
    ('extracolors', 'u2', (6, 3)),
    ('nextracolors', 'i2'),
    ('foregroundindex', 'i2'),
    ('backgroundindex', 'i2'),
    ('xscale', 'f8'),
    ('_x0', 'i2'),
    ('_x1', 'i2'),
    ('units_t', 'i2'),  # NIH_UNITS_TYPE
    ('p1', [('x', 'i2'), ('y', 'i2')]),
    ('p2', [('x', 'i2'), ('y', 'i2')]),
    ('curvefit_t', 'i2'),  # NIH_CURVEFIT_TYPE
    ('ncoefficients', 'i2'),
    ('coeff', 'f8', 6),
    ('_um_len', 'u1'),
    ('um', 'a15'),
    ('_x2', 'u1'),
    ('binarypic', 'b1'),
    ('slicestart', 'i2'),
    ('sliceend', 'i2'),
    ('scalemagnification', 'f4'),
    ('nslices', 'i2'),
    ('slicespacing', 'f4'),
    ('currentslice', 'i2'),
    ('frameinterval', 'f4'),
    ('pixelaspectratio', 'f4'),
    ('colorstart', 'i2'),
    ('colorend', 'i2'),
    ('ncolors', 'i2'),
    ('fill1', '3u2'),
    ('fill2', '3u2'),
    ('colortable_t', 'u1'),  # NIH_COLORTABLE_TYPE
    ('lutmode_t', 'u1'),  # NIH_LUTMODE_TYPE
    ('invertedtable', 'b1'),
    ('zeroclip', 'b1'),
    ('_xunit_len', 'u1'),
    ('xunit', 'a11'),
    ('stacktype_t', 'i2'),  # NIH_STACKTYPE_TYPE
]
NIH_COLORTABLE_TYPE = (
    'CustomTable', 'AppleDefault', 'Pseudo20', 'Pseudo32', 'Rainbow',
    'Fire1', 'Fire2', 'Ice', 'Grays', 'Spectrum')
NIH_LUTMODE_TYPE = (
    'PseudoColor', 'OldAppleDefault', 'OldSpectrum', 'GrayScale',
    'ColorLut', 'CustomGrayscale')
NIH_CURVEFIT_TYPE = (
    'StraightLine', 'Poly2', 'Poly3', 'Poly4', 'Poly5', 'ExpoFit',
    'PowerFit', 'LogFit', 'RodbardFit', 'SpareFit1', 'Uncalibrated',
    'UncalibratedOD')
NIH_UNITS_TYPE = (
    'Nanometers', 'Micrometers', 'Millimeters', 'Centimeters', 'Meters',
    'Kilometers', 'Inches', 'Feet', 'Miles', 'Pixels', 'OtherUnits')
NIH_STACKTYPE_TYPE = (
    'VolumeStack', 'RGBStack', 'MovieStack', 'HSVStack')
# Map Universal Imaging Corporation MetaMorph internal tag ids to name and type
UIC_TAGS = {
    0: ('auto_scale', int),
    1: ('min_scale', int),
    2: ('max_scale', int),
    3: ('spatial_calibration', int),
    4: ('x_calibration', Fraction),
    5: ('y_calibration', Fraction),
    6: ('calibration_units', str),
    7: ('name', str),
    8: ('thresh_state', int),
    9: ('thresh_state_red', int),
    10: ('tagid_10', None),  # undefined
    11: ('thresh_state_green', int),
    12: ('thresh_state_blue', int),
    13: ('thresh_state_lo', int),
    14: ('thresh_state_hi', int),
    15: ('zoom', int),
    16: ('create_time', julian_datetime),
    17: ('last_saved_time', julian_datetime),
    18: ('current_buffer', int),
    19: ('gray_fit', None),
    20: ('gray_point_count', None),
    21: ('gray_x', Fraction),
    22: ('gray_y', Fraction),
    23: ('gray_min', Fraction),
    24: ('gray_max', Fraction),
    25: ('gray_unit_name', str),
    26: ('standard_lut', int),
    27: ('wavelength', int),
    28: ('stage_position', '(%i,2,2)u4'),  # N xy positions as fractions
    29: ('camera_chip_offset', '(%i,2,2)u4'),  # N xy offsets as fractions
    30: ('overlay_mask', None),
    31: ('overlay_compress', None),
    32: ('overlay', None),
    33: ('special_overlay_mask', None),
    34: ('special_overlay_compress', None),
    35: ('special_overlay', None),
    36: ('image_property', read_uic_image_property),
    37: ('stage_label', '%ip'),  # N str
    38: ('autoscale_lo_info', Fraction),
    39: ('autoscale_hi_info', Fraction),
    40: ('absolute_z', '(%i,2)u4'),  # N fractions
    41: ('absolute_z_valid', '(%i,)u4'),  # N long
    42: ('gamma', int),
    43: ('gamma_red', int),
    44: ('gamma_green', int),
    45: ('gamma_blue', int),
    46: ('camera_bin', int),
    47: ('new_lut', int),
    48: ('image_property_ex', None),
    49: ('plane_property', int),
    50: ('user_lut_table', '(256,3)u1'),
    51: ('red_autoscale_info', int),
    52: ('red_autoscale_lo_info', Fraction),
    53: ('red_autoscale_hi_info', Fraction),
    54: ('red_minscale_info', int),
    55: ('red_maxscale_info', int),
    56: ('green_autoscale_info', int),
    57: ('green_autoscale_lo_info', Fraction),
    58: ('green_autoscale_hi_info', Fraction),
    59: ('green_minscale_info', int),
    60: ('green_maxscale_info', int),
    61: ('blue_autoscale_info', int),
    62: ('blue_autoscale_lo_info', Fraction),
