/usr/lib/python3/dist-packages/healpy/projaxes.py is in python3-healpy 1.8.1-1.1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 | #
# This file is part of Healpy.
#
# Healpy is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# Healpy is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with Healpy; if not, write to the Free Software
# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
#
# For more information about Healpy, see http://code.google.com/p/healpy
#
from . import projector as P
from . import rotator as R
from . import pixelfunc
import matplotlib
from matplotlib import axes,ticker,colors,cm,lines,cbook,figure
import numpy as np
from ._healpy_pixel_lib import UNSEEN
pi = np.pi
dtor = pi/180.
class SphericalProjAxes(axes.Axes):
"""Define a special Axes to take care of spherical projection.
Parameters
----------
projection : a SphericalProj class or a class derived from it.
type of projection
rot : list or string
define rotation. See rotator.
coord : list or string
define coordinate system. See rotator.
coordprec : number of digit after floating point for coordinates display.
format : format string for value display.
Notes
-----
Other keywords from Axes (see Axes).
"""
def __init__(self, ProjClass, *args, **kwds):
if not issubclass(ProjClass, P.SphericalProj):
raise TypeError("First argument must be a SphericalProj class "
"(or derived from)")
self.proj = ProjClass(rot = kwds.pop('rot',None),
coord = kwds.pop('coord',None),
flipconv = kwds.pop('flipconv',None),
**kwds.pop('arrayinfo', {}))
kwds.setdefault('format','%g')
kwds.setdefault('coordprec',2)
kwds['aspect'] = 'equal'
super(SphericalProjAxes,self).__init__(*args, **kwds)
self.axis('off')
self.set_autoscale_on(False)
xmin,xmax,ymin,ymax = self.proj.get_extent()
self.set_xlim(xmin,xmax)
self.set_ylim(ymin,ymax)
dx,dy = self.proj.ang2xy(pi/2.,1.*dtor,direct=True)
self._segment_threshold = 16.*np.sqrt(dx**2+dy**2)
self._segment_step_rad = 0.1*pi/180
self._do_border = True
self._gratdef = {}
self._gratdef['local'] = False
self._gratdef['dpar'] = 30.
def set_format(self,f):
"""Set the format string for value display
"""
self._format=f
return f
def set_coordprec(self,n):
"""Set the number of digits after floating point for coord display.
"""
self._coordprec = n
def format_coord(self,x,y):
"""Format the coordinate for display in status bar. Take projection
into account.
"""
format=self._format+' at '
pos=self.get_lonlat(x,y)
if pos is None or np.isnan(pos).any(): return ''
lon,lat = np.around(pos,decimals=self._coordprec)
val = self.get_value(x,y)
if val is None:
format = '%s'
val = ''
elif type(val) is str: format='%s @ '
coordsys = self.proj.coordsysstr
if coordsys != '':
res=(format+'(%g, %g) in %s')%(val,lon,lat,
coordsys[0:3])
else:
res=(format+'lon=%g, lat=%g')%(val,lon,lat)
return res
def get_lonlat(self,x,y):
"""Get the coordinate in the coord system of the image, in lon/lat in deg.
"""
lon,lat = self.proj.xy2ang(x,y,lonlat=True)
return lon,lat
def get_value(self,x,y):
"""Get the value of the map at position x,y
"""
if len(self.get_images()) < 1:
return None
im = self.get_images()[-1]
arr=im.get_array()
i,j = self.proj.xy2ij(x,y)
if i is None or j is None:
return None
elif arr.mask is not np.ma.nomask and arr.mask[i,j]:
return 'UNSEEN'
else:
return arr[i,j]
def projmap(self,map,vec2pix_func,vmin=None,vmax=None,badval=UNSEEN,
cmap=None,norm=None,rot=None,coord=None,**kwds):
"""Project a map on the SphericalProjAxes.
Parameters
----------
map : array-like
The map to project.
vec2pix_func : function
The function describing the pixelisation.
vmin, vmax : float, scalars
min and max value to use instead of min max of the map
badval : float
The value of the bad pixels
cmap : a color map
The colormap to use (see matplotlib.cm)
rot : sequence
In the form (lon, lat, psi) (unit: degree):the center of the map is
at (lon, lat) and rotated by angle psi around that direction.
coord : {'G', 'E', 'C', None}
The coordinate system of the map ('G','E' or 'C'), rotate
the map if different from the axes coord syst.
