/usr/lib/python2.7/dist-packages/yade/geom.py is in python-yade 1.20.0-7.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 | # encoding: utf-8
"""
Creates geometry objects from facets.
"""
from yade.wrapper import *
import utils,math,numpy
from minieigen import *
#facetBox===============================================================
def facetBox(center,extents,orientation=Quaternion((0,1,0),0.0),wallMask=63,**kw):
"""
Create arbitrarily-aligned box composed of facets, with given center, extents and orientation.
If any of the box dimensions is zero, corresponding facets will not be created. The facets are oriented outwards from the box.
:param Vector3 center: center of the box
:param Vector3 extents: lengths of the box sides
:param Quaternion orientation: orientation of the box
:param bitmask wallMask: determines which walls will be created, in the order -x (1), +x (2), -y (4), +y (8), -z (16), +z (32). The numbers are ANDed; the default 63 means to create all walls
:param \*\*kw: (unused keyword arguments) passed to :yref:`yade.utils.facet`
:returns: list of facets forming the box
"""
return facetParallelepiped(center=center, extents=extents, height=extents[2], orientation=orientation, wallMask=wallMask, **kw)
#facetParallelepiped===============================================================
def facetParallelepiped(center,extents,height,orientation=Quaternion((0,1,0),0.0),wallMask=63,**kw):
"""
Create arbitrarily-aligned Parallelepiped composed of facets, with given center, extents, height and orientation.
If any of the parallelepiped dimensions is zero, corresponding facets will not be created. The facets are oriented outwards from the parallelepiped.
:param Vector3 center: center of the parallelepiped
:param Vector3 extents: lengths of the parallelepiped sides
:param Real height: height of the parallelepiped (along axis z)
:param Quaternion orientation: orientation of the parallelepiped
:param bitmask wallMask: determines which walls will be created, in the order -x (1), +x (2), -y (4), +y (8), -z (16), +z (32). The numbers are ANDed; the default 63 means to create all walls
:param \*\*kw: (unused keyword arguments) passed to :yref:`yade.utils.facet`
:returns: list of facets forming the parallelepiped
"""
if (height<0): raise RuntimeError("The height should have the positive value");
if (height>extents[2]): raise RuntimeError("The height should be smaller or equal as extents[2]");
#Defense from zero dimensions
if (wallMask>63):
print "wallMask must be 63 or less"
wallMask=63
if (extents[0]==0):
wallMask=1
elif (extents[1]==0):
wallMask=4
elif (extents[2]==0 or height==0):
wallMask=16
if (((extents[0]==0) and (extents[1]==0)) or ((extents[0]==0) and (extents[2]==0)) or ((extents[1]==0) and (extents[2]==0))):
raise RuntimeError("Please, specify at least 2 none-zero dimensions in extents!");
# ___________________________
#inclination angle
beta = 0; dx = 0
if (height>0):
beta = math.asin(height/extents[2])
dx = math.cos(beta)*extents[2]
mn,mx=[-extents[i] for i in 0,1,2],[extents[i] for i in 0,1,2]
def doWall(a,b,c,d):
return [utils.facet((a,b,c),**kw),utils.facet((a,c,d),**kw)]
ret=[]
mn[2] = -height
mx[2] = +height
A=orientation*Vector3(mn[0],mn[1],mn[2])+center
B=orientation*Vector3(mx[0],mn[1],mn[2])+center
C=orientation*Vector3(mx[0],mx[1],mn[2])+center
D=orientation*Vector3(mn[0],mx[1],mn[2])+center
E=orientation*Vector3(mn[0]+dx,mn[1],mx[2])+center
F=orientation*Vector3(mx[0]+dx,mn[1],mx[2])+center
G=orientation*Vector3(mx[0]+dx,mx[1],mx[2])+center
H=orientation*Vector3(mn[0]+dx,mx[1],mx[2])+center
if wallMask&1: ret+=doWall(A,D,H,E)
if wallMask&2: ret+=doWall(B,F,G,C)
if wallMask&4: ret+=doWall(A,E,F,B)
if wallMask&8: ret+=doWall(D,C,G,H)
if wallMask&16: ret+=doWall(A,B,C,D)
if wallMask&32: ret+=doWall(E,H,G,F)
return ret
#facetCylinder==========================================================
def facetCylinder(center,radius,height,orientation=Quaternion((0,1,0),0.0),
segmentsNumber=10,wallMask=7,angleRange=None,closeGap=False,
radiusTopInner=-1, radiusBottomInner=-1,
**kw):
"""
Create arbitrarily-aligned cylinder composed of facets, with given center, radius, height and orientation.