    63: ('blue_autoscale_hi_info', Fraction),
    64: ('blue_min_scale_info', int),
    65: ('blue_max_scale_info', int),
    #66: ('overlay_plane_color', read_uic_overlay_plane_color),
}
# Olympus FluoView
MM_DIMENSION = [
    ('name', 'a16'),
    ('size', 'i4'),
    ('origin', 'f8'),
    ('resolution', 'f8'),
    ('unit', 'a64'),
]
MM_HEADER = [
    ('header_flag', 'i2'),
    ('image_type', 'u1'),
    ('image_name', 'a257'),
    ('offset_data', 'u4'),
    ('palette_size', 'i4'),
    ('offset_palette0', 'u4'),
    ('offset_palette1', 'u4'),
    ('comment_size', 'i4'),
    ('offset_comment', 'u4'),
    ('dimensions', MM_DIMENSION, 10),
    ('offset_position', 'u4'),
    ('map_type', 'i2'),
    ('map_min', 'f8'),
    ('map_max', 'f8'),
    ('min_value', 'f8'),
    ('max_value', 'f8'),
    ('offset_map', 'u4'),
    ('gamma', 'f8'),
    ('offset', 'f8'),
    ('gray_channel', MM_DIMENSION),
    ('offset_thumbnail', 'u4'),
    ('voice_field', 'i4'),
    ('offset_voice_field', 'u4'),
]
# Carl Zeiss LSM
CZ_LSM_INFO = [
    ('magic_number', 'u4'),
    ('structure_size', 'i4'),
    ('dimension_x', 'i4'),
    ('dimension_y', 'i4'),
    ('dimension_z', 'i4'),
    ('dimension_channels', 'i4'),
    ('dimension_time', 'i4'),
    ('data_type', 'i4'),  # CZ_DATA_TYPES
    ('thumbnail_x', 'i4'),
    ('thumbnail_y', 'i4'),
    ('voxel_size_x', 'f8'),
    ('voxel_size_y', 'f8'),
    ('voxel_size_z', 'f8'),
    ('origin_x', 'f8'),
    ('origin_y', 'f8'),
    ('origin_z', 'f8'),
    ('scan_type', 'u2'),
    ('spectral_scan', 'u2'),
    ('type_of_data', 'u4'),  # CZ_TYPE_OF_DATA
    ('offset_vector_overlay', 'u4'),
    ('offset_input_lut', 'u4'),
    ('offset_output_lut', 'u4'),
    ('offset_channel_colors', 'u4'),
    ('time_interval', 'f8'),
    ('offset_channel_data_types', 'u4'),
    ('offset_scan_info', 'u4'),  # CZ_LSM_SCAN_INFO
    ('offset_ks_data', 'u4'),
    ('offset_time_stamps', 'u4'),
    ('offset_event_list', 'u4'),
    ('offset_roi', 'u4'),
    ('offset_bleach_roi', 'u4'),
    ('offset_next_recording', 'u4'),
    # LSM 2.0 ends here
    ('display_aspect_x', 'f8'),
    ('display_aspect_y', 'f8'),
    ('display_aspect_z', 'f8'),
    ('display_aspect_time', 'f8'),
    ('offset_mean_of_roi_overlay', 'u4'),
    ('offset_topo_isoline_overlay', 'u4'),
    ('offset_topo_profile_overlay', 'u4'),
    ('offset_linescan_overlay', 'u4'),
    ('offset_toolbar_flags', 'u4'),
    ('offset_channel_wavelength', 'u4'),
    ('offset_channel_factors', 'u4'),
    ('objective_sphere_correction', 'f8'),
    ('offset_unmix_parameters', 'u4'),
    # LSM 3.2, 4.0 end here
    ('offset_acquisition_parameters', 'u4'),
    ('offset_characteristics', 'u4'),
    ('offset_palette', 'u4'),
    ('time_difference_x', 'f8'),
    ('time_difference_y', 'f8'),
    ('time_difference_z', 'f8'),
    ('internal_use_1', 'u4'),
    ('dimension_p', 'i4'),
    ('dimension_m', 'i4'),
    ('dimensions_reserved', '16i4'),
    ('offset_tile_positions', 'u4'),
    ('reserved_1', '9u4'),
    ('offset_positions', 'u4'),
    ('reserved_2', '21u4'),  # must be 0
]
# Import functions for LSM_INFO sub-records
CZ_LSM_INFO_READERS = {
    'scan_info': read_cz_lsm_scan_info,
    'time_stamps': read_cz_lsm_time_stamps,
    'event_list': read_cz_lsm_event_list,
    'channel_colors': read_cz_lsm_floatpairs,
    'positions': read_cz_lsm_floatpairs,
    'tile_positions': read_cz_lsm_floatpairs,
}
# Map cz_lsm_info.scan_type to dimension order
CZ_SCAN_TYPES = {
    0: 'XYZCT',  # x-y-z scan
    1: 'XYZCT',  # z scan (x-z plane)
    2: 'XYZCT',  # line scan
    3: 'XYTCZ',  # time series x-y
    4: 'XYZTC',  # time series x-z
    5: 'XYTCZ',  # time series 'Mean of ROIs'
    6: 'XYZTC',  # time series x-y-z
    7: 'XYCTZ',  # spline scan
    8: 'XYCZT',  # spline scan x-z
    9: 'XYTCZ',  # time series spline plane x-z
    10: 'XYZCT',  # point mode
}
# Map dimension codes to cz_lsm_info attribute
CZ_DIMENSIONS = {
    'X': 'dimension_x',
    'Y': 'dimension_y',
    'Z': 'dimension_z',
    'C': 'dimension_channels',
    'T': 'dimension_time',
}
# Description of cz_lsm_info.data_type
CZ_DATA_TYPES = {
    0: 'varying data types',
    1: '8 bit unsigned integer',