Notes
-----
Other keywords are transmitted to :func:`matplotlib.Axes.imshow`
"""
img = self.proj.projmap(map,vec2pix_func,rot=rot,coord=coord)
w = ~( np.isnan(img) |
np.isinf(img) |
pixelfunc.mask_bad(img, badval = badval) )
try:
if vmin is None: vmin = img[w].min()
except ValueError:
vmin = 0.
try:
if vmax is None: vmax = img[w].max()
except ValueError:
vmax = 0.
if vmin > vmax:
vmin = vmax
if vmin == vmax:
vmin -= 1.
vmax += 1.
cm,nn = get_color_table(vmin,vmax,img[w],cmap=cmap,norm=norm)
ext = self.proj.get_extent()
img = np.ma.masked_values(img, badval)
aximg = self.imshow(img,extent = ext,cmap=cm,norm=nn,
interpolation='nearest',origin='lower',
vmin=vmin,vmax=vmax,**kwds)
xmin,xmax,ymin,ymax = self.proj.get_extent()
self.set_xlim(xmin,xmax)
self.set_ylim(ymin,ymax)
return img
def projplot(self,*args,**kwds):
"""projplot is a wrapper around :func:`matplotlib.Axes.plot` to take into account the
spherical projection.
You can call this function as::
projplot(theta, phi) # plot a line going through points at coord (theta, phi)
projplot(theta, phi, 'bo') # plot 'o' in blue at coord (theta, phi)
projplot(thetaphi) # plot a line going through points at coord (thetaphi[0], thetaphi[1])
projplot(thetaphi, 'bx') # idem but with blue 'x'
Parameters
----------
theta, phi : float, array-like
Coordinates of point to plot. Can be put into one 2-d array, first line is
then *theta* and second line is *phi*. See *lonlat* parameter for unit.
fmt : str
A format string (see :func:`matplotlib.Axes.plot` for details)
lonlat : bool, optional
If True, theta and phi are interpreted as longitude and latitude
in degree, otherwise, as colatitude and longitude in radian
coord : {'E', 'G', 'C', None}
The coordinate system of the points, only used if the coordinate
coordinate system of the Axes has been defined and in this
case, a rotation is performed
rot : None or sequence
rotation to be applied =(lon, lat, psi) : lon, lat will be position of the
new Z axis, and psi is rotation around this axis, all in degree.
if None, no rotation is performed
direct : bool
if True, the rotation to center the projection is not
taken into account
Notes
-----
Other keywords are passed to :func:`matplotlib.Axes.plot`.
See Also
--------
projscatter, projtext
"""
fmt = None
if len(args) < 1:
raise ValueError("No argument given")
if len(args) == 1:
theta,phi = np.asarray(args[0])
elif len(args) == 2:
if type(args[1]) is str:
fmt=args[1]
theta,phi = np.asarray(args[0])
else:
theta,phi = np.asarray(args[0]),np.asarray(args[1])
elif len(args) == 3:
if type(args[2]) is not str:
raise TypeError("Third argument must be a string")
else:
theta,phi = np.asarray(args[0]),np.asarray(args[1])
fmt = args[2]
else:
raise TypeError("Three args maximum")
rot=kwds.pop('rot',None)
if rot is not None:
rot = np.array(np.atleast_1d(rot),copy=1)
rot.resize(3)
rot[1] = rot[1]-90.
coord=self.proj.mkcoord(kwds.pop('coord',None))[::-1]
lonlat=kwds.pop('lonlat',False)
vec = R.dir2vec(theta,phi,lonlat=lonlat)
vec = (R.Rotator(rot=rot,coord=coord,eulertype='Y')).I(vec)
x,y = self.proj.vec2xy(vec,direct=kwds.pop('direct',False))
x,y = self._make_segment(x,y,threshold=kwds.pop('threshold',
self._segment_threshold))
thelines = []
for xx,yy in zip(x,y):
if fmt is not None:
linestyle, marker, color = axes._process_plot_format(fmt)
kwds.setdefault('linestyle',linestyle)
kwds.setdefault('marker',marker)
if color is not None: kwds.setdefault('color',color)
l = lines.Line2D(xx,yy,**kwds)
self.add_line(l)
thelines.append(l)
return thelines
def projscatter(self,theta, phi=None,*args,**kwds):
"""Projscatter is a wrapper around :func:`matplotlib.Axes.scatter` to take into account the
spherical projection.
