This file is indexed.

/usr/lib/python3/dist-packages/healpy/pixelfunc.py is in python3-healpy 1.8.1-1.1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
# 
#  This file is part of Healpy.
# 
#  Healpy is free software; you can redistribute it and/or modify
#  it under the terms of the GNU General Public License as published by
#  the Free Software Foundation; either version 2 of the License, or
#  (at your option) any later version.
# 
#  Healpy is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
# 
#  You should have received a copy of the GNU General Public License
#  along with Healpy; if not, write to the Free Software
#  Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
# 
#  For more information about Healpy, see http://code.google.com/p/healpy
#
"""
=====================================================
pixelfunc.py : Healpix pixelization related functions
=====================================================

This module provides functions related to Healpix pixelization scheme.

conversion from/to sky coordinates
----------------------------------

- :func:`pix2ang` converts pixel number to angular coordinates
- :func:`pix2vec` converts pixel number to unit 3-vector direction
- :func:`ang2pix` converts angular coordinates to pixel number
- :func:`vec2pix` converts 3-vector to pixel number 
- :func:`vec2ang` converts 3-vector to angular coordinates
- :func:`ang2vec` converts angular coordinates to unit 3-vector
- :func:`get_neighbours` returns the 4 nearest pixels for given
  angular coordinates
- :func:`get_all_neighbours` return the 8 nearest pixels for given
  angular coordinates

conversion between NESTED and RING schemes
------------------------------------------

- :func:`nest2ring` converts NESTED scheme pixel numbers to RING
  scheme pixel number
- :func:`ring2nest` converts RING scheme pixel number to NESTED
  scheme pixel number
- :func:`reorder` reorders a healpix map pixels from one scheme to another

nside/npix/resolution
---------------------

- :func:`nside2npix` converts healpix nside parameter to number of pixel
- :func:`npix2nside` converts number of pixel to healpix nside parameter
- :func:`nside2resol` converts nside to mean angular resolution
- :func:`nside2pixarea` converts nside to pixel area
- :func:`isnsideok` checks the validity of nside
- :func:`isnpixok` checks the validity of npix
- :func:`get_map_size` gives the number of pixel of a map
- :func:`get_min_valid_nside` gives the minimum nside possible for a given
  number of pixel
- :func:`get_nside` returns the nside of a map
- :func:`maptype` checks the type of a map (one map or sequence of maps)
- :func:`ud_grade` upgrades or degrades the resolution (nside) of a map

Masking pixels
--------------

- :const:`UNSEEN` is a constant value interpreted as a masked pixel
- :func:`mask_bad` returns a map with ``True`` where map is :const:`UNSEEN`
- :func:`mask_good` returns a map with ``False`` where map is :const:`UNSEEN`
- :func:`ma` returns a masked array as map, with mask given by :func:`mask_bad`

Map data manipulation
---------------------

- :func:`fit_dipole` fits a monopole+dipole on the map
- :func:`fit_monopole` fits a monopole on the map
- :func:`remove_dipole` fits and removes a monopole+dipole from the map
- :func:`remove_monopole` fits and remove a monopole from the map
- :func:`get_interp_val` computes a bilinear interpolation of the map
  at given angular coordinates, using 4 nearest neighbours
"""

import numpy as np
from . import _healpy_pixel_lib as pixlib
from functools import wraps

#: Special value used for masked pixels
UNSEEN = pixlib.UNSEEN

# We are using 64-bit integer types.
# nside > 2**29 requires extended integer types.
max_nside = 1 << 29

__all__ = ['pix2ang', 'pix2vec', 'ang2pix', 'vec2pix',
           'ang2vec', 'vec2ang',
           'get_neighbours', 'get_interp_val', 'get_all_neighbours',
           'max_pixrad',
           'nest2ring', 'ring2nest', 'reorder', 'ud_grade',
           'UNSEEN', 'mask_good', 'mask_bad', 'ma',
           'fit_dipole', 'remove_dipole', 'fit_monopole', 'remove_monopole',
           'nside2npix', 'npix2nside', 'nside2resol',
           'nside2pixarea', 'isnsideok', 'isnpixok',
           'get_map_size', 'get_min_valid_nside',
           'get_nside', 'maptype', 'ma_to_array']

def check_theta_valid(theta):
    """Raises exception if theta is not within 0 and pi"""
    assert (np.asarray(theta) >= 0).all() & (np.asarray(theta) <= np.pi + 1e-5).all(), "Theta is defined between 0 and pi"

def maptype(m):
    """Describe the type of the map (valid, single, sequence of maps).
    Checks : the number of maps, that all maps have same length and that this
    length is a valid map size (using :func:`isnpixok`).

    Parameters
    ----------
    m : sequence
      the map to get info from

    Returns
    -------
    info : int
      -1 if the given object is not a valid map, 0 if it is a single map,
      *info* > 0 if it is a sequence of maps (*info* is then the number of
      maps)

    Examples
    --------
    >>> import healpy as hp
    >>> hp.pixelfunc.maptype(np.arange(12))
    0
    >>> hp.pixelfunc.maptype([np.arange(12), np.arange(12)])
    2
    """
    if not hasattr(m, '__len__'):
        raise TypeError('input map is a scalar')
    if len(m) == 0:
        raise TypeError('input map has length zero')
    if hasattr(m[0], '__len__'):
        npix=len(m[0])
        for mm in m[1:]:
            if len(mm) != npix:
                raise TypeError('input maps have different npix')
        if isnpixok(len(m[0])):
            return len(m)
        else:
            raise TypeError('bad number of pixels')
    else:
        if isnpixok(len(m)):
            return 0
        else:
            raise TypeError('bad number of pixels')

def ma_to_array(m):
    """Converts a masked array or a list of masked arrays to filled numpy arrays

    Parameters
    ----------
    m : a map (may be a sequence of maps)

    Returns
    -------
    m : filled map or tuple of filled maps

    Examples
    --------
    >>> import healpy as hp
    >>> m = hp.ma(np.array([2., 2., 3, 4, 5, 0, 0, 0, 0, 0, 0, 0]))
    >>> m.mask = np.array([0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], dtype=np.bool)
    >>> print(m.data[1]) # data is not affected by mask
    2.0
    >>> print(m[1]) # shows that the value is masked
    --
    >>> print(ma_to_array(m)[1]) # filled array, masked values replace by UNSEEN
    -1.6375e+30
    """

    try:
        return m.filled()
    except AttributeError:
        try:
            return tuple([mm.filled() for mm in m])
        except AttributeError:
            pass
    return m

def is_ma(m):
    """Converts a masked array or a list of masked arrays to filled numpy arrays