    2: '12 bit unsigned integer',
    5: '32 bit float',
}
# Description of cz_lsm_info.type_of_data
CZ_TYPE_OF_DATA = {
    0: 'Original scan data',
    1: 'Calculated data',
    2: '3D reconstruction',
    3: 'Topography height map',
}
CZ_LSM_SCAN_INFO_ARRAYS = {
    0x20000000: "tracks",
    0x30000000: "lasers",
    0x60000000: "detection_channels",
    0x80000000: "illumination_channels",
    0xa0000000: "beam_splitters",
    0xc0000000: "data_channels",
    0x11000000: "timers",
    0x13000000: "markers",
}
CZ_LSM_SCAN_INFO_STRUCTS = {
    # 0x10000000: "recording",
    0x40000000: "track",
    0x50000000: "laser",
    0x70000000: "detection_channel",
    0x90000000: "illumination_channel",
    0xb0000000: "beam_splitter",
    0xd0000000: "data_channel",
    0x12000000: "timer",
    0x14000000: "marker",
}
CZ_LSM_SCAN_INFO_ATTRIBUTES = {
    # recording
    0x10000001: "name",
    0x10000002: "description",
    0x10000003: "notes",
    0x10000004: "objective",
    0x10000005: "processing_summary",
    0x10000006: "special_scan_mode",
    0x10000007: "scan_type",
    0x10000008: "scan_mode",
    0x10000009: "number_of_stacks",
    0x1000000a: "lines_per_plane",
    0x1000000b: "samples_per_line",
    0x1000000c: "planes_per_volume",
    0x1000000d: "images_width",
    0x1000000e: "images_height",
    0x1000000f: "images_number_planes",
    0x10000010: "images_number_stacks",
    0x10000011: "images_number_channels",
    0x10000012: "linscan_xy_size",
    0x10000013: "scan_direction",
    0x10000014: "time_series",
    0x10000015: "original_scan_data",
    0x10000016: "zoom_x",
    0x10000017: "zoom_y",
    0x10000018: "zoom_z",
    0x10000019: "sample_0x",
    0x1000001a: "sample_0y",
    0x1000001b: "sample_0z",
    0x1000001c: "sample_spacing",
    0x1000001d: "line_spacing",
    0x1000001e: "plane_spacing",
    0x1000001f: "plane_width",
    0x10000020: "plane_height",
    0x10000021: "volume_depth",
    0x10000023: "nutation",
    0x10000034: "rotation",
    0x10000035: "precession",
    0x10000036: "sample_0time",
    0x10000037: "start_scan_trigger_in",
    0x10000038: "start_scan_trigger_out",
    0x10000039: "start_scan_event",
    0x10000040: "start_scan_time",
    0x10000041: "stop_scan_trigger_in",
    0x10000042: "stop_scan_trigger_out",
    0x10000043: "stop_scan_event",
    0x10000044: "stop_scan_time",
    0x10000045: "use_rois",
    0x10000046: "use_reduced_memory_rois",
    0x10000047: "user",
    0x10000048: "use_bc_correction",
    0x10000049: "position_bc_correction1",
    0x10000050: "position_bc_correction2",
    0x10000051: "interpolation_y",
    0x10000052: "camera_binning",
    0x10000053: "camera_supersampling",
    0x10000054: "camera_frame_width",
    0x10000055: "camera_frame_height",
    0x10000056: "camera_offset_x",
    0x10000057: "camera_offset_y",
    0x10000059: "rt_binning",
    0x1000005a: "rt_frame_width",
    0x1000005b: "rt_frame_height",
    0x1000005c: "rt_region_width",
    0x1000005d: "rt_region_height",
    0x1000005e: "rt_offset_x",
    0x1000005f: "rt_offset_y",
    0x10000060: "rt_zoom",
    0x10000061: "rt_line_period",
    0x10000062: "prescan",
    0x10000063: "scan_direction_z",
    # track
    0x40000001: "multiplex_type",  # 0 after line; 1 after frame
    0x40000002: "multiplex_order",
    0x40000003: "sampling_mode",  # 0 sample; 1 line average; 2 frame average
    0x40000004: "sampling_method",  # 1 mean; 2 sum
    0x40000005: "sampling_number",
    0x40000006: "acquire",
    0x40000007: "sample_observation_time",
    0x4000000b: "time_between_stacks",
    0x4000000c: "name",
    0x4000000d: "collimator1_name",
    0x4000000e: "collimator1_position",
    0x4000000f: "collimator2_name",
    0x40000010: "collimator2_position",
    0x40000011: "is_bleach_track",
    0x40000012: "is_bleach_after_scan_number",
    0x40000013: "bleach_scan_number",
    0x40000014: "trigger_in",
    0x40000015: "trigger_out",
    0x40000016: "is_ratio_track",
    0x40000017: "bleach_count",
    0x40000018: "spi_center_wavelength",
    0x40000019: "pixel_time",
    0x40000021: "condensor_frontlens",
    0x40000023: "field_stop_value",