You can call this function as::
projscatter(theta, phi) # plot points at coord (theta, phi)
projplot(thetaphi) # plot points at coord (thetaphi[0], thetaphi[1])
Parameters
----------
theta, phi : float, array-like
Coordinates of point to plot. Can be put into one 2-d array, first line is
then *theta* and second line is *phi*. See *lonlat* parameter for unit.
lonlat : bool, optional
If True, theta and phi are interpreted as longitude and latitude
in degree, otherwise, as colatitude and longitude in radian
coord : {'E', 'G', 'C', None}, optional
The coordinate system of the points, only used if the coordinate
coordinate system of the axes has been defined and in this
case, a rotation is performed
rot : None or sequence, optional
rotation to be applied =(lon, lat, psi) : lon, lat will be position of the
new Z axis, and psi is rotation around this axis, all in degree.
if None, no rotation is performed
direct : bool, optional
if True, the rotation to center the projection is not
taken into account
Notes
-----
Other keywords are passed to :func:`matplotlib.Axes.plot`.
See Also
--------
projplot, projtext
"""
save_input_data = hasattr(self.figure, 'zoomtool')
if save_input_data:
input_data = (theta, phi, args, kwds.copy())
if phi is None:
theta,phi = np.asarray(theta)
else:
theta, phi = np.asarray(theta), np.asarray(phi)
rot=kwds.pop('rot',None)
if rot is not None:
rot = np.array(np.atleast_1d(rot),copy=1)
rot.resize(3)
rot[1] = rot[1]-90.
coord=self.proj.mkcoord(kwds.pop('coord',None))[::-1]
lonlat=kwds.pop('lonlat',False)
vec = R.dir2vec(theta,phi,lonlat=lonlat)
vec = (R.Rotator(rot=rot,coord=coord,eulertype='Y')).I(vec)
x,y = self.proj.vec2xy(vec,direct=kwds.pop('direct',False))
s = self.scatter(x, y, *args, **kwds)
if save_input_data:
if not hasattr(self, '_scatter_data'):
self._scatter_data = []
self._scatter_data.append((s, input_data))
return s
def projtext(self, theta, phi, s, **kwds):
"""Projtext is a wrapper around :func:`matplotlib.Axes.text` to take into account the
spherical projection.
Parameters
----------
theta, phi : float, array-like
Coordinates of point to plot. Can be put into one 2-d array, first line is
then *theta* and second line is *phi*. See *lonlat* parameter for unit.
text : str
The text to be displayed.
lonlat : bool, optional
If True, theta and phi are interpreted as longitude and latitude
in degree, otherwise, as colatitude and longitude in radian
coord : {'E', 'G', 'C', None}, optional
The coordinate system of the points, only used if the coordinate
coordinate system of the axes has been defined and in this
case, a rotation is performed
rot : None or sequence, optional
rotation to be applied =(lon, lat, psi) : lon, lat will be position of the
new Z axis, and psi is rotation around this axis, all in degree.
if None, no rotation is performed
direct : bool, optional
if True, the rotation to center the projection is not
taken into account
Notes
-----
Other keywords are passed to :func:`matplotlib.Axes.text`.
See Also
--------
projplot, projscatter
"""
if phi is None:
theta,phi = np.asarray(theta)
else:
theta, phi = np.asarray(theta), np.asarray(phi)
rot=kwds.pop('rot',None)
if rot is not None:
rot = np.array(np.atleast_1d(rot),copy=1)
rot.resize(3)
rot[1] = rot[1]-90.
coord=self.proj.mkcoord(kwds.pop('coord',None))[::-1]
lonlat=kwds.pop('lonlat',False)
vec = R.dir2vec(theta,phi,lonlat=lonlat)
vec = (R.Rotator(rot=rot,coord=coord,eulertype='Y')).I(vec)
x,y = self.proj.vec2xy(vec,direct=kwds.pop('direct',False))
return self.text(x,y,s,**kwds)
def _make_segment(self,x,y,threshold=None):
if threshold is None:
threshold = self._segment_threshold
x,y=np.atleast_1d(x),np.atleast_1d(y)
d2 = np.sqrt((np.roll(x,1)-x)**2+(np.roll(y,1)-y)**2)
w=np.where(d2 > threshold)[0]
#w=w[w!=0]
xx=[]
yy=[]
if len(w) == 1:
x=np.roll(x,-w[0])
y=np.roll(y,-w[0])
xx.append(x)
yy.append(y)
elif len(w) >= 2:
xx.append(x[0:w[0]])
yy.append(y[0:w[0]])
for i in xrange(len(w)-1):
xx.append(x[w[i]:w[i+1]])
yy.append(y[w[i]:w[i+1]])
xx.append(x[w[-1]:])
yy.append(y[w[-1]:])
else:
xx.append(x)
yy.append(y)
return xx,yy
def get_parallel_interval(self,vx,vy=None,vz=None):
"""Get the min and max value of theta of the parallel to cover the
field of view.