Return List of facets forming the cylinder;
:param Vector3 center: center of the created cylinder
:param float radius: cylinder radius
:param float height: cylinder height
:param float radiusTopInner: inner radius of cylinders top, -1 by default
:param float radiusBottomInner: inner radius of cylinders bottom, -1 by default
:param Quaternion orientation: orientation of the cylinder; the reference orientation has axis along the $+x$ axis.
:param int segmentsNumber: number of edges on the cylinder surface (>=5)
:param bitmask wallMask: determines which walls will be created, in the order up (1), down (2), side (4). The numbers are ANDed; the default 7 means to create all walls
:param (θmin,Θmax) angleRange: allows one to create only part of bunker by specifying range of angles; if ``None``, (0,2*pi) is assumed.
:param bool closeGap: close range skipped in angleRange with triangular facets at cylinder bases.
:param \*\*kw: (unused keyword arguments) passed to utils.facet;
"""
# check zero dimentions
if (radius<=0): raise RuntimeError("The radius should have the positive value");
if (height<=0): wallMask = 1;
return facetCylinderConeGenerator(center=center,radiusTop=radius,height=height,
orientation=orientation,segmentsNumber=segmentsNumber,wallMask=wallMask,
angleRange=angleRange,closeGap=closeGap,
radiusTopInner=radiusTopInner, radiusBottomInner=radiusBottomInner,
**kw)
#facetSphere==========================================================
def facetSphere(center,radius,thetaResolution=8,phiResolution=8,returnElementMap=False,**kw):
"""
Create arbitrarily-aligned sphere composed of facets, with given center, radius and orientation.
Return List of facets forming the sphere. Parameters inspired by ParaView sphere glyph
:param Vector3 center: center of the created sphere
:param float radius: sphere radius
:param int thetaResolution: number of facets around "equator"
:param int phiResolution: number of facets between "poles" + 1
:param bool returnElementMap: returns also tuple of nodes ((x1,y1,z1),(x2,y2,z2),...) and elements ((id01,id02,id03),(id11,id12,id13),...) if true, only facets otherwise
:param \*\*kw: (unused keyword arguments) passed to utils.facet;
"""
# check zero dimentions
if (radius<=0): raise RuntimeError("The radius should have the positive value");
if (thetaResolution<3): raise RuntimeError("thetaResolution must be > 3");
if (phiResolution<3): raise RuntimeError("phiResolution must be > 3");
r,c0,c1,c2 = radius,center[0],center[1],center[2]
nodes = [Vector3(c0,c1,c2+radius)]
phis = numpy.linspace(math.pi/(phiResolution-1),math.pi,phiResolution-2,endpoint=False)
thetas = numpy.linspace(0,2*math.pi,thetaResolution,endpoint=False)
nodes.extend((Vector3(c0+r*math.cos(theta)*math.sin(phi),c1+r*math.sin(theta)*math.sin(phi),c2+r*math.cos(phi)) for phi in phis for theta in thetas))
nodes.append(Vector3(c0,c1,c2-radius))
n = len(nodes)-1
elements = [(0,i+1,i+2) for i in xrange(thetaResolution-1)]
elements.append((0,1,thetaResolution))
for j in xrange(0,phiResolution-3):
k = j*thetaResolution + 1
elements.extend((k+i,k+i+1,k+i+thetaResolution) for i in xrange(thetaResolution-1))
elements.append((k,k+thetaResolution-1,k+2*thetaResolution-1))
elements.extend((k+i+thetaResolution,k+i+1+thetaResolution,k+i+1) for i in xrange(thetaResolution-1))
elements.append((k+2*thetaResolution-1,k+thetaResolution,k))
elements.extend((n,n-i-1,n-i-2) for i in xrange(thetaResolution-1))
elements.append((n,n-1,n-thetaResolution))
facets = [utils.facet(tuple(nodes[node] for node in elem),**kw) for elem in elements]
if returnElementMap:
return facets,nodes,elements
return facets
#facetCone==============================================================
def facetCone(center,radiusTop,radiusBottom,height,orientation=Quaternion((0,1,0),0.0),
segmentsNumber=10,wallMask=7,angleRange=None,closeGap=False,
radiusTopInner=-1, radiusBottomInner=-1,
**kw):
"""
Create arbitrarily-aligned cone composed of facets, with given center, radius, height and orientation.