    Parameters
    ----------
    m : a map (may be a sequence of maps)

    Returns
    -------
    is_ma : bool
        whether the input map was a ma or not
    """
    return hasattr(m, 'filled') or hasattr(m[0], 'filled')

def accept_ma(f):
    """Wraps a function in order to convert the input map from
    a masked to a regular numpy array, and convert back the
    output from a regular array to a masked array"""
    @wraps(f)
    def wrapper(*args, **kwds):
        return_ma = is_ma(args[0])
        m = ma_to_array(args[0])
        out = f(m, *args[1:], **kwds)
        return ma(out) if return_ma else out

    return wrapper

def mask_bad(m, badval = UNSEEN, rtol = 1.e-5, atol = 1.e-8):
    """Returns a bool array with ``True`` where m is close to badval.

    Parameters
    ----------
    m : a map (may be a sequence of maps)
    badval : float, optional
        The value of the pixel considered as bad (:const:`UNSEEN` by default)
    rtol : float, optional
        The relative tolerance
    atol : float, optional
        The absolute tolerance

    Returns
    -------
    mask
      a bool array with the same shape as the input map, ``True`` where input map is
      close to badval, and ``False`` elsewhere.

    See Also
    --------
    mask_good, ma

    Examples
    --------
    >>> import healpy as hp
    >>> import numpy as np
    >>> m = np.arange(12.)
    >>> m[3] = hp.UNSEEN
    >>> hp.mask_bad(m)
    array([False, False, False,  True, False, False, False, False, False,
           False, False, False], dtype=bool)
    """
    m = np.asarray(m)
    atol = np.absolute(atol)
    rtol = np.absolute(rtol)
    return np.absolute(m - badval) <= atol + rtol * np.absolute(badval)

def mask_good(m, badval = UNSEEN, rtol = 1.e-5, atol = 1.e-8):
    """Returns a bool array with ``False`` where m is close to badval.

    Parameters
    ----------
    m : a map (may be a sequence of maps)
    badval : float, optional
        The value of the pixel considered as bad (:const:`UNSEEN` by default)
    rtol : float, optional
        The relative tolerance
    atol : float, optional
        The absolute tolerance

    Returns
    -------
    a bool array with the same shape as the input map, ``False`` where input map is
    close to badval, and ``True`` elsewhere.

    See Also
    --------
    mask_bad, ma

    Examples
    --------
    >>> import healpy as hp
    >>> m = np.arange(12.)
    >>> m[3] = hp.UNSEEN
    >>> hp.mask_good(m)
    array([ True,  True,  True, False,  True,  True,  True,  True,  True,
            True,  True,  True], dtype=bool)
    """
    m = np.asarray(m)
    atol = np.absolute(atol)
    rtol = np.absolute(rtol)
    return np.absolute(m - badval) > atol + rtol * np.absolute(badval)

def ma(m, badval = UNSEEN, rtol = 1e-5, atol = 1e-8, copy = True):
    """Return map as a masked array, with ``badval`` pixels masked.

    Parameters
    ----------
    m : a map (may be a sequence of maps)
    badval : float, optional
        The value of the pixel considered as bad (:const:`UNSEEN` by default)
    rtol : float, optional
        The relative tolerance
    atol : float, optional
        The absolute tolerance
    copy : bool, optional
        If ``True``, a copy of the input map is made.

    Returns
    -------
    a masked array with the same shape as the input map, 
    masked where input map is close to badval.

    See Also
    --------
    mask_good, mask_bad, numpy.ma.masked_values

    Examples
    --------
    >>> import healpy as hp
    >>> m = np.arange(12.)
    >>> m[3] = hp.UNSEEN
    >>> hp.ma(m)
    masked_array(data = [0.0 1.0 2.0 -- 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0],
                 mask = [False False False  True False False False False False False False False],
           fill_value = -1.6375e+30)
    <BLANKLINE>
    """
    if maptype(m) == 0:
        return np.ma.masked_values(m, badval, rtol = rtol, atol = atol, copy = copy)
    else:
        return tuple([ma(mm) for mm in m])

def ang2pix(nside,theta,phi,nest=False):
    """ang2pix : nside,theta[rad],phi[rad],nest=False -> ipix (default:RING)

    Parameters
    ----------
    nside : int, scalar or array-like
      The healpix nside parameter, must be a power of 2, less than 2**30
    theta, phi : float, scalars or array-like
      Angular coordinates of a point on the sphere
    nest : bool, optional
      if True, assume NESTED pixel ordering, otherwise, RING pixel ordering

    Returns
    -------
    pix : int or array of int
      The healpix pixel numbers. Scalar if all input are scalar, array otherwise.
      Usual numpy broadcasting rules apply.

    See Also
    --------
    pix2ang, pix2vec, vec2pix

    Examples
    --------
    >>> import healpy as hp
    >>> hp.ang2pix(16, np.pi/2, 0)
    1440

    >>> hp.ang2pix(16, [np.pi/2, np.pi/4, np.pi/2, 0, np.pi], [0., np.pi/4, np.pi/2, 0, 0])
    array([1440,  427, 1520,    0, 3068])

    >>> hp.ang2pix(16, np.pi/2, [0, np.pi/2])
    array([1440, 1520])

    >>> hp.ang2pix([1, 2, 4, 8, 16], np.pi/2, 0)
    array([   4,   12,   72,  336, 1440])
    """
    check_theta_valid(theta)
    check_nside(nside)
    if nest:
        return pixlib._ang2pix_nest(nside,theta,phi)
    else:
        return pixlib._ang2pix_ring(nside,theta,phi)

def pix2ang(nside,ipix,nest=False):
    """pix2ang : nside,ipix,nest=False -> theta[rad],phi[rad] (default RING)

    Parameters
    ----------
    nside : int or array-like
      The healpix nside parameter, must be a power of 2, less than 2**30
    ipix : int or array-like
      Pixel indices
    nest : bool, optional
      if True, assume NESTED pixel ordering, otherwise, RING pixel ordering

    Returns
    -------
    theta, phi : float, scalar or array-like
      The angular coordinates corresponding to ipix. Scalar if all input
      are scalar, array otherwise. Usual numpy broadcasting rules apply.