    0x40000024: "id_condensor_aperture",
    0x40000025: "condensor_aperture",
    0x40000026: "id_condensor_revolver",
    0x40000027: "condensor_filter",
    0x40000028: "id_transmission_filter1",
    0x40000029: "id_transmission1",
    0x40000030: "id_transmission_filter2",
    0x40000031: "id_transmission2",
    0x40000032: "repeat_bleach",
    0x40000033: "enable_spot_bleach_pos",
    0x40000034: "spot_bleach_posx",
    0x40000035: "spot_bleach_posy",
    0x40000036: "spot_bleach_posz",
    0x40000037: "id_tubelens",
    0x40000038: "id_tubelens_position",
    0x40000039: "transmitted_light",
    0x4000003a: "reflected_light",
    0x4000003b: "simultan_grab_and_bleach",
    0x4000003c: "bleach_pixel_time",
    # laser
    0x50000001: "name",
    0x50000002: "acquire",
    0x50000003: "power",
    # detection_channel
    0x70000001: "integration_mode",
    0x70000002: "special_mode",
    0x70000003: "detector_gain_first",
    0x70000004: "detector_gain_last",
    0x70000005: "amplifier_gain_first",
    0x70000006: "amplifier_gain_last",
    0x70000007: "amplifier_offs_first",
    0x70000008: "amplifier_offs_last",
    0x70000009: "pinhole_diameter",
    0x7000000a: "counting_trigger",
    0x7000000b: "acquire",
    0x7000000c: "point_detector_name",
    0x7000000d: "amplifier_name",
    0x7000000e: "pinhole_name",
    0x7000000f: "filter_set_name",
    0x70000010: "filter_name",
    0x70000013: "integrator_name",
    0x70000014: "channel_name",
    0x70000015: "detector_gain_bc1",
    0x70000016: "detector_gain_bc2",
    0x70000017: "amplifier_gain_bc1",
    0x70000018: "amplifier_gain_bc2",
    0x70000019: "amplifier_offset_bc1",
    0x70000020: "amplifier_offset_bc2",
    0x70000021: "spectral_scan_channels",
    0x70000022: "spi_wavelength_start",
    0x70000023: "spi_wavelength_stop",
    0x70000026: "dye_name",
    0x70000027: "dye_folder",
    # illumination_channel
    0x90000001: "name",
    0x90000002: "power",
    0x90000003: "wavelength",
    0x90000004: "aquire",
    0x90000005: "detchannel_name",
    0x90000006: "power_bc1",
    0x90000007: "power_bc2",
    # beam_splitter
    0xb0000001: "filter_set",
    0xb0000002: "filter",
    0xb0000003: "name",
    # data_channel
    0xd0000001: "name",
    0xd0000003: "acquire",
    0xd0000004: "color",
    0xd0000005: "sample_type",
    0xd0000006: "bits_per_sample",
    0xd0000007: "ratio_type",
    0xd0000008: "ratio_track1",
    0xd0000009: "ratio_track2",
    0xd000000a: "ratio_channel1",
    0xd000000b: "ratio_channel2",
    0xd000000c: "ratio_const1",
    0xd000000d: "ratio_const2",
    0xd000000e: "ratio_const3",
    0xd000000f: "ratio_const4",
    0xd0000010: "ratio_const5",
    0xd0000011: "ratio_const6",
    0xd0000012: "ratio_first_images1",
    0xd0000013: "ratio_first_images2",
    0xd0000014: "dye_name",
    0xd0000015: "dye_folder",
    0xd0000016: "spectrum",
    0xd0000017: "acquire",
    # timer
    0x12000001: "name",
    0x12000002: "description",
    0x12000003: "interval",
    0x12000004: "trigger_in",
    0x12000005: "trigger_out",
    0x12000006: "activation_time",
    0x12000007: "activation_number",
    # marker
    0x14000001: "name",
    0x14000002: "description",
    0x14000003: "trigger_in",
    0x14000004: "trigger_out",
}
# Map TIFF tag code to attribute name, default value, type, count, validator
TIFF_TAGS = {
    254: ('new_subfile_type', 0, 4, 1, TIFF_SUBFILE_TYPES()),
    255: ('subfile_type', None, 3, 1,
          {0: 'undefined', 1: 'image', 2: 'reduced_image', 3: 'page'}),
    256: ('image_width', None, 4, 1, None),
    257: ('image_length', None, 4, 1, None),
    258: ('bits_per_sample', 1, 3, 1, None),
    259: ('compression', 1, 3, 1, TIFF_COMPESSIONS),
    262: ('photometric', None, 3, 1, TIFF_PHOTOMETRICS),
    266: ('fill_order', 1, 3, 1, {1: 'msb2lsb', 2: 'lsb2msb'}),
    269: ('document_name', None, 2, None, None),
    270: ('image_description', None, 2, None, None),
    271: ('make', None, 2, None, None),
    272: ('model', None, 2, None, None),
    273: ('strip_offsets', None, 4, None, None),
    274: ('orientation', 1, 3, 1, TIFF_ORIENTATIONS),
    277: ('samples_per_pixel', 1, 3, 1, None),