Return List of facets forming the cone;
:param Vector3 center: center of the created cylinder
:param float radiusTop: cone top radius
:param float radiusBottom: cone bottom radius
:param float radiusTopInner: inner radius of cones top, -1 by default
:param float radiusBottomInner: inner radius of cones bottom, -1 by default
:param float height: cone height
:param Quaternion orientation: orientation of the cone; the reference orientation has axis along the $+x$ axis.
:param int segmentsNumber: number of edges on the cone surface (>=5)
:param bitmask wallMask: determines which walls will be created, in the order up (1), down (2), side (4). The numbers are ANDed; the default 7 means to create all walls
:param (θmin,Θmax) angleRange: allows one to create only part of cone by specifying range of angles; if ``None``, (0,2*pi) is assumed.
:param bool closeGap: close range skipped in angleRange with triangular facets at cylinder bases.
:param \*\*kw: (unused keyword arguments) passed to utils.facet;
"""
# check zero dimentions
if ((radiusBottom<=0) and (radiusTop<=0)): raise RuntimeError("The radiusBottom or radiusTop should have the positive value");
return facetCylinderConeGenerator(center=center,radiusTop=radiusTop,
radiusBottom=radiusBottom,height=height,orientation=orientation,segmentsNumber=segmentsNumber,
wallMask=wallMask,angleRange=angleRange,closeGap=closeGap,
radiusTopInner=radiusTopInner, radiusBottomInner=radiusBottomInner,
**kw)
#facetPolygon===========================================================
def facetPolygon(center,radiusOuter,orientation=Quaternion((0,1,0),0.0),segmentsNumber=10,angleRange=None,radiusInner=0,**kw):
"""
Create arbitrarily-aligned polygon composed of facets, with given center, radius (outer and inner) and orientation.
Return List of facets forming the polygon;
:param Vector3 center: center of the created cylinder
:param float radiusOuter: outer radius
:param float radiusInner: inner height (can be 0)
:param Quaternion orientation: orientation of the polygon; the reference orientation has axis along the $+x$ axis.
:param int segmentsNumber: number of edges on the polygon surface (>=3)
:param (θmin,Θmax) angleRange: allows one to create only part of polygon by specifying range of angles; if ``None``, (0,2*pi) is assumed.
:param \*\*kw: (unused keyword arguments) passed to utils.facet;
"""
# check zero dimentions
if (abs(angleRange[1]-angleRange[0])>2.0*math.pi): raise RuntimeError("The |angleRange| cannot be larger 2.0*math.pi");
return facetPolygonHelixGenerator(center=center,radiusOuter=radiusOuter,orientation=orientation,segmentsNumber=segmentsNumber,angleRange=angleRange,radiusInner=radiusInner,**kw)
#facetHelix===========================================================
def facetHelix(center,radiusOuter,pitch,orientation=Quaternion((0,1,0),0.0),segmentsNumber=10,angleRange=None,radiusInner=0,**kw):
"""
Create arbitrarily-aligned helix composed of facets, with given center, radius (outer and inner), pitch and orientation.