Input:
- the normalized vector of the direction of the center of the
projection, in the reference frame of the graticule.
Return:
- vmin,vmax : between 0 and pi, vmin<vmax, the interval of theta
for the parallels crossing the field of view
"""
if vy is None and vz is None:
vx,vy,vz = vx
elif vy is None or vz is None:
raise ValueError("Both vy and vz must be given or both not given")
a = np.arccos(vz)
fov = self.proj.get_fov()
vmin = max(0., a-fov/2.)
vmax = min(pi, a+fov/2.)
return vmin,vmax
def get_meridian_interval(self, vx, vy=None, vz=None):
"""Get the min and max value of phi of the meridians to cover the field
of view.
Input:
- the normalized vector of the direction of the center of the
projection, in the reference frame of the graticule.
Return:
- vmin,vmax : the interval of phi for the
meridians crossing the field of view.
"""
if vy is None and vz is None:
vx,vy,vz = vx
elif vy is None or vz is None:
raise ValueError("Both vy and vz must be given or both not given")
fov = self.proj.get_fov()
th = np.arccos(vz)
if th <= fov/2.: # test whether north pole is visible
return -np.pi,np.pi
if abs(th-pi) <= fov/2.: # test whether south pole is visible
return -np.pi,np.pi
sth = np.sin(th)
phi0 = np.arctan2(vy,vx)
return phi0 - fov/sth/2., phi0 + fov/sth/2.
def graticule(self,dpar=None,dmer=None,coord=None,local=None,verbose=True,**kwds):
"""Draw a graticule.
Input:
- dpar: angular separation between parallels in degree
- dmer: angular separation between meridians in degree
- coord: coordinate system of the graticule ('G', 'E' or 'C')
- local: if True, no rotation performed at all
"""
gratargs = (dpar,dmer,coord,local)
gratkwds = kwds
if dpar is None: dpar=self._gratdef['dpar']
if local is None: local=self._gratdef['local']
if dmer is None: dmer = dpar
dpar = abs(dpar)*dtor
dmer = abs(dmer)*dtor
if not local:
vec = R.dir2vec(self.proj.get_center())
vec0 = R.Rotator(coord=self.proj.mkcoord(coord=coord)).I(vec)
else:
vec = (1,0,0)
vec0 = (1,0,0)
u_pmin,u_pmax = kwds.pop('pmax',None),kwds.pop('pmin',None)
u_mmin,u_mmax = kwds.pop('mmin',None),kwds.pop('mmax',None)
if u_pmin: u_pmin = (pi/2.-u_pmin*dtor)%pi
if u_pmax: u_pmax = (pi/2.-u_pmax*dtor)%pi
if u_mmin: u_mmin = ( ((u_mmin+180.)%360)-180)*dtor
if u_mmax: u_mmax = ( ((u_mmax+180.)%360)-180)*dtor
pmin,pmax = self.get_parallel_interval(vec0)
mmin,mmax = self.get_meridian_interval(vec0)
if u_pmin: pmin = u_pmin
if u_pmax: pmax = u_pmax
if u_mmin: mmin = u_mmin
if u_mmax: mmax = u_pmax
if verbose:
print('{0} {1} {2} {3}'.format(
pmin/dtor, pmax/dtor, mmin/dtor, mmax/dtor))
if not kwds.pop('force',False):
dpar,dmer = self._get_interv_graticule(pmin,pmax,dpar,
mmin,mmax,dmer,
verbose=verbose)
theta_list = np.around(np.arange(pmin,pmax+0.5*dpar,dpar)/dpar)*dpar
phi_list = np.around(np.arange(mmin,mmax+0.5*dmer,dmer)/dmer)*dmer
theta = np.arange(pmin,pmax,min((pmax-pmin)/100.,
self._segment_step_rad))
phi = np.arange(mmin,mmax,min((mmax-mmin)/100.,
self._segment_step_rad))
equator = False
gratlines = []
kwds.setdefault('lw',1)
kwds.setdefault('color','k')
for t in theta_list:
if abs(t-pi/2.)<1.e-10:
fmt = '-'
equator=True
elif abs(t) < 1.e-10: # special case: north pole
t = 1.e-10
fmt = '-'
elif abs(t-pi) < 1.e-10: # special case: south pole
t = pi-1.e-10
fmt = '-'
else:
fmt =':'
gratlines.append(self.projplot(phi*0.+t, phi,fmt,
coord=coord,
direct=local,**kwds))