    278: ('rows_per_strip', 2**32-1, 4, 1, None),
    279: ('strip_byte_counts', None, 4, None, None),
    280: ('min_sample_value', None, 3, None, None),
    281: ('max_sample_value', None, 3, None, None),  # 2**bits_per_sample
    282: ('x_resolution', None, 5, 1, None),
    283: ('y_resolution', None, 5, 1, None),
    284: ('planar_configuration', 1, 3, 1, {1: 'contig', 2: 'separate'}),
    285: ('page_name', None, 2, None, None),
    286: ('x_position', None, 5, 1, None),
    287: ('y_position', None, 5, 1, None),
    296: ('resolution_unit', 2, 4, 1, {1: 'none', 2: 'inch', 3: 'centimeter'}),
    297: ('page_number', None, 3, 2, None),
    305: ('software', None, 2, None, None),
    306: ('datetime', None, 2, None, None),
    315: ('artist', None, 2, None, None),
    316: ('host_computer', None, 2, None, None),
    317: ('predictor', 1, 3, 1, {1: None, 2: 'horizontal', 3: 'float'}),
    318: ('white_point', None, 5, 2, None),
    319: ('primary_chromaticities', None, 5, 6, None),
    320: ('color_map', None, 3, None, None),
    322: ('tile_width', None, 4, 1, None),
    323: ('tile_length', None, 4, 1, None),
    324: ('tile_offsets', None, 4, None, None),
    325: ('tile_byte_counts', None, 4, None, None),
    338: ('extra_samples', None, 3, None,
          {0: 'unspecified', 1: 'assocalpha', 2: 'unassalpha'}),
    339: ('sample_format', 1, 3, 1, TIFF_SAMPLE_FORMATS),
    340: ('smin_sample_value', None, None, None, None),
    341: ('smax_sample_value', None, None, None, None),
    347: ('jpeg_tables', None, 7, None, None),
    530: ('ycbcr_subsampling', 1, 3, 2, None),
    531: ('ycbcr_positioning', 1, 3, 1, None),
    32996: ('sgi_matteing', None, None, 1, None),  # use extra_samples
    32996: ('sgi_datatype', None, None, 1, None),  # use sample_format
    32997: ('image_depth', None, 4, 1, None),
    32998: ('tile_depth', None, 4, 1, None),
    33432: ('copyright', None, 1, None, None),
    33445: ('md_file_tag', None, 4, 1, None),
    33446: ('md_scale_pixel', None, 5, 1, None),
    33447: ('md_color_table', None, 3, None, None),
    33448: ('md_lab_name', None, 2, None, None),
    33449: ('md_sample_info', None, 2, None, None),
    33450: ('md_prep_date', None, 2, None, None),
    33451: ('md_prep_time', None, 2, None, None),
    33452: ('md_file_units', None, 2, None, None),
    33550: ('model_pixel_scale', None, 12, 3, None),
    33922: ('model_tie_point', None, 12, None, None),
    34665: ('exif_ifd', None, None, 1, None),
    34735: ('geo_key_directory', None, 3, None, None),
    34736: ('geo_double_params', None, 12, None, None),
    34737: ('geo_ascii_params', None, 2, None, None),
    34853: ('gps_ifd', None, None, 1, None),
    37510: ('user_comment', None, None, None, None),
    42112: ('gdal_metadata', None, 2, None, None),
    42113: ('gdal_nodata', None, 2, None, None),
    50289: ('mc_xy_position', None, 12, 2, None),
    50290: ('mc_z_position', None, 12, 1, None),
    50291: ('mc_xy_calibration', None, 12, 3, None),
    50292: ('mc_lens_lem_na_n', None, 12, 3, None),
    50293: ('mc_channel_name', None, 1, None, None),
    50294: ('mc_ex_wavelength', None, 12, 1, None),
    50295: ('mc_time_stamp', None, 12, 1, None),
    50838: ('imagej_byte_counts', None, None, None, None),
    51023: ('fibics_xml', None, 2, None, None),
    65200: ('flex_xml', None, 2, None, None),
    # code: (attribute name, default value, type, count, validator)
}
# Map custom TIFF tag codes to attribute names and import functions
CUSTOM_TAGS = {
    700: ('xmp', read_bytes),
    34377: ('photoshop', read_numpy),
    33723: ('iptc', read_bytes),
    34675: ('icc_profile', read_bytes),
    33628: ('uic1tag', read_uic1tag),  # Universal Imaging Corporation STK
    33629: ('uic2tag', read_uic2tag),
    33630: ('uic3tag', read_uic3tag),
    33631: ('uic4tag', read_uic4tag),
    34361: ('mm_header', read_mm_header),  # Olympus FluoView
    34362: ('mm_stamp', read_mm_stamp),
    34386: ('mm_user_block', read_bytes),
    34412: ('cz_lsm_info', read_cz_lsm_info),  # Carl Zeiss LSM
    43314: ('nih_image_header', read_nih_image_header),
    # 40001: ('mc_ipwinscal', read_bytes),
    40100: ('mc_id_old', read_bytes),