Return List of facets forming the helix;
:param Vector3 center: center of the created cylinder
:param float radiusOuter: outer radius
:param float radiusInner: inner height (can be 0)
:param Quaternion orientation: orientation of the helix; the reference orientation has axis along the $+x$ axis.
:param int segmentsNumber: number of edges on the helix surface (>=3)
:param (θmin,Θmax) angleRange: range of angles; if ``None``, (0,2*pi) is assumed.
:param \*\*kw: (unused keyword arguments) passed to utils.facet;
"""
# check zero dimentions
if (pitch<=0): raise RuntimeError("The pitch should have the positive value");
return facetPolygonHelixGenerator(center=center,radiusOuter=radiusOuter,orientation=orientation,segmentsNumber=segmentsNumber,angleRange=angleRange,radiusInner=radiusInner,pitch=pitch,**kw)
#facetBunker============================================================
def facetBunker(center,dBunker,dOutput,hBunker,hOutput,hPipe=0.0,orientation=Quaternion((0,1,0),0.0),segmentsNumber=10,wallMask=4,angleRange=None,closeGap=False,**kw):
"""
Create arbitrarily-aligned bunker, composed of facets, with given center, radii, heights and orientation.
Return List of facets forming the bunker;
.. code-block:: none
dBunker
______________
| |
| |
| | hBunker
| |
| |
| |
|____________|
\ /
\ /
\ / hOutput
\ /
\____/
| |
|____| hPipe
dOutput
:param Vector3 center: center of the created bunker
:param float dBunker: bunker diameter, top
:param float dOutput: bunker output diameter
:param float hBunker: bunker height
:param float hOutput: bunker output height
:param float hPipe: bunker pipe height
:param Quaternion orientation: orientation of the bunker; the reference orientation has axis along the $+x$ axis.
:param int segmentsNumber: number of edges on the bunker surface (>=5)
:param bitmask wallMask: determines which walls will be created, in the order up (1), down (2), side (4). The numbers are ANDed; the default 7 means to create all walls
:param (θmin,Θmax) angleRange: allows one to create only part of bunker by specifying range of angles; if ``None``, (0,2*pi) is assumed.
:param bool closeGap: close range skipped in angleRange with triangular facets at cylinder bases.
:param \*\*kw: (unused keyword arguments) passed to utils.facet;
"""
# check zero dimentions
if (dBunker<=0): raise RuntimeError("The diameter dBunker should have the positive value");
if (dOutput<=0): raise RuntimeError("The diameter dOutput should have the positive value");
if (hBunker<0): raise RuntimeError("The height hBunker should have the positive or or zero");
if (hOutput<=0): raise RuntimeError("The height hOutput should have the positive value");
if (hPipe<0): raise RuntimeError("The height hPipe should have the positive value or zero");
ret=[]
if ((hPipe>0) or (wallMask&2)):
centerPipe = Vector3(0,0,hPipe/2.0)
ret+=facetCylinder(center=centerPipe,radius=dOutput/2.0,height=hPipe,segmentsNumber=segmentsNumber,wallMask=wallMask&6,angleRange=angleRange,closeGap=closeGap,**kw)
centerOutput = Vector3(0.0,0.0,hPipe+hOutput/2.0)
ret+=facetCone(center=centerOutput,radiusTop=dBunker/2.0,radiusBottom=dOutput/2.0,height=hOutput,segmentsNumber=segmentsNumber,wallMask=wallMask&4,angleRange=angleRange,closeGap=closeGap,**kw)
if (hBunker>0):
centerBunker = Vector3(0.0,0.0,hPipe+hOutput+hBunker/2.0)
ret+=facetCylinder(center=centerBunker,radius=dBunker/2.0,height=hBunker,segmentsNumber=segmentsNumber,wallMask=wallMask&5,angleRange=angleRange,closeGap=closeGap,**kw)
for i in ret:
i.state.pos=orientation*(i.state.pos)+Vector3(center)
i.state.ori=orientation
return ret
#facetPolygonHelixGenerator==================================================
def facetPolygonHelixGenerator(center,radiusOuter,pitch=0,orientation=Quaternion((0,1,0),0.0),segmentsNumber=10,angleRange=None,radiusInner=0,**kw):
"""
Please, do not use this function directly! Use geom.facetPloygon and geom.facetHelix instead.