    See Also
    --------
    ang2pix, vec2pix, pix2vec

    Examples
    --------
    >>> import healpy as hp
    >>> hp.pix2ang(16, 1440)
    (1.5291175943723188, 0.0)

    >>> hp.pix2ang(16, [1440,  427, 1520,    0, 3068])
    (array([ 1.52911759,  0.78550497,  1.57079633,  0.05103658,  3.09055608]), array([ 0.        ,  0.78539816,  1.61988371,  0.78539816,  0.78539816]))

    >>> hp.pix2ang([1, 2, 4, 8], 11)
    (array([ 2.30052398,  0.84106867,  0.41113786,  0.2044802 ]), array([ 5.49778714,  5.89048623,  5.89048623,  5.89048623]))
    """
    check_nside(nside)
    if nest:
        return pixlib._pix2ang_nest(nside, ipix)
    else:
        return pixlib._pix2ang_ring(nside,ipix)

def vec2pix(nside,x,y,z,nest=False):
    """vec2pix : nside,x,y,z,nest=False -> ipix (default:RING)

    Parameters
    ----------
    nside : int or array-like
      The healpix nside parameter, must be a power of 2, less than 2**30
    x,y,z : floats or array-like
      vector coordinates defining point on the sphere
    nest : bool, optional
      if True, assume NESTED pixel ordering, otherwise, RING pixel ordering

    Returns
    -------
    ipix : int, scalar or array-like
      The healpix pixel number corresponding to input vector. Scalar if all input
      are scalar, array otherwise. Usual numpy broadcasting rules apply.

    See Also
    --------
    ang2pix, pix2ang, pix2vec

    Examples
    --------
    >>> import healpy as hp
    >>> hp.vec2pix(16, 1, 0, 0)
    1504

    >>> hp.vec2pix(16, [1, 0], [0, 1], [0, 0])
    array([1504, 1520])

    >>> hp.vec2pix([1, 2, 4, 8], 1, 0, 0)
    array([  4,  20,  88, 368])
    """
    if nest:
        return pixlib._vec2pix_nest(nside,x,y,z)
    else:
        return pixlib._vec2pix_ring(nside,x,y,z)

def pix2vec(nside,ipix,nest=False):
    """pix2vec : nside,ipix,nest=False -> x,y,z (default RING)

    Parameters
    ----------
    nside : int, scalar or array-like
      The healpix nside parameter, must be a power of 2, less than 2**30
    ipix : int, scalar or array-like
      Healpix pixel number
    nest : bool, optional
      if True, assume NESTED pixel ordering, otherwise, RING pixel ordering

    Returns
    -------
    x, y, z : floats, scalar or array-like
      The coordinates of vector corresponding to input pixels. Scalar if all input
      are scalar, array otherwise. Usual numpy broadcasting rules apply.

    See Also
    --------
    ang2pix, pix2ang, vec2pix

    Examples
    --------
    >>> import healpy as hp
    >>> hp.pix2vec(16, 1504)
    (0.99879545620517241, 0.049067674327418015, 0.0)

    >>> hp.pix2vec(16, [1440,  427])
    (array([ 0.99913157,  0.5000534 ]), array([ 0.       ,  0.5000534]), array([ 0.04166667,  0.70703125]))

    >>> hp.pix2vec([1, 2], 11)
    (array([ 0.52704628,  0.68861915]), array([-0.52704628, -0.28523539]), array([-0.66666667,  0.66666667]))
    """
    check_nside(nside)
    if nest:
        return pixlib._pix2vec_nest(nside,ipix)
    else:
        return pixlib._pix2vec_ring(nside,ipix)

def ang2vec(theta, phi):
    """ang2vec : convert angles to 3D position vector

    Parameters
    ----------
    theta : float, scalar or arry-like
      colatitude in radians measured southward from north pole (in [0,pi]). 
    phi : float, scalar or array-like
      longitude in radians measured eastward (in [0, 2*pi]). 

    Returns
    -------
    vec : float, array
      if theta and phi are vectors, the result is a 2D array with a vector per row
      otherwise, it is a 1D array of shape (3,)

    See Also
    --------
    vec2ang, rotator.dir2vec, rotator.vec2dir
    """
    check_theta_valid(theta)
    if np.any(theta < 0) or np.any(theta > np.pi):
        raise ValueError('THETA is out of range [0,pi]')
    sintheta = np.sin(theta)
    return np.array([sintheta*np.cos(phi),
                      sintheta*np.sin(phi),
                      np.cos(theta)]).T

def vec2ang(vectors):
    """vec2ang: vectors [x, y, z] -> theta[rad], phi[rad]

    Parameters
    ----------
    vectors : float, array-like
      the vector(s) to convert, shape is (3,) or (N, 3)

    Returns
    -------
    theta, phi : float, tuple of two arrays
      the colatitude and longitude in radians

    See Also
    --------
    ang2vec, rotator.vec2dir, rotator.dir2vec
    """
    vectors = vectors.reshape(-1,3)
    dnorm = np.sqrt(np.sum(np.square(vectors),axis=1))
    theta = np.arccos(vectors[:,2]/dnorm)
    phi = np.arctan2(vectors[:,1],vectors[:,0])
    phi[phi < 0] += 2*np.pi
    return theta, phi

def ring2nest(nside, ipix):
    """Convert pixel number from RING ordering to NESTED ordering.

    Parameters
    ----------
    nside : int, scalar or array-like
      the healpix nside parameter
    ipix : int, scalar or array-like
      the pixel number in RING scheme

    Returns
    -------
    ipix : int, scalar or array-like
      the pixel number in NESTED scheme

    See Also
    --------
    nest2ring, reorder
    
    Examples
    --------
    >>> import healpy as hp
    >>> hp.ring2nest(16, 1504)
    1130

    >>> hp.ring2nest(2, np.arange(10))
    array([ 3,  7, 11, 15,  2,  1,  6,  5, 10,  9])
    
    >>> hp.ring2nest([1, 2, 4, 8], 11)
    array([ 11,  13,  61, 253])
    """
    check_nside(nside)
    return pixlib._ring2nest(nside, ipix)

def nest2ring(nside, ipix):
    """Convert pixel number from NESTED ordering to RING ordering.

