This file is indexed.

/usr/lib/python3/dist-packages/healpy/projaxes.py is in python3-healpy 1.8.1-1.1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
# 
#  This file is part of Healpy.
# 
#  Healpy is free software; you can redistribute it and/or modify
#  it under the terms of the GNU General Public License as published by
#  the Free Software Foundation; either version 2 of the License, or
#  (at your option) any later version.
# 
#  Healpy is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
# 
#  You should have received a copy of the GNU General Public License
#  along with Healpy; if not, write to the Free Software
#  Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
# 
#  For more information about Healpy, see http://code.google.com/p/healpy
# 
from . import projector as P
from . import rotator as R
from . import pixelfunc
import matplotlib
from matplotlib import axes,ticker,colors,cm,lines,cbook,figure
import numpy as np
from ._healpy_pixel_lib import UNSEEN

pi = np.pi
dtor = pi/180.

class SphericalProjAxes(axes.Axes):
    """Define a special Axes to take care of spherical projection.

    Parameters
    ----------
    projection : a SphericalProj class or a class derived from it.
        type of projection
    rot : list or string
        define rotation. See rotator.
    coord : list or string
        define coordinate system. See rotator.
    coordprec : number of digit after floating point for coordinates display.
    format : format string for value display.
      
    Notes
    -----
    Other keywords from Axes (see Axes).
    """
    def __init__(self, ProjClass, *args, **kwds):
        if not issubclass(ProjClass, P.SphericalProj):
            raise TypeError("First argument must be a SphericalProj class "
                            "(or derived from)")
        self.proj = ProjClass(rot   = kwds.pop('rot',None),
                              coord = kwds.pop('coord',None),
                              flipconv = kwds.pop('flipconv',None),
                              **kwds.pop('arrayinfo', {}))
        kwds.setdefault('format','%g')
        kwds.setdefault('coordprec',2)
        kwds['aspect'] = 'equal'
        super(SphericalProjAxes,self).__init__(*args, **kwds)
        self.axis('off')
        self.set_autoscale_on(False)
        xmin,xmax,ymin,ymax = self.proj.get_extent()
        self.set_xlim(xmin,xmax)
        self.set_ylim(ymin,ymax)
        dx,dy = self.proj.ang2xy(pi/2.,1.*dtor,direct=True)
        self._segment_threshold = 16.*np.sqrt(dx**2+dy**2)
        self._segment_step_rad = 0.1*pi/180
        self._do_border = True
        self._gratdef = {}
        self._gratdef['local'] = False
        self._gratdef['dpar'] = 30.
        
    def set_format(self,f):
        """Set the format string for value display
        """
        self._format=f
        return f
    
    def set_coordprec(self,n):
        """Set the number of digits after floating point for coord display.
        """
        self._coordprec = n

    def format_coord(self,x,y):
        """Format the coordinate for display in status bar. Take projection
        into account.
        """
        format=self._format+' at '
        pos=self.get_lonlat(x,y)
        if pos is None or np.isnan(pos).any(): return ''
        lon,lat = np.around(pos,decimals=self._coordprec)
        val = self.get_value(x,y)
        if val is None:
            format = '%s'
            val = ''
        elif type(val) is str: format='%s @ '
        coordsys = self.proj.coordsysstr
        if coordsys != '':
            res=(format+'(%g, %g) in %s')%(val,lon,lat,
                                           coordsys[0:3])
        else:
            res=(format+'lon=%g, lat=%g')%(val,lon,lat)
        return res

    def get_lonlat(self,x,y):
        """Get the coordinate in the coord system of the image, in lon/lat in deg.
        """
        lon,lat = self.proj.xy2ang(x,y,lonlat=True)
        return lon,lat

    def get_value(self,x,y):
        """Get the value of the map at position x,y
        """
        if len(self.get_images()) < 1:
            return None
        im = self.get_images()[-1]
        arr=im.get_array()
        i,j = self.proj.xy2ij(x,y)
        if i is None or j is None:
            return None
        elif arr.mask is not np.ma.nomask and arr.mask[i,j]:
            return 'UNSEEN'
        else:
            return arr[i,j]

    def projmap(self,map,vec2pix_func,vmin=None,vmax=None,badval=UNSEEN,
                cmap=None,norm=None,rot=None,coord=None,**kwds):
        """Project a map on the SphericalProjAxes.

        Parameters
        ----------
        map : array-like
          The map to project.
        vec2pix_func : function
          The function describing the pixelisation.
        vmin, vmax : float, scalars
          min and max value to use instead of min max of the map
        badval : float
          The value of the bad pixels
        cmap : a color map
          The colormap to use (see matplotlib.cm)
        rot : sequence
          In the form (lon, lat, psi) (unit: degree):the center of the map is
          at (lon, lat) and rotated by angle psi around that direction.
        coord : {'G', 'E', 'C', None}
          The coordinate system of the map ('G','E' or 'C'), rotate
          the map if different from the axes coord syst.
        
        Notes
        -----
        Other keywords are transmitted to :func:`matplotlib.Axes.imshow`
        """
        img = self.proj.projmap(map,vec2pix_func,rot=rot,coord=coord)
        w = ~( np.isnan(img) | 
               np.isinf(img) | 
               pixelfunc.mask_bad(img, badval = badval) )
        try:
            if vmin is None: vmin = img[w].min()
        except ValueError:
            vmin = 0.
        try:
            if vmax is None: vmax = img[w].max()
        except ValueError:
            vmax = 0.
        if vmin > vmax:
            vmin = vmax
        if vmin == vmax:
            vmin -= 1.
            vmax += 1.
        cm,nn = get_color_table(vmin,vmax,img[w],cmap=cmap,norm=norm)
        ext = self.proj.get_extent()
        img = np.ma.masked_values(img, badval)
        aximg = self.imshow(img,extent = ext,cmap=cm,norm=nn,
                            interpolation='nearest',origin='lower',
                            vmin=vmin,vmax=vmax,**kwds)
        xmin,xmax,ymin,ymax = self.proj.get_extent()
        self.set_xlim(xmin,xmax)
        self.set_ylim(ymin,ymax)
        return img

    def projplot(self,*args,**kwds):
        """projplot is a wrapper around :func:`matplotlib.Axes.plot` to take into account the
        spherical projection.

        You can call this function as::
        
           projplot(theta, phi)        # plot a line going through points at coord (theta, phi)
           projplot(theta, phi, 'bo')  # plot 'o' in blue at coord (theta, phi)
           projplot(thetaphi)