if not equator and pmin <= pi/2. and pi/2 <= pmax:
gratlines.append(self.projplot(phi*0.+pi/2., phi,'-',
coord=coord,
direct=local,**kwds))
for p in phi_list:
if abs(p)<1.e-10: fmt = '-'
else: fmt =':'
gratlines.append(self.projplot(theta, theta*0.+p,fmt,
coord=coord,
direct=local,**kwds))
# Now the borders (only useful for full sky projection)
if hasattr(self,'_do_border') and self._do_border:
theta = np.arange(0,181)*dtor
gratlines.append(self.projplot(theta, theta*0-pi,'-k',
lw=1,direct=True))
gratlines.append(self.projplot(theta, theta*0+0.9999*pi,'-k',
lw=1,direct=True))
phi = np.arange(-180,180)*dtor
gratlines.append(self.projplot(phi*0+1.e-10, phi,'-k',
lw=1,direct=True))
gratlines.append(self.projplot(phi*0+pi-1.e-10, phi,'-k',
lw=1,direct=True))
if hasattr(self,'_graticules'):
self._graticules.append((gratargs,gratkwds,gratlines))
else:
self._graticules = [(gratargs,gratkwds,gratlines)]
return dpar,dmer
def delgraticules(self):
"""Delete all graticules previously created on the Axes.
"""
if hasattr(self,'_graticules'):
for dum1,dum2,g in self._graticules:
for gl in g:
for l in gl:
if l in self.lines:
self.lines.remove(l)
else:
print('line not in lines')
del self._graticules
def _get_interv_graticule(self,pmin,pmax,dpar,mmin,mmax,dmer,verbose=True):
def set_prec(d,n,nn=2):
arcmin=False
if d/n < 1.:
d *= 60
arcmin = True
nn = 1
x = d/n
y = nn*x
ex = np.floor(np.log10(y))
z = np.around(y/10**ex)*10**ex/nn
if arcmin:
z = 1./np.around(60./z)
return z
max_n_par = 18
max_n_mer = 36
n_par = (pmax-pmin)/dpar
n_mer = (mmax-mmin)/dmer
if n_par > max_n_par:
dpar = set_prec((pmax-pmin)/dtor,max_n_par/2)*dtor
if n_mer > max_n_mer:
dmer = set_prec((mmax-mmin)/dtor,max_n_mer/2,nn=1)*dtor
if dmer/dpar < 0.2 or dmer/dpar > 5.:
dmer = dpar = max(dmer,dpar)
vdeg = np.floor(np.around(dpar/dtor,10))
varcmin = (dpar/dtor-vdeg)*60.
if verbose: print("The interval between parallels is {0:d} deg {1:.2f}'.".format(vdeg,varcmin))
vdeg = np.floor(np.around(dmer/dtor,10))
varcmin = (dmer/dtor-vdeg)*60.
if verbose: print("The interval between meridians is {0:d} deg {1:.2f}'.".format(vdeg,varcmin))
return dpar,dmer
class GnomonicAxes(SphericalProjAxes):
"""Define a gnomonic Axes to handle gnomonic projection.
Input:
- rot=, coord= : define rotation and coordinate system. See rotator.
- coordprec= : number of digit after floating point for coordinates display.
- format= : format string for value display.
Other keywords from Axes (see Axes).
"""
def __init__(self,*args,**kwds):
kwds.setdefault('coordprec',3)
super(GnomonicAxes,self).__init__(P.GnomonicProj, *args,**kwds)
self._do_border = False
self._gratdef['local'] = True
self._gratdef['dpar'] = 1.
def projmap(self,map,vec2pix_func,xsize=200,ysize=None,reso=1.5,**kwds):
self.proj.set_proj_plane_info(xsize=xsize,ysize=ysize,reso=reso)
return super(GnomonicAxes,self).projmap(map,vec2pix_func,**kwds)
class HpxGnomonicAxes(GnomonicAxes):
def projmap(self,map,nest=False,**kwds):
nside = pixelfunc.npix2nside(pixelfunc.get_map_size(map))
f = lambda x,y,z: pixelfunc.vec2pix(nside,x,y,z,nest=nest)
xsize = kwds.pop('xsize',200)
ysize = kwds.pop('ysize',None)
reso = kwds.pop('reso',1.5)
return super(HpxGnomonicAxes,self).projmap(map,f,xsize=xsize,
ysize=ysize,reso=reso,**kwds)
class MollweideAxes(SphericalProjAxes):
"""Define a mollweide Axes to handle mollweide projection.