    Parameters
    ----------
    nside : int, scalar or array-like
      the healpix nside parameter
    ipix : int, scalar or array-like
      the pixel number in NESTED scheme

    Returns
    -------
    ipix : int, scalar or array-like
      the pixel number in RING scheme

    See Also
    --------
    ring2nest, reorder
    
    Examples
    --------
    >>> import healpy as hp
    >>> hp.nest2ring(16, 1130)
    1504

    >>> hp.nest2ring(2, np.arange(10))
    array([13,  5,  4,  0, 15,  7,  6,  1, 17,  9])
    
    >>> hp.nest2ring([1, 2, 4, 8], 11)
    array([ 11,   2,  12, 211])
    """
    check_nside(nside)
    return pixlib._nest2ring(nside, ipix)

@accept_ma
def reorder(map_in, inp=None, out=None, r2n=None, n2r=None):
    """Reorder an healpix map from RING/NESTED ordering to NESTED/RING

    Parameters
    ----------
    map_in : array-like
      the input map to reorder, accepts masked arrays
    inp, out : ``'RING'`` or ``'NESTED'``
      define the input and output ordering
    r2n : bool
      if True, reorder from RING to NESTED
    n2r : bool
      if True, reorder from NESTED to RING

    Returns
    -------
    map_out : array-like
      the reordered map, as masked array if the input was a 
      masked array

    Notes
    -----
    if ``r2n`` or ``n2r`` is defined, override ``inp`` and ``out``.

    See Also
    --------
    nest2ring, ring2nest

    Examples
    --------
    >>> import healpy as hp
    >>> hp.reorder(np.arange(48), r2n = True)
    array([13,  5,  4,  0, 15,  7,  6,  1, 17,  9,  8,  2, 19, 11, 10,  3, 28,
           20, 27, 12, 30, 22, 21, 14, 32, 24, 23, 16, 34, 26, 25, 18, 44, 37,
           36, 29, 45, 39, 38, 31, 46, 41, 40, 33, 47, 43, 42, 35])
    >>> hp.reorder(np.arange(12), n2r = True)
    array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11])
    >>> hp.reorder(hp.ma(np.arange(12)), n2r = True)
    masked_array(data = [ 0  1  2  3  4  5  6  7  8  9 10 11],
                 mask = False,
           fill_value = 999999)
    <BLANKLINE>
    >>> m = [np.arange(12.), np.arange(12.), np.arange(12.)]
    >>> m[0][2] = hp.UNSEEN
    >>> m[1][2] = hp.UNSEEN
    >>> m[2][2] = hp.UNSEEN
    >>> m = hp.ma(m)
    >>> hp.reorder(m, n2r = True)
    (masked_array(data = [0.0 1.0 -- 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0],
                 mask = [False False  True False False False False False False False False False],
           fill_value = -1.6375e+30)
    , masked_array(data = [0.0 1.0 -- 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0],
                 mask = [False False  True False False False False False False False False False],
           fill_value = -1.6375e+30)
    , masked_array(data = [0.0 1.0 -- 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0],
                 mask = [False False  True False False False False False False False False False],
           fill_value = -1.6375e+30)
    )
    """
    typ = maptype(map_in)
    if typ == 0:
        npix = len(map_in)
    else:
        npix = len(map_in[0])
    nside = npix2nside(npix)
    if nside>128:
        bunchsize = npix/24
    else:
        bunchsize = npix
    if r2n:
        inp='RING'
        out='NEST'
    if n2r:
        inp='NEST'
        out='RING'
    inp = str(inp).upper()[0:4]
    out = str(out).upper()[0:4]
    if inp not in ['RING','NEST'] or out not in ['RING','NEST']:
        raise ValueError('inp and out must be either RING or NEST')
    if typ == 0:
        mapin = [map_in]
    else:
        mapin = map_in
    mapout = []
    for m_in in mapin:
        if inp == out:
            mapout.append(m_in)
        elif inp == 'RING':
            m_out = np.zeros(npix,dtype=type(m_in[0]))
            for ibunch in range(npix//bunchsize):
                ipix_n = np.arange(ibunch*bunchsize,
                                    (ibunch+1)*bunchsize)
                ipix_r = nest2ring(nside, ipix_n)
                m_out[ipix_n] = np.asarray(m_in)[ipix_r]
            mapout.append(m_out)
        elif inp == 'NEST':
            m_out = np.zeros(npix,dtype=type(m_in[0]))
            for ibunch in range(npix//bunchsize):
                ipix_r = np.arange(ibunch*bunchsize,
                                    (ibunch+1)*bunchsize)
                ipix_n = ring2nest(nside, ipix_r)
                m_out[ipix_r] = np.asarray(m_in)[ipix_n]
            mapout.append(m_out)
    if typ == 0:
        return mapout[0]
    else:
        return mapout

def nside2npix(nside):
    """Give the number of pixel for the given nside.

    Parameters
    ----------
    nside : int
      healpix nside parameter; an exception is raised if nside is not valid
      (nside must be a power of 2, less than 2**30)

    Returns
    -------
    npix : int
      corresponding number of pixels
    
    Notes
    -----
    Raise a ValueError exception if nside is not valid.

    Examples
    --------
    >>> import healpy as hp
    >>> import numpy as np
    >>> hp.nside2npix(8)
    768

    >>> np.all([hp.nside2npix(nside) == 12 * nside**2 for nside in [2**n for n in range(12)]])
    True

    >>> hp.nside2npix(7)
    Traceback (most recent call last):
        ...
    ValueError: 7 is not a valid nside parameter (must be a power of 2, less than 2**30)
    """
    check_nside(nside)
    return 12*nside**2

def nside2resol(nside, arcmin=False):
    """Give approximate resolution for nside.