This is the base function for generating polygons and helixes from facets.
"""
# check zero dimentions
if (segmentsNumber<3): raise RuntimeError("The segmentsNumber should be at least 3");
if (radiusOuter<=0): raise RuntimeError("The radiusOuter should have the positive value");
if (radiusInner<0): raise RuntimeError("The radiusInner should have the positive value or 0");
if angleRange==None: angleRange=(0,2*math.pi)
anglesInRad = numpy.linspace(angleRange[0], angleRange[1], segmentsNumber+1, endpoint=True)
heightsInRad = numpy.linspace(0, pitch*(abs(angleRange[1]-angleRange[0])/(2.0*math.pi)), segmentsNumber+1, endpoint=True)
POuter=[];
PInner=[];
PCenter=[];
z=0;
for i in anglesInRad:
XOuter=radiusOuter*math.cos(i); YOuter=radiusOuter*math.sin(i);
POuter.append(Vector3(XOuter,YOuter,heightsInRad[z]))
PCenter.append(Vector3(0,0,heightsInRad[z]))
if (radiusInner<>0):
XInner=radiusInner*math.cos(i); YInner=radiusInner*math.sin(i);
PInner.append(Vector3(XInner,YInner,heightsInRad[z]))
z+=1
for i in range(0,len(POuter)):
POuter[i]=orientation*POuter[i]+center
PCenter[i]=orientation*PCenter[i]+center
if (radiusInner<>0):
PInner[i]=orientation*PInner[i]+center
ret=[]
for i in range(1,len(POuter)):
if (radiusInner==0):
ret.append(utils.facet((PCenter[i],POuter[i],POuter[i-1]),**kw))
else:
ret.append(utils.facet((PInner[i-1],POuter[i-1],POuter[i]),**kw))
ret.append(utils.facet((PInner[i],PInner[i-1],POuter[i]),**kw))
return ret
#facetCylinderConeGenerator=============================================
def facetCylinderConeGenerator(center,radiusTop,height,orientation=Quaternion((0,1,0),0.0),
segmentsNumber=10,wallMask=7,angleRange=None,closeGap=False,
radiusBottom=-1,
radiusTopInner=-1,
radiusBottomInner=-1,
**kw):
"""
Please, do not use this function directly! Use geom.facetCylinder and geom.facetCone instead.
This is the base function for generating cylinders and cones from facets.
:param float radiusTop: top radius
:param float radiusBottom: bottom radius
:param \*\*kw: (unused keyword arguments) passed to utils.facet;
"""
#For cylinders top and bottom radii are equal
if (radiusBottom == -1):
radiusBottom = radiusTop
if ((radiusTopInner > 0 and radiusTopInner > radiusTop) or (radiusBottomInner > 0 and radiusBottomInner > radiusBottom)):
raise RuntimeError("The internal radius cannot be larger than outer");
# check zero dimentions
if (segmentsNumber<3): raise RuntimeError("The segmentsNumber should be at least 3");
if (height<0): raise RuntimeError("The height should have the positive value");
if angleRange==None: angleRange=(0,2*math.pi)
if (abs(angleRange[1]-angleRange[0])>2.0*math.pi): raise RuntimeError("The |angleRange| cannot be larger 2.0*math.pi");
if (angleRange[1]<angleRange[0]): raise RuntimeError("angleRange[1] should be larger or equal angleRange[1]");
if isinstance(angleRange,float):
print u'WARNING: geom.facetCylinder,angleRange should be (Θmin,Θmax), not just Θmax (one number), update your code.'
