This file is indexed.

/usr/lib/python2.7/dist-packages/VisionEgg/ThreeDeeMath.py is in python-visionegg 1.2.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
# The Vision Egg: ThreeDeeMath
#
# Copyright (C) 2001-2003 Andrew Straw.
# Copyright (C) 2008 California Institute of Technology
#
# URL: <http://www.visionegg.org/>
#
# Distributed under the terms of the GNU Lesser General Public License
# (LGPL). See LICENSE.TXT that came with this file.

"""
Vertex and matrix operations - simulate OpenGL transforms.

"""

import math
import numpy
import numpy.oldnumeric as Numeric, numpy.oldnumeric.mlab as MLab

def make_homogeneous_coord_rows(v):
    """Convert vertex (or row-wise vertices) into homogeneous coordinates."""
    v = Numeric.array(v,typecode=Numeric.Float) # copy
    if len(v.shape) == 1:
        v = v[Numeric.NewAxis,:] # make a rank-2 array
    if v.shape[1] == 3:
        ws = Numeric.ones((v.shape[0],1),typecode=Numeric.Float)
        v = Numeric.concatenate( (v,ws), axis=1 )
    return v

def normalize_homogeneous_rows(v):
    v = Numeric.asarray(v)
    homog = make_homogeneous_coord_rows(v)
    r = (homog/homog[:,3,Numeric.NewAxis])[:,:3]
    if len(homog.shape) > len(v.shape):
        r = Numeric.reshape(r,(3,))
    return r

class TransformMatrix:
    def __init__(self,matrix=None):
        if matrix is None:
            self.matrix = MLab.eye(4,typecode=Numeric.Float)
        else:
            self.matrix = matrix

    def __make_normalized_vert3(self, x, y, z ):
        mag = math.sqrt( x**2 + y**2 + z**2 )
        return Numeric.array((x,y,z))/mag

    def rotate(self, angle_degrees, axis_x, axis_y, axis_z ):
        """Follows the right hand rule.

        I visualize the right hand rule most easily as follows:
        Naturally, using your right hand, wrap it around the axis of
        rotation. Your fingers now point in the direction of rotation.

        """
        angleRadians = angle_degrees / 180.0 * math.pi
        u = self.__make_normalized_vert3(axis_x, axis_y, axis_z )
        u=-u #follow right hand rule
        S = Numeric.zeros( (3,3), Numeric.Float )
        S[0,1] = -u[2]
        S[0,2] = u[1]
        S[1,0] = u[2]
        S[1,2] = -u[0]
        S[2,0] = -u[1]
        S[2,1] = u[0]
        U = Numeric.outerproduct(u,u)
        R = U + math.cos(angleRadians)*(MLab.eye(3)-U) + math.sin(angleRadians)*S
        R = Numeric.concatenate( (R,Numeric.zeros( (3,1), Numeric.Float)), axis=1)
        R = Numeric.concatenate( (R,Numeric.zeros( (1,4), Numeric.Float)), axis=0)
        R[3,3] = 1.0
        self.matrix = numpy.dot(R,self.matrix)

    def translate(self, x, y, z):
        T = MLab.eye(4,typecode=Numeric.Float)
        T[3,0] = x
        T[3,1] = y
        T[3,2] = z
        self.matrix = numpy.dot(T,self.matrix)

    def scale(self, x, y, z):
        T = MLab.eye(4,typecode=Numeric.Float)
        T[0,0] = x
        T[1,1] = y
        T[2,2] = z
        self.matrix = numpy.dot(T,self.matrix)

    def get_matrix(self):
        return self.matrix

    def transform_vertices(self,verts):
        v = Numeric.asarray(verts)
        homog = make_homogeneous_coord_rows(v)
        r = numpy.dot(homog,self.matrix)
        if len(homog.shape) > len(v.shape):
            r = Numeric.reshape(r,(4,))
        return r