    Resolution is just the square root of the pixel area, which is a gross
    approximation given the different pixel shapes

    Parameters
    ----------
    nside : int
      healpix nside parameter, must be a power of 2, less than 2**30
    arcmin : bool
      if True, return resolution in arcmin, otherwise in radian

    Returns
    -------
    resol : float
      approximate pixel size in radians or arcmin

    Notes
    -----
    Raise a ValueError exception if nside is not valid.

    Examples
    --------
    >>> import healpy as hp
    >>> hp.nside2resol(128, arcmin = True)
    27.483891294539248

    >>> hp.nside2resol(256)
    0.0039973699529159707

    >>> hp.nside2resol(7)
    Traceback (most recent call last):
       ...
    ValueError: 7 is not a valid nside parameter (must be a power of 2, less than 2**30)
    """
    check_nside(nside)
    
    resol = np.sqrt(nside2pixarea(nside))

    if arcmin:
        resol = np.rad2deg(resol) * 60
        
    return resol


def nside2pixarea(nside, degrees=False):
    """Give pixel area given nside.

    Parameters
    ----------
    nside : int
      healpix nside parameter, must be a power of 2, less than 2**30
    degrees : bool
      if True, returns pixel area in square degrees, in square radians otherwise

    Returns
    -------
    pixarea : float
      pixel area in square radian or square degree

    Notes
    -----
    Raise a ValueError exception if nside is not valid.

    Examples
    --------
    >>> import healpy as hp
    >>> hp.nside2pixarea(128, degrees = True)
    0.2098234113027917

    >>> hp.nside2pixarea(256)
    1.5978966540475428e-05

    >>> hp.nside2pixarea(7)
    Traceback (most recent call last):
       ...
    ValueError: 7 is not a valid nside parameter (must be a power of 2, less than 2**30)
    """
    check_nside(nside)
    
    pixarea = 4*np.pi/nside2npix(nside)

    if degrees:
        pixarea = np.rad2deg(np.rad2deg(pixarea))
        
    return pixarea

def npix2nside(npix):
    """Give the nside parameter for the given number of pixels.

    Parameters
    ----------
    npix : int
      the number of pixels
    
    Returns
    -------
    nside : int
      the nside parameter corresponding to npix

    Notes
    -----
    Raise a ValueError exception if number of pixel does not correspond to
    the number of pixel of an healpix map.

    Examples
    --------
    >>> import healpy as hp
    >>> hp.npix2nside(768)
    8

    >>> np.all([hp.npix2nside(12 * nside**2) == nside for nside in [2**n for n in range(12)]])
    True

    >>> hp.npix2nside(1000)
    Traceback (most recent call last):
        ...
    ValueError: Wrong pixel number (it is not 12*nside**2)
    """
    nside = np.sqrt(npix/12.)
    if nside != np.floor(nside):
        raise ValueError("Wrong pixel number (it is not 12*nside**2)")
    nside=int(np.floor(nside))
    check_nside(nside)
    return nside

def isnsideok(nside):
    """Returns :const:`True` if nside is a valid nside parameter, :const:`False` otherwise.

    Parameters
    ----------
    nside : int, scalar or array-like
      integer value to be tested

    Returns
    -------
    ok : bool, scalar or array-like
      :const:`True` if given value is a valid nside, :const:`False` otherwise.

    Examples
    --------
    >>> import healpy as hp
    >>> hp.isnsideok(13)
    False
    
    >>> hp.isnsideok(32)
    True

    >>> hp.isnsideok([1, 2, 3, 4, 8, 16])
    array([ True,  True, False,  True,  True,  True], dtype=bool)
    """
    # we use standard bithacks from http://graphics.stanford.edu/~seander/bithacks.html#DetermineIfPowerOf2
    if hasattr(nside, '__len__'):
        if not isinstance(nside, np.ndarray):
            nside = np.asarray(nside)
        return ((nside == nside.astype(np.int)) & (0 < nside) &
                (nside <= max_nside) &
                ((nside.astype(np.int) & (nside.astype(np.int) - 1)) == 0))
    else:
        return (nside == int(nside) and 0 < nside <= max_nside and
               (int(nside) & (int(nside) - 1)) == 0)

def check_nside(nside):
    """Raises exception is nside is not valid"""
    if not np.all(isnsideok(nside)):
        raise ValueError("%s is not a valid nside parameter (must be a power of 2, less than 2**30)" % str(nside))

def isnpixok(npix):
    """Return :const:`True` if npix is a valid value for healpix map size, :const:`False` otherwise.

    Parameters
    ----------
    npix : int, scalar or array-like
      integer value to be tested

    Returns
    -------
    ok : bool, scalar or array-like
      :const:`True` if given value is a valid number of pixel, :const:`False` otherwise

    Examples
    --------
    >>> import healpy as hp
    >>> hp.isnpixok(12)
    True
    
    >>> hp.isnpixok(768)
    True

    >>> hp.isnpixok([12, 768, 1002])
    array([ True,  True, False], dtype=bool)
    """
    if hasattr(npix,'__len__'):
        nside = np.sqrt(np.asarray(npix)/12.)
        return isnsideok(nside)
    else:
        nside = np.sqrt(npix/12.)
        return isnsideok(nside)

def get_interp_val(m,theta,phi,nest=False):
    """Return the bi-linear interpolation value of a map using 4 nearest neighbours.

    Parameters
    ----------
    m : array-like
      an healpix map, accepts masked arrays
    theta, phi : float, scalar or array-like
      angular coordinates of point at which to interpolate the map
    nest : bool
      if True, the is assumed to be in NESTED ordering.

    Returns
    -------
      val : float, scalar or arry-like
        the interpolated value(s), usual numpy broadcasting rules apply.

    See Also
    --------
    get_neighbours, get_all_neighbours

    Examples
    --------
    >>> import healpy as hp
    >>> hp.get_interp_val(np.arange(12.), np.pi/2, 0)
    4.0
    >>> hp.get_interp_val(np.arange(12.), np.pi/2, np.pi/2)
    5.0
    >>> hp.get_interp_val(np.arange(12.), np.pi/2, np.pi/2 + 2*np.pi)
    5.0
    >>> hp.get_interp_val(np.arange(12.), np.linspace(0, np.pi, 10), 0)
    array([ 1.5       ,  1.5       ,  1.5       ,  2.20618428,  3.40206143,
            5.31546486,  7.94639458,  9.5       ,  9.5       ,  9.5       ])
    """
    m2=m.ravel()
    nside=npix2nside(m2.size)
    if nest:
        r=pixlib._get_interpol_nest(nside,theta,phi)
    else:
        r=pixlib._get_interpol_ring(nside,theta,phi)
    p=np.array(r[0:4])
    w=np.array(r[4:8])
    del r
    return np.sum(m2[p]*w,0)

def get_neighbours(nside,theta,phi=None,nest=False):
    """Return the 4 nearest pixels and corresponding weights.