Input:
- rot=, coord= : define rotation and coordinate system. See rotator.
- coordprec= : number of digit after floating point for coordinates display.
- format= : format string for value display.
Other keywords from Axes (see Axes).
"""
def __init__(self,*args,**kwds):
kwds.setdefault('coordprec',2)
super(MollweideAxes,self).__init__(P.MollweideProj, *args,**kwds)
self.set_xlim(-2.01,2.01)
self.set_ylim(-1.01,1.01)
def projmap(self,map,vec2pix_func,xsize=800,**kwds):
self.proj.set_proj_plane_info(xsize=xsize)
img = super(MollweideAxes,self).projmap(map,vec2pix_func,**kwds)
self.set_xlim(-2.01,2.01)
self.set_ylim(-1.01,1.01)
return img
class HpxMollweideAxes(MollweideAxes):
def projmap(self,map,nest=False,**kwds):
nside = pixelfunc.npix2nside(pixelfunc.get_map_size(map))
f = lambda x,y,z: pixelfunc.vec2pix(nside,x,y,z,nest=nest)
return super(HpxMollweideAxes,self).projmap(map,f,**kwds)
class CartesianAxes(SphericalProjAxes):
"""Define a cylindrical Axes to handle cylindrical projection.
"""
def __init__(self,*args,**kwds):
kwds.setdefault('coordprec',2)
super(CartesianAxes,self).__init__(P.CartesianProj, *args, **kwds)
self._segment_threshold = 180
self._segment_step_rad = 0.1*pi/180
self._do_border = True
def projmap(self,map,vec2pix_func,xsize=800,ysize=None,lonra=None,latra=None,**kwds):
self.proj.set_proj_plane_info(xsize=xsize,ysize=ysize,lonra=lonra,latra=latra)
return super(CartesianAxes,self).projmap(map,vec2pix_func,**kwds)
class HpxCartesianAxes(CartesianAxes):
def projmap(self,map,nest=False,**kwds):
nside = pixelfunc.npix2nside(pixelfunc.get_map_size(map))
f = lambda x,y,z: pixelfunc.vec2pix(nside,x,y,z,nest=nest)
return super(HpxCartesianAxes,self).projmap(map,f,**kwds)
class OrthographicAxes(SphericalProjAxes):
"""Define an orthographic Axes to handle orthographic projection.
Input:
- rot=, coord= : define rotation and coordinate system. See rotator.
- coordprec= : num of digits after floating point for coordinates display.
- format= : format string for value display.
Other keywords from Axes (see Axes).
"""
def __init__(self,*args,**kwds):
kwds.setdefault('coordprec',2)
super(OrthographicAxes,self).__init__(P.OrthographicProj, *args,**kwds)
self._segment_threshold = 0.01
self._do_border = False
def projmap(self,map,vec2pix_func,xsize=800,half_sky=False,**kwds):
self.proj.set_proj_plane_info(xsize=xsize,half_sky=half_sky)
img = super(OrthographicAxes,self).projmap(map,vec2pix_func,**kwds)
if half_sky: ratio = 1.01
else: ratio = 2.01
self.set_xlim(-ratio,ratio)
self.set_ylim(-1.01,1.01)
return img
class HpxOrthographicAxes(OrthographicAxes):
def projmap(self,map,nest=False,**kwds):
nside = pixelfunc.npix2nside(len(map))
f = lambda x,y,z: pixelfunc.vec2pix(nside,x,y,z,nest=nest)
return super(HpxOrthographicAxes,self).projmap(map,f,**kwds)