angleRange=(0,angleRange)
anglesInRad = numpy.linspace(angleRange[0], angleRange[1], segmentsNumber+1, endpoint=True)
PTop=[]; PTop.append(Vector3(0,0,+height/2))
PTopIn=[]; PTopIn.append(Vector3(0,0,+height/2))
PBottom=[]; PBottom.append(Vector3(0,0,-height/2))
PBottomIn=[]; PBottomIn.append(Vector3(0,0,-height/2))
for i in anglesInRad:
XTop=radiusTop*math.cos(i); YTop=radiusTop*math.sin(i);
PTop.append(Vector3(XTop,YTop,+height/2))
if (radiusTopInner > 0):
XTopIn=radiusTopInner*math.cos(i); YTopIn=radiusTopInner*math.sin(i);
PTopIn.append(Vector3(XTopIn,YTopIn,+height/2))
XBottom=radiusBottom*math.cos(i); YBottom=radiusBottom*math.sin(i);
PBottom.append(Vector3(XBottom,YBottom,-height/2))
if (radiusBottomInner > 0):
XBottomIn=radiusBottomInner*math.cos(i); YBottomIn=radiusBottomInner*math.sin(i);
PBottomIn.append(Vector3(XBottomIn,YBottomIn,-height/2))
for i in range(0,len(PTop)):
PTop[i]=orientation*PTop[i]+center
PBottom[i]=orientation*PBottom[i]+center
if (len(PTopIn)>1):
PTopIn[i]=orientation*PTopIn[i]+center
if (len(PBottomIn)>1):
PBottomIn[i]=orientation*PBottomIn[i]+center
ret=[]
for i in range(2,len(PTop)):
if (wallMask&1)and(radiusTop!=0):
if (len(PTopIn)>1):
ret.append(utils.facet((PTop[i-1],PTopIn[i],PTopIn[i-1]),**kw))
ret.append(utils.facet((PTop[i-1],PTop[i],PTopIn[i]),**kw))
else:
ret.append(utils.facet((PTop[0],PTop[i],PTop[i-1]),**kw))
if (wallMask&2)and(radiusBottom!=0):
if (len(PBottomIn)>1):
ret.append(utils.facet((PBottom[i-1],PBottomIn[i],PBottomIn[i-1]),**kw))
ret.append(utils.facet((PBottom[i-1],PBottom[i],PBottomIn[i]),**kw))
else:
ret.append(utils.facet((PBottom[0],PBottom[i-1],PBottom[i]),**kw))
if wallMask&4:
if (radiusBottom!=0):
ret.append(utils.facet((PTop[i],PBottom[i],PBottom[i-1]),**kw))
if (radiusTop!=0):
ret.append(utils.facet((PBottom[i-1],PTop[i-1],PTop[i]),**kw))
if (closeGap):
if (wallMask&1)and(radiusTop!=0)and(abs(((angleRange[1]-angleRange[0])) > math.pi)):
pts=[(radiusTop*math.cos(angleRange[i]),radiusTop*math.sin(angleRange[i])) for i in (0,1)]
pp=[(pts[0][0],pts[0][1],+height/2.0), (pts[1][0],pts[1][1],+height/2.0), (0,0,+height/2.0)]
pp=[orientation*p+center for p in pp]
ret.append(utils.facet(pp,**kw))
if (wallMask&2)and(radiusBottom!=0)and(abs(((angleRange[1]-angleRange[0])) > math.pi)):
pts=[(radiusBottom*math.cos(angleRange[i]),radiusBottom*math.sin(angleRange[i])) for i in (0,1)]
pp=[(0,0,-height/2.0), (pts[1][0],pts[1][1],-height/2.0), (pts[0][0],pts[0][1],-height/2.0)]
pp=[orientation*p+center for p in pp]
ret.append(utils.facet(pp,**kw))
if (wallMask&4):