    Parameters
    ----------
    nside : int
      the healpix nside
    theta, phi : float, scalar or array-like
      if phi is not given, theta is interpreted as pixel number,
      otherwise theta[rad],phi[rad] are angular coordinates
    nest : bool
      if ``True``, NESTED ordering, otherwise RING ordering.

    Returns
    -------
    res : tuple of length 2
      contains pixel numbers in res[0] and weights in res[1].
      Usual numpy broadcasting rules apply.

    See Also
    --------
    get_interp_val, get_all_neighbours

    Examples
    --------
    >>> import healpy as hp
    >>> hp.get_neighbours(1, 0)
    (array([0, 1, 4, 5]), array([ 1.,  0.,  0.,  0.]))

    >>> hp.get_neighbours(1, 0, 0)
    (array([1, 2, 3, 0]), array([ 0.25,  0.25,  0.25,  0.25]))

    >>> hp.get_neighbours(1, [0, np.pi/2], 0)
    (array([[ 1,  4],
           [ 2,  5],
           [ 3, 11],
           [ 0,  8]]), array([[ 0.25,  1.  ],
           [ 0.25,  0.  ],
           [ 0.25,  0.  ],
           [ 0.25,  0.  ]]))
    """
    check_nside(nside)
    if phi == None:
        theta,phi = pix2ang(nside,theta,nest=nest)
    if nest:
        r=pixlib._get_interpol_nest(nside,theta,phi)
    else:
        r=pixlib._get_interpol_ring(nside,theta,phi)
    p=np.array(r[0:4])
    w=np.array(r[4:8])
    return (p,w)

def get_all_neighbours(nside, theta, phi=None, nest=False):
    """Return the 8 nearest pixels.

    Parameters
    ----------
    nside : int
      the nside to work with
    theta, phi : scalar or array-like
      if phi is not given or None, theta is interpreted as pixel number,
      otherwise, theta[rad],phi[rad] are angular coordinates
    nest : bool
      if ``True``, pixel number will be NESTED ordering, otherwise RING ordering.

    Returns
    -------
    ipix : int, array
      pixel number of the SW, W, NW, N, NE, E, SE and S neighbours,
      shape is (8,) if input is scalar, otherwise shape is (8, N) if input is
      of length N. If a neighbor does not exist (it can be the case for W, N, E and S)
      the corresponding pixel number will be -1.

    See Also
    --------
    get_neighbours, get_interp_val

    Examples
    --------
    >>> import healpy as hp
    >>> hp.get_all_neighbours(1, 4)
    array([11,  7,  3, -1,  0,  5,  8, -1])

    >>> hp.get_all_neighbours(1, np.pi/2, np.pi/2)
    array([ 8,  4,  0, -1,  1,  6,  9, -1])
    """
    check_nside(nside)
    if phi is not None:
        theta = ang2pix(nside,theta, phi,nest=nest)
    if nest:
        r=pixlib._get_neighbors_nest(nside,theta)
    else:
        r=pixlib._get_neighbors_ring(nside,theta)
    res=np.array(r[0:8])
    return res

def max_pixrad(nside):
    """Maximum angular distance between any pixel center and its corners

    Parameters
    ----------
    nside : int
      the nside to work with

    Returns
    -------
    rads: double
       angular distance (in radians)

    Examples
    --------
    >>> '%.15f' % max_pixrad(1)
    '0.841068670567930'
    >>> '%.15f' % max_pixrad(16)
    '0.066014761432513'
    """
    check_nside(nside)
    return pixlib._max_pixrad(nside)

def fit_dipole(m, nest=False, bad=UNSEEN, gal_cut=0):
    """Fit a dipole and a monopole to the map, excluding bad pixels.

    Parameters
    ----------
    m : float, array-like
      the map to which a dipole is fitted and subtracted, accepts masked maps
    nest : bool
      if ``False`` m is assumed in RING scheme, otherwise map is NESTED
    bad : float
      bad values of pixel, default to :const:`UNSEEN`.
    gal_cut : float
      pixels at latitude in [-gal_cut;+gal_cut] degrees are not taken into account

    Returns
    -------
    res : tuple of length 2
      the monopole value in res[0] and the dipole vector (as array) in res[1]

    See Also
    --------
    remove_dipole, fit_monopole, remove_monopole
    """
    m=ma_to_array(m)
    m=np.asarray(m)
    npix = m.size
    nside = npix2nside(npix)
    if nside>128:
        bunchsize = npix/24
    else:
        bunchsize = npix
    aa = np.zeros((4,4),dtype=np.float64)
    v = np.zeros(4,dtype=np.float64)
    for ibunch in range(npix//bunchsize):
        ipix = np.arange(ibunch*bunchsize,
                          (ibunch+1)*bunchsize)
        ipix = ipix[(m.flat[ipix]!=bad) & (np.isfinite(m.flat[ipix]))]
        x,y,z = pix2vec(nside, ipix, nest)
        if gal_cut>0:
            w = (np.abs(z)>=np.sin(gal_cut*np.pi/180))
            ipix=ipix[w]
            x=x[w]
            y=y[w]
            z=z[w]
            del w
        aa[0,0] += ipix.size
        aa[1,0] += x.sum()
        aa[2,0] += y.sum()
        aa[3,0] += z.sum()
        aa[1,1] += (x**2).sum()
        aa[2,1] += (x*y).sum()
        aa[3,1] += (x*z).sum()
        aa[2,2] += (y**2).sum()
        aa[3,2] += (y*z).sum()
        aa[3,3] += (z**2).sum()
        v[0] += m.flat[ipix].sum()
        v[1] += (m.flat[ipix]*x).sum()
        v[2] += (m.flat[ipix]*y).sum()
        v[3] += (m.flat[ipix]*z).sum()
    aa[0,1] = aa[1,0]
    aa[0,2] = aa[2,0]
    aa[0,3] = aa[3,0]
    aa[1,2] = aa[2,1]
    aa[1,3] = aa[3,1]
    aa[2,3] = aa[3,2]
    res = np.dot(np.linalg.inv(aa),v)
    mono = res[0]
    dipole = res[1:4]
    return mono,dipole

def remove_dipole(m,nest=False,bad=UNSEEN,gal_cut=0,fitval=False,
                  copy=True,verbose=True):
    """Fit and subtract the dipole and the monopole from the given map m.