###################################################################
#
# Table color for mollview and gnomview, ...
def get_color_table(vmin,vmax,val,cmap=None,norm=None):
# Create color table
newjet = create_colormap(cmap)
if type(norm) is str:
if norm.lower().startswith('log'):
norm = LogNorm2(clip=False)
elif norm.lower().startswith('hist'):
norm = HistEqNorm(clip=False)
else:
norm = None
if norm is None:
norm = LinNorm2(clip=False)
norm.vmin = vmin
norm.vmax = vmax
norm.autoscale_None(val)
return newjet,norm
def create_colormap(cmap):
if cmap is not None:
return cmap
cmap0 = cm.jet
newcm = colors.LinearSegmentedColormap('newcm',cmap0._segmentdata,
cmap0.N)
newcm.set_over(newcm(1.0))
newcm.set_under('w')
newcm.set_bad('gray')
return newcm
##################################################################
#
# A Locator that gives the bounds of the interval
#
class BoundaryLocator(ticker.Locator):
def __init__(self,N=2):
if N < 2:
raise ValueError("Number of locs must be greater than 1")
self.Nlocs=N
def __call__(self):
if matplotlib.__version__ < '0.98':
vmin,vmax = self.viewInterval.get_bounds()
else:
vmin, vmax = self.axis.get_view_interval()
locs = vmin + np.arange(self.Nlocs)*(vmax-vmin)/(self.Nlocs-1.)
return locs
def autoscale(self):
self.verify_intervals()
vmin,vmax = self.dataInterval.get_bounds()
if vmax<vmin:
vmin,vmax = vmax,vmin
if vmin==vmax:
vmin -= 1
vmax += 1
return vmin,vmax
##################################################################
#
# A normalization class to get color table equalised by
# the histogram of data
#
class HistEqNorm(colors.Normalize):
def __init__(self, vmin=None, vmax=None, clip=False):
colors.Normalize.__init__(self,vmin,vmax,clip)
self.xval = None
self.yval = None
def __call__(self, value, clip=None):
if clip is None:
clip = self.clip
if cbook.iterable(value):
vtype = 'array'
val = np.ma.asarray(value).astype(np.float)
else:
vtype = 'scalar'
val = np.ma.array([value]).astype(np.float)
self.autoscale_None(val)
vmin, vmax = float(self.vmin), float(self.vmax)
if vmin > vmax:
raise ValueError("minvalue must be less than or equal to maxvalue")
elif vmin==vmax:
return 0.0 * val
else:
if clip:
mask = np.ma.getmask(val)
val = np.ma.array(np.clip(val.filled(vmax), vmin, vmax),
mask=mask)
result = np.ma.array(np.interp(val, self.xval, self.yval),
mask=np.ma.getmask(val))
result[np.isinf(val.data)] = -np.inf
if vtype == 'scalar':
result = result[0]
return result
def inverse(self, value):
if not self.scaled():
raise ValueError("Not invertible until scaled")
if cbook.iterable(value):
vtype='array'
val = np.ma.array(value)
else:
vtype='scalar'
val = np.ma.array([value])
result = np.ma.array(self._lininterp(val, self.yval, self.xval),
mask=np.ma.getmask(val))
result[np.isinf(val.data)] = -np.inf
if vtype == 'scalar':
result = result[0]
return result
def autoscale_None(self, val):
changed = False
if self.vmin is None:
self.vmin = val.min()
changed = True
if self.vmax is None:
self.vmax = val.max()
changed = True
if changed or self.xval is None or self.yval is None:
self._set_xyvals(val)
def autoscale(self, val):
self.vmin = val.min()
self.vmax = val.max()
self._set_xyvals(val)
def _set_xyvals(self,val):
data = np.ma.asarray(val).ravel()
w=np.isinf(data.data)
if data.mask is not np.ma.nomask:
w = w|data.mask
data2 = data.data[~w]
bins = long(min(data2.size/20, 5000))
if bins < 3: bins=data2.size
try:
# for numpy 1.1, use new bins format (left and right edges)
hist, bins = np.histogram(data2,bins=bins,
range=(self.vmin,self.vmax),
new=True)
except TypeError:
# for numpy <= 1.0 or numpy >= 1.2, no new keyword
hist, bins = np.histogram(data2,bins=bins,
range=(self.vmin,self.vmax))
if bins.size == hist.size+1:
# new bins format, remove last point
bins = bins[:-1]
hist = hist.astype(np.float)/np.float(hist.sum())
self.yval = np.concatenate([[0.], hist.cumsum(), [1.]])
self.xval = np.concatenate([[self.vmin], bins + 0.5*(bins[1]-bins[0]),
[self.vmax]])
def _lininterp(self,x,X,Y):
if hasattr(x,'__len__'):
xtype = 'array'
xx=np.asarray(x).astype(np.float)
else:
xtype = 'scalar'
xx=np.asarray([x]).astype(np.float)
idx = X.searchsorted(xx)
yy = xx*0
yy[idx>len(X)-1] = Y[-1] # over
yy[idx<=0] = Y[0] # under
wok = np.where((idx>0) & (idx<len(X))) # the good ones
iok=idx[wok]
yywok = Y[iok-1] + ( (Y[iok]-Y[iok-1])/(X[iok]-X[iok-1])
* (xx[wok]-X[iok-1]) )
w = np.where( ((X[iok]-X[iok-1]) == 0) ) # where are the nan ?