ptsBottom=[(radiusBottom*math.cos(angleRange[i]),radiusBottom*math.sin(angleRange[i])) for i in (0,1)]
ptsTop=[(radiusTop*math.cos(angleRange[i]),radiusTop*math.sin(angleRange[i])) for i in (0,1)]
if (abs(((angleRange[1]-angleRange[0])) >= math.pi)):
if (radiusBottom!=0)and(radiusTop!=0): #Cylinder
pp=[(ptsBottom[0][0],ptsBottom[0][1],-height/2.0),(ptsBottom[1][0],ptsBottom[1][1],-height/2.0),(ptsTop[0][0],ptsTop[0][1],height/2.0)]
pp=[orientation*p+center for p in pp]
ret.append(utils.facet(pp,**kw))
pp=[(ptsBottom[1][0],ptsBottom[1][1],-height/2.0), (ptsTop[1][0],ptsTop[1][1],height/2.0), (ptsTop[0][0],ptsTop[0][1],height/2.0)]
pp=[orientation*p+center for p in pp]
ret.append(utils.facet(pp,**kw))
elif (radiusBottom==0)and(radiusTop!=0): #ConeTop
pp=[(ptsTop[1][0],ptsTop[1][1],height/2.0), (ptsTop[0][0],ptsTop[0][1],height/2.0), (0,0,-height/2.0)]
pp=[orientation*p+center for p in pp]
ret.append(utils.facet(pp,**kw))
elif (radiusTop==0)and(radiusBottom!=0): #ConeBottom
pp=[(0,0,height/2.0),(ptsBottom[0][0],ptsBottom[0][1],-height/2.0),(ptsBottom[1][0],ptsBottom[1][1],-height/2.0)]
pp=[orientation*p+center for p in pp]
ret.append(utils.facet(pp,**kw))
else:
if (radiusBottom!=0)and(radiusTop!=0): #Cylinder
pp=[(ptsBottom[0][0],ptsBottom[0][1],-height/2.0),(0,0,-height/2.0),(ptsTop[0][0],ptsTop[0][1],height/2.0)]
pp=[orientation*p+center for p in pp]
ret.append(utils.facet(pp,**kw))
pp=[(0,0,-height/2.0), (0,0,height/2.0), (ptsTop[0][0],ptsTop[0][1],height/2.0)]
pp=[orientation*p+center for p in pp]
ret.append(utils.facet(pp,**kw))
pp=[(0,0,-height/2.0),(ptsBottom[1][0],ptsBottom[1][1],-height/2.0),(0,0,height/2.0)]
pp=[orientation*p+center for p in pp]
ret.append(utils.facet(pp,**kw))
pp=[(ptsBottom[1][0],ptsBottom[1][1],-height/2.0), (ptsTop[1][0],ptsTop[1][1],height/2.0), (0,0,height/2.0)]
pp=[orientation*p+center for p in pp]
ret.append(utils.facet(pp,**kw))
elif (radiusBottom==0)and(radiusTop!=0): #ConeTop
pp=[(0,0,height/2.0), (ptsTop[0][0],ptsTop[0][1],height/2.0), (0,0,-height/2.0)]
pp=[orientation*p+center for p in pp]
ret.append(utils.facet(pp,**kw))
pp=[(ptsTop[1][0],ptsTop[1][1],height/2.0), (0,0,height/2.0), (0,0,-height/2.0)]
pp=[orientation*p+center for p in pp]
ret.append(utils.facet(pp,**kw))
elif (radiusTop==0)and(radiusBottom!=0): #ConeBottom
pp=[(0,0,height/2.0),(ptsBottom[0][0],ptsBottom[0][1],-height/2.0),(0,0,-height/2.0)]
pp=[orientation*p+center for p in pp]
ret.append(utils.facet(pp,**kw))
pp=[(0,0,height/2.0),(0,0,-height/2.0),(ptsBottom[1][0],ptsBottom[1][1],-height/2.0)]
pp=[orientation*p+center for p in pp]
ret.append(utils.facet(pp,**kw))
return ret
|