    Parameters
    ----------
    m : float, array-like
      the map to which a dipole is fitted and subtracted, accepts masked arrays
    nest : bool
      if ``False`` m is assumed in RING scheme, otherwise map is NESTED
    bad : float
      bad values of pixel, default to :const:`UNSEEN`.
    gal_cut : float
      pixels at latitude in [-gal_cut;+gal_cut] are not taken into account
    fitval : bool
      whether to return or not the fitted values of monopole and dipole
    copy : bool
      whether to modify input map or not (by default, make a copy)
    verbose : bool
      print values of monopole and dipole

    Returns
    -------
    res : array or tuple of length 3
      if fitval is False, returns map with monopole and dipole subtracted,
      otherwise, returns map (array, in res[0]), monopole (float, in res[1]), 
      dipole_vector (array, in res[2])

    See Also
    --------
    fit_dipole, fit_monopole, remove_monopole
    """
    input_ma = is_ma(m)
    m=ma_to_array(m)
    m=np.array(m,copy=copy)
    npix = m.size
    nside = npix2nside(npix)
    if nside>128:
        bunchsize = npix/24
    else:
        bunchsize = npix
    mono,dipole = fit_dipole(m,nest=nest,bad=bad,gal_cut=gal_cut)
    for ibunch in range(npix//bunchsize):
        ipix = np.arange(ibunch*bunchsize,
                          (ibunch+1)*bunchsize)
        ipix = ipix[(m.flat[ipix]!=bad) & (np.isfinite(m.flat[ipix]))]
        x,y,z = pix2vec(nside, ipix, nest)
        m.flat[ipix] -= (dipole[0]*x)
        m.flat[ipix] -= dipole[1]*y
        m.flat[ipix] -= dipole[2]*z
        m.flat[ipix] -= mono
    if verbose:
        import rotator as R
        lon,lat = R.vec2dir(dipole,lonlat=True)
        amp = np.sqrt((dipole**2).sum())
        print(
            'monopole: {0:g}  dipole: lon: {1:g}, lat: {2:g}, amp: {3:g}'
            .format(mono, lon, lat, amp))
    if is_ma:
        m = ma(m)
    if fitval:
        return m,mono,dipole
    else:
        return m

def fit_monopole(m,nest=False,bad=pixlib.UNSEEN,gal_cut=0):
    """Fit a monopole to the map, excluding unseen pixels.

    Parameters
    ----------
    m : float, array-like
      the map to which a dipole is fitted and subtracted, accepts masked arrays
    nest : bool
      if ``False`` m is assumed in RING scheme, otherwise map is NESTED
    bad : float
      bad values of pixel, default to :const:`UNSEEN`.
    gal_cut : float
      pixels at latitude in [-gal_cut;+gal_cut] degrees are not taken into account

    Returns
    -------
    res: float
      fitted monopole value

    See Also
    --------
    fit_dipole, remove_monopole, remove_monopole
    """
    m=ma_to_array(m)
    m=np.asarray(m)
    npix=m.size
    nside = npix2nside(npix)
    if nside>128:
        bunchsize=npix/24
    else:
        bunchsize=npix
    aa = v = 0.0
    for ibunch in range(npix//bunchsize):
        ipix = np.arange(ibunch*bunchsize,
                          (ibunch+1)*bunchsize)
        ipix = ipix[(m.flat[ipix]!=bad) & (np.isfinite(m.flat[ipix]))]
        x,y,z = pix2vec(nside, ipix, nest)
        if gal_cut>0:
            w = (np.abs(z)>=np.sin(gal_cut*np.pi/180))
            ipix=ipix[w]
            x=x[w]
            y=y[w]
            z=z[w]
            del w
        aa += ipix.size
        v += m.flat[ipix].sum()
    mono = v/aa
    return mono

def remove_monopole(m,nest=False,bad=pixlib.UNSEEN,gal_cut=0,fitval=False,
                    copy=True,verbose=True):
    """Fit and subtract the monopole from the given map m.

    Parameters
    ----------
    m : float, array-like
      the map to which a monopole is fitted and subtracted
    nest : bool
      if ``False`` m is assumed in RING scheme, otherwise map is NESTED
    bad : float
      bad values of pixel, default to :const:`UNSEEN`.
    gal_cut : float
      pixels at latitude in [-gal_cut;+gal_cut] are not taken into account
    fitval : bool
      whether to return or not the fitted value of monopole
    copy : bool
      whether to modify input map or not (by default, make a copy)
    verbose: bool
      whether to print values of monopole

    Returns
    -------
    res : array or tuple of length 3
      if fitval is False, returns map with monopole subtracted,
      otherwise, returns map (array, in res[0]) and monopole (float, in res[1])

    See Also
    --------
    fit_dipole, fit_monopole, remove_dipole
    """
    input_ma = is_ma(m)
    m= ma_to_array(m)
    m=np.array(m,copy=copy)
    npix = m.size
    nside = npix2nside(npix)
    if nside>128:
        bunchsize = npix/24
    else:
        bunchsize = npix
    mono = fit_monopole(m,nest=nest,bad=bad,gal_cut=gal_cut)
    for ibunch in range(npix//bunchsize):
        ipix = np.arange(ibunch*bunchsize,
                          (ibunch+1)*bunchsize)
        ipix = ipix[(m.flat[ipix]!=bad) & (np.isfinite(m.flat[ipix]))]
        x,y,z = pix2vec(nside, ipix, nest)
        m.flat[ipix] -= mono
    if verbose:
        print('monopole: {0:g}'.format(mono))
    if input_ma:
        m = ma(m)
    if fitval:
        return m,mono
    else:
        return m

def get_map_size(m):
    """Returns the npix of a given map (implicit or explicit pixelization).