    50288: ('mc_id', read_bytes),
    50296: ('mc_frame_properties', read_bytes),
    50839: ('imagej_metadata', read_bytes),
    51123: ('micromanager_metadata', read_json),
}
# Max line length of printed output
PRINT_LINE_LEN = 79
def imshow(data, title=None, vmin=0, vmax=None, cmap=None,
           bitspersample=None, photometric='rgb', interpolation='nearest',
           dpi=96, figure=None, subplot=111, maxdim=8192, **kwargs):
    """Plot n-dimensional images using matplotlib.pyplot.
    Return figure, subplot and plot axis.
    Requires pyplot already imported `from matplotlib import pyplot`.
    Parameters
    ----------
    bitspersample : int or None
        Number of bits per channel in integer RGB images.
    photometric : {'miniswhite', 'minisblack', 'rgb', or 'palette'}
        The color space of the image data.
    title : str
        Window and subplot title.
    figure : matplotlib.figure.Figure (optional).
        Matplotlib to use for plotting.
    subplot : int
        A matplotlib.pyplot.subplot axis.
    maxdim : int
        maximum image width and length.
    kwargs : optional
        Arguments for matplotlib.pyplot.imshow.
    """
    #if photometric not in ('miniswhite', 'minisblack', 'rgb', 'palette'):
    #    raise ValueError("Can't handle %s photometrics" % photometric)
    # TODO: handle photometric == 'separated' (CMYK)
    isrgb = photometric in ('rgb', 'palette')
    data = numpy.atleast_2d(data.squeeze())
    dims = data.ndim
    if dims < 2:
        raise ValueError("not an image")
    elif dims == 2:
        dims = 0
        isrgb = False
    else:
        if isrgb and data.shape[-3] in (3, 4):
            data = numpy.swapaxes(data, -3, -2)
            data = numpy.swapaxes(data, -2, -1)
        elif not isrgb and (data.shape[-1] < data.shape[-2] // 8 and
                            data.shape[-1] < data.shape[-3] // 8 and
                            data.shape[-1] < 5):
            data = numpy.swapaxes(data, -3, -1)
            data = numpy.swapaxes(data, -2, -1)
        isrgb = isrgb and data.shape[-1] in (3, 4)
        dims -= 3 if isrgb else 2
    if isrgb:
        data = data[..., :maxdim, :maxdim, :maxdim]
    else:
        data = data[..., :maxdim, :maxdim]
    if photometric == 'palette' and isrgb:
        datamax = data.max()
        if datamax > 255:
            data >>= 8  # possible precision loss
        data = data.astype('B')
    elif data.dtype.kind in 'ui':
        if not (isrgb and data.dtype.itemsize <= 1) or bitspersample is None:
            try:
                bitspersample = int(math.ceil(math.log(data.max(), 2)))
            except Exception:
                bitspersample = data.dtype.itemsize * 8
        elif not isinstance(bitspersample, int):
            # bitspersample can be tuple, e.g. (5, 6, 5)
            bitspersample = data.dtype.itemsize * 8
        datamax = 2**bitspersample
        if isrgb:
            if bitspersample < 8:
                data <<= 8 - bitspersample
            elif bitspersample > 8:
                data >>= bitspersample - 8  # precision loss
            data = data.astype('B')
    elif data.dtype.kind == 'f':
        datamax = data.max()
        if isrgb and datamax > 1.0:
            if data.dtype.char == 'd':
                data = data.astype('f')
            data /= datamax
    elif data.dtype.kind == 'b':
        datamax = 1
    elif data.dtype.kind == 'c':
        # TODO: handle complex types
        raise NotImplementedError("complex type")
    if not isrgb:
        if vmax is None:
            vmax = datamax
        if vmin is None:
            if data.dtype.kind == 'i':
                dtmin = numpy.iinfo(data.dtype).min
                vmin = numpy.min(data)
                if vmin == dtmin:
                    vmin = numpy.min(data > dtmin)
            if data.dtype.kind == 'f':
                dtmin = numpy.finfo(data.dtype).min
                vmin = numpy.min(data)
                if vmin == dtmin:
                    vmin = numpy.min(data > dtmin)
            else:
                vmin = 0
    pyplot = sys.modules['matplotlib.pyplot']
    if figure is None:
        pyplot.rc('font', family='sans-serif', weight='normal', size=8)
        figure = pyplot.figure(dpi=dpi, figsize=(10.3, 6.3), frameon=True,
                               facecolor='1.0', edgecolor='w')
        try:
            figure.canvas.manager.window.title(title)
        except Exception:
            pass
        pyplot.subplots_adjust(bottom=0.03*(dims+2), top=0.9,
                               left=0.1, right=0.95, hspace=0.05, wspace=0.0)
    subplot = pyplot.subplot(subplot)
    if title:
        try:
            title = unicode(title, 'Windows-1252')
        except TypeError:
            pass
        pyplot.title(title, size=11)
    if cmap is None:
        if data.dtype.kind in 'ubf' or vmin == 0:
            cmap = 'cubehelix'
        else:
            cmap = 'coolwarm'
        if photometric == 'miniswhite':
            cmap += '_r'
    image = pyplot.imshow(data[(0,) * dims].squeeze(), vmin=vmin, vmax=vmax,
                          cmap=cmap, interpolation=interpolation, **kwargs)
    if not isrgb:
        pyplot.colorbar()  # panchor=(0.55, 0.5), fraction=0.05
    def format_coord(x, y):
        # callback function to format coordinate display in toolbar
        x = int(x + 0.5)
        y = int(y + 0.5)
        try:
            if dims:
                return "%s @ %s [%4i, %4i]" % (cur_ax_dat[1][y, x],
                                               current, x, y)
            else:
                return "%s @ [%4i, %4i]" % (data[y, x], x, y)
        except IndexError:
            return ""
    pyplot.gca().format_coord = format_coord
    if dims:
        current = list((0,) * dims)
        cur_ax_dat = [0, data[tuple(current)].squeeze()]
        sliders = [pyplot.Slider(
            pyplot.axes([0.125, 0.03*(axis+1), 0.725, 0.025]),
            'Dimension %i' % axis, 0, data.shape[axis]-1, 0, facecolor='0.5',
            valfmt='%%.0f [%i]' % data.shape[axis]) for axis in range(dims)]
        for slider in sliders:
            slider.drawon = False
        def set_image(current, sliders=sliders, data=data):
            # change image and redraw canvas
            cur_ax_dat[1] = data[tuple(current)].squeeze()
            image.set_data(cur_ax_dat[1])
            for ctrl, index in zip(sliders, current):
                ctrl.eventson = False
                ctrl.set_val(index)
                ctrl.eventson = True
            figure.canvas.draw()
        def on_changed(index, axis, data=data, current=current):
            # callback function for slider change event
            index = int(round(index))
            cur_ax_dat[0] = axis
            if index == current[axis]:
                return
            if index >= data.shape[axis]:
                index = 0
            elif index < 0:
                index = data.shape[axis] - 1
            current[axis] = index
            set_image(current)
        def on_keypressed(event, data=data, current=current):
            # callback function for key press event
            key = event.key
            axis = cur_ax_dat[0]
            if str(key) in '0123456789':
                on_changed(key, axis)
            elif key == 'right':
                on_changed(current[axis] + 1, axis)
            elif key == 'left':
                on_changed(current[axis] - 1, axis)
            elif key == 'up':
                cur_ax_dat[0] = 0 if axis == len(data.shape)-1 else axis + 1
            elif key == 'down':
                cur_ax_dat[0] = len(data.shape)-1 if axis == 0 else axis - 1
            elif key == 'end':
                on_changed(data.shape[axis] - 1, axis)
            elif key == 'home':
                on_changed(0, axis)
        figure.canvas.mpl_connect('key_press_event', on_keypressed)
        for axis, ctrl in enumerate(sliders):
            ctrl.on_changed(lambda k, a=axis: on_changed(k, a))
    return figure, subplot, image
def _app_show():
    """Block the GUI. For use as skimage plugin."""
    pyplot = sys.modules['matplotlib.pyplot']
    pyplot.show()
def main(argv=None):
    """Command line usage main function."""
    if float(sys.version[0:3]) < 2.6:
        print("This script requires Python version 2.6 or better.")
        print("This is Python version %s" % sys.version)
        return 0
    if argv is None:
        argv = sys.argv
    import optparse
    parser = optparse.OptionParser(
        usage="usage: %prog [options] path",
        description="Display image data in TIFF files.",
        version="%%prog %s" % __version__)
    opt = parser.add_option
    opt('-p', '--page', dest='page', type='int', default=-1,
        help="display single page")
    opt('-s', '--series', dest='series', type='int', default=-1,
        help="display series of pages of same shape")
    opt('--nomultifile', dest='nomultifile', action='store_true',
        default=False, help="don't read OME series from multiple files")
    opt('--noplot', dest='noplot', action='store_true', default=False,
        help="don't display images")
    opt('--interpol', dest='interpol', metavar='INTERPOL', default='bilinear',
        help="image interpolation method")
    opt('--dpi', dest='dpi', type='int', default=96,
        help="set plot resolution")
    opt('--debug', dest='debug', action='store_true', default=False,
        help="raise exception on failures")
    opt('--test', dest='test', action='store_true', default=False,
        help="try read all images in path")
    opt('--doctest', dest='doctest', action='store_true', default=False,
        help="runs the docstring examples")
    opt('-v', '--verbose', dest='verbose', action='store_true', default=True)
    opt('-q', '--quiet', dest='verbose', action='store_false')
    settings, path = parser.parse_args()
    path = ' '.join(path)
    if settings.doctest:
        import doctest
        doctest.testmod()
        return 0
    if not path:
        try:
            import tkFileDialog as filedialog
        except ImportError:
            from tkinter import filedialog
        path = filedialog.askopenfilename(filetypes=[
            ("TIF files", "*.tif"), ("LSM files", "*.lsm"),
            ("STK files", "*.stk"), ("allfiles", "*")])
        #parser.error("No file specified")
    if settings.test:
        test_tifffile(path, settings.verbose)
        return 0
    if any(i in path for i in '?*'):
        path = glob.glob(path)
        if not path:
            print('no files match the pattern')
            return 0
        # TODO: handle image sequences
        #if len(path) == 1:
        path = path[0]
    print("Reading file structure...", end=' ')
    start = time.time()
    try:
        tif = TiffFile(path, multifile=not settings.nomultifile)
    except Exception as e:
        if settings.debug:
            raise
        else:
            print("\n", e)
            sys.exit(0)
    print("%.3f ms" % ((time.time()-start) * 1e3))
    if tif.is_ome:
        settings.norgb = True
    images = [(None, tif[0 if settings.page < 0 else settings.page])]
    if not settings.noplot:
        print("Reading image data... ", end=' ')
        def notnone(x):
            return next(i for i in x if i is not None)
        start = time.time()
        try:
            if settings.page >= 0:
                images = [(tif.asarray(key=settings.page),
                           tif[settings.page])]
            elif settings.series >= 0:
                images = [(tif.asarray(series=settings.series),
                           notnone(tif.series[settings.series].pages))]
            else:
                images = []
                for i, s in enumerate(tif.series):
                    try:
                        images.append(
                            (tif.asarray(series=i), notnone(s.pages)))
                    except ValueError as e:
                        images.append((None, notnone(s.pages)))
                        if settings.debug:
                            raise
                        else:
                            print("\n* series %i failed: %s... " % (i, e),
                                  end='')
            print("%.3f ms" % ((time.time()-start) * 1e3))
        except Exception as e:
            if settings.debug:
                raise
            else:
                print(e)
    tif.close()
    print("\nTIFF file:", tif)
    print()
    for i, s in enumerate(tif.series):
        print ("Series %i" % i)
        print(s)
        print()
    for i, page in images:
        print(page)
        print(page.tags)
        if page.is_palette:
            print("\nColor Map:", page.color_map.shape, page.color_map.dtype)
        for attr in ('cz_lsm_info', 'cz_lsm_scan_info', 'uic_tags',
                     'mm_header', 'imagej_tags', 'micromanager_metadata',
                     'nih_image_header'):
            if hasattr(page, attr):
                print("", attr.upper(), Record(getattr(page, attr)), sep="\n")
        print()
        if page.is_micromanager:
            print('MICROMANAGER_FILE_METADATA')
            print(Record(tif.micromanager_metadata))
    if images and not settings.noplot:
        try:
            import matplotlib
            matplotlib.use('TkAgg')
            from matplotlib import pyplot
        except ImportError as e:
            warnings.warn("failed to import matplotlib.\n%s" % e)
        else:
            for img, page in images:
                if img is None:
                    continue
                vmin, vmax = None, None
                if 'gdal_nodata' in page.tags:
                    try:
                        vmin = numpy.min(img[img > float(page.gdal_nodata)])
                    except ValueError:
                        pass
                if page.is_stk:
                    try:
                        vmin = page.uic_tags['min_scale']
                        vmax = page.uic_tags['max_scale']
                    except KeyError:
                        pass
                    else:
                        if vmax <= vmin:
                            vmin, vmax = None, None
                title = "%s\n %s" % (str(tif), str(page))
                imshow(img, title=title, vmin=vmin, vmax=vmax,
                       bitspersample=page.bits_per_sample,
                       photometric=page.photometric,
                       interpolation=settings.interpol,
                       dpi=settings.dpi)
            pyplot.show()
TIFFfile = TiffFile  # backwards compatibility
if sys.version_info[0] > 2:
    basestring = str, bytes
    unicode = str
    def str2bytes(s, encoding="latin-1"):
        return s.encode(encoding)
else:
    def str2bytes(s):
        return s
if __name__ == "__main__":
    sys.exit(main())