yywok[w] = Y[iok[w]-1] # replace by previous value
wl = np.where(xx[wok] == X[0])
yywok[wl] = Y[0]
wh = np.where(xx[wok] == X[-1])
yywok[wh] = Y[-1]
yy[wok] = yywok
if xtype == 'scalar':
yy = yy[0]
return yy
##################################################################
#
# A normalization class to get logarithmic color table
#
class LogNorm2(colors.Normalize):
"""
Normalize a given value to the 0-1 range on a log scale
"""
def __call__(self, value, clip=None):
if clip is None:
clip = self.clip
if cbook.iterable(value):
vtype = 'array'
val = np.ma.asarray(value).astype(np.float)
else:
vtype = 'scalar'
val = np.ma.array([value]).astype(np.float)
val = np.ma.masked_where(np.isinf(val.data),val)
self.autoscale_None(val)
vmin, vmax = float(self.vmin), float(self.vmax)
if vmin > vmax:
raise ValueError("minvalue must be less than or equal to maxvalue")
elif vmin<=0:
raise ValueError("values must all be positive")
elif vmin==vmax:
return type(value)(0.0 * np.asarray(value))
else:
if clip:
mask = np.ma.getmask(val)
val = np.ma.array(np.clip(val.filled(vmax), vmin, vmax),
mask=mask)
result = (np.ma.log(val)-np.log(vmin))/(np.log(vmax)-np.log(vmin))
result.data[result.data<0]=0.0
result.data[result.data>1]=1.0
result[np.isinf(val.data)] = -np.inf
if result.mask is not np.ma.nomask:
result.mask[np.isinf(val.data)] = False
if vtype == 'scalar':
result = result[0]
return result
def autoscale_None(self, A):
' autoscale only None-valued vmin or vmax'
if self.vmin is None or self.vmax is None:
val = np.ma.masked_where(np.isinf(A.data),A)
colors.Normalize.autoscale_None(self,val)
def inverse(self, value):
if not self.scaled():
raise ValueError("Not invertible until scaled")
vmin, vmax = float(self.vmin), float(self.vmax)
if cbook.iterable(value):
val = np.ma.asarray(value)
return vmin * np.ma.power((vmax/vmin), val)
else:
return vmin * np.pow((vmax/vmin), value)
##################################################################
#
# A normalization class to get linear color table
#
class LinNorm2(colors.Normalize):
"""
Normalize a given value to the 0-1 range on a lin scale
"""
def __call__(self, value, clip=None):
if clip is None:
clip = self.clip
if cbook.iterable(value):
vtype = 'array'
val = np.ma.asarray(value).astype(np.float)
else:
vtype = 'scalar'
val = np.ma.array([value]).astype(np.float)
winf = np.isinf(val.data)
val = np.ma.masked_where(winf,val)
self.autoscale_None(val)
vmin, vmax = float(self.vmin), float(self.vmax)
if vmin > vmax:
raise ValueError("minvalue must be less than or equal to maxvalue")
elif vmin==vmax:
return type(value)(0.0 * np.asarray(value))
else:
if clip:
mask = np.ma.getmask(val)
val = np.ma.array(np.clip(val.filled(vmax), vmin, vmax),
mask=mask)
result = (val-vmin) * (1./(vmax-vmin))
result.data[result.data<0]=0.0
result.data[result.data>1]=1.0
result[winf] = -np.inf
if result.mask is not np.ma.nomask:
result.mask[winf] = False
if vtype == 'scalar':
result = result[0]
return result
def autoscale_None(self, A):
' autoscale only None-valued vmin or vmax'
if self.vmin is None or self.vmax is None:
val = np.ma.masked_where(np.isinf(A.data),A)
colors.Normalize.autoscale_None(self,val)
def inverse(self, value):
if not self.scaled():
raise ValueError("Not invertible until scaled")
vmin, vmax = float(self.vmin), float(self.vmax)
if cbook.iterable(value):
val = np.ma.asarray(value)
return vmin + (vmax-vmin) * val
else:
return vmin + (vmax-vmin) * value
|