     If map is a dict type, assumes explicit pixelization: use nside key if present, or use 
     nside attribute if present, otherwise use the smallest valid npix given the maximum key value.
     otherwise assumes implicit pixelization and returns len(m).

     Parameters
     ----------
     m : array-like or dict-like
       a map with implicit (array-like) or explicit (dict-like) pixellization

     Returns
     -------
     npix : int
       a valid number of pixel

     Notes
     -----
     In implicit pixellization, raise a ValueError exception if the size of the input
     is not a valid pixel number.

     Examples
     --------
    >>> import healpy as hp
     >>> m = {0: 1, 1: 1, 2: 1, 'nside': 1}
     >>> print(hp.get_map_size(m))
     12

     >>> m = {0: 1, 767: 1}
     >>> print(hp.get_map_size(m))
     768

     >>> print(hp.get_map_size(np.zeros(12 * 8 ** 2)))
     768
    """
    if isinstance(m, dict):
        if 'nside' in m:
            return nside2npix(m['nside'])
        elif hasattr(ma, 'nside'):
            return nside2npix(m.nside)
        else:
            nside = get_min_valid_nside(max(m.keys())+1)
            return nside2npix(nside)
    else:
        if isnpixok(len(m)):
            return len(m)
        else:
            raise ValueError("Wrong pixel number (it is not 12*nside**2)")

def get_min_valid_nside(npix):
    """Returns the minimum acceptable nside so that npix <= nside2npix(nside).

    Parameters
    ----------
    npix : int
      a minimal number of pixel

    Returns
    -------
    nside : int
      a valid healpix nside so that 12 * nside ** 2 >= npix

    Examples
    --------
    >>> import healpy as hp
    >>> hp.pixelfunc.get_min_valid_nside(355)
    8
    >>> hp.pixelfunc.get_min_valid_nside(768)
    8
    """
    order = 0.5 * np.log2(npix / 12.)
    return 2**int(np.ceil(order))


def get_nside(m):
    """Return the nside of the given map.

    Parameters
    ----------
    m : sequence
      the map to get the nside from.

    Returns
    -------
    nside : int
      the healpix nside parameter of the map (or sequence of maps)

    Notes
    -----
    If the input is a sequence of maps, all of them must have same size.
    If the input is not a valid map (not a sequence, unvalid number of pixels),
    a TypeError exception is raised.
    """
    typ = maptype(m)
    if typ == 0:
        return npix2nside(len(m))
    else:
        return npix2nside(len(m[0]))

@accept_ma
def ud_grade(map_in,nside_out,pess=False,order_in='RING',order_out=None,
             power=None, dtype=None):
    """Upgrade or degrade resolution of a map (or list of maps).

    in degrading the resolution, ud_grade sets the value of the superpixel
    as the mean of the children pixels.

    Parameters
    ----------
    map_in : array-like or sequence of array-like
      the input map(s) (if a sequence of maps, all must have same size)
    nside_out : int
      the desired nside of the output map(s)
    pess : bool
      if ``True``, in degrading, reject pixels which contains
      a bad sub_pixel. Otherwise, estimate average with good pixels
    order_in, order_out : str
      pixel ordering of input and output ('RING' or 'NESTED')
    power : float
      if non-zero, divide the result by (nside_in/nside_out)**power
      Examples:
      power=-2 keeps the sum of the map invariant (useful for hitmaps),
      power=2 divides the mean by another factor of (nside_in/nside_out)**2
      (useful for variance maps)
    dtype : type
      the type of the output map

    Returns
    -------
    map_out : array-like or sequence of array-like
      the upgraded or degraded map(s)

    Examples
    --------
    >>> import healpy as hp
    >>> hp.ud_grade(np.arange(48.), 1)
    array([  5.5 ,   7.25,   9.  ,  10.75,  21.75,  21.75,  23.75,  25.75,
            36.5 ,  38.25,  40.  ,  41.75])
    """
    check_nside(nside_out)
    typ = maptype(map_in)
    if typ<0:
        raise TypeError('Invalid map')
    if typ == 0:
        m_in = [map_in]
    else:
        m_in = map_in
    mapout = []
    if order_out is None: order_out = order_in
    for m in m_in:
        if str(order_in).upper()[0:4] == 'RING':
            m = reorder(m,r2n=True)
        mout = _ud_grade_core(m,nside_out,pess=pess, power=power, dtype=dtype)
        if str(order_out).upper()[0:4] == 'RING':
            mout = reorder(mout,n2r=True)
        mapout.append(mout)
    if typ == 0:
        return mapout[0]
    else:
        return mapout

def _ud_grade_core(m,nside_out,pess=False,power=None, dtype=None):
    """Internal routine used by ud_grade. It assumes that the map is NESTED
    and single (not a list of maps)
    """
    nside_in = get_nside(m)
    if dtype:
        type_out = dtype
    else:
        type_out = type(m[0])
    check_nside(nside_out)
    npix_in = nside2npix(nside_in)
    npix_out = nside2npix(nside_out)

    if power:
        power = float(power)
        ratio = (float(nside_out)/float(nside_in))**power
    else:
        ratio = 1
    
    if nside_out > nside_in:
        rat2 = npix_out/npix_in
        fact = np.ones(rat2, dtype=type_out)*ratio
        map_out = np.outer(m,fact).reshape(npix_out)
    elif nside_out < nside_in:
        rat2 = npix_in/npix_out
        bads = (mask_bad(m) | (~np.isfinite(m)))
        hit = np.ones(npix_in,dtype=np.int16)
        hit[bads] = 0
        m[bads] = 0
        mr = m.reshape(npix_out,rat2)
        hit = hit.reshape(npix_out,rat2)
        map_out = mr.sum(axis=1).astype(type_out)
        nhit = hit.sum(axis=1)
        if pess:
            badout = np.where(nhit != rat2)
        else:
            badout = np.where(nhit == 0)
        if power:
            nhit /= ratio
        map_out[nhit!=0] /= nhit[nhit!=0] 
        try:
            map_out[badout] = UNSEEN
            m[bads] = UNSEEN
        except OverflowError:
            pass
    else:
        map_out = m
    return map_out.astype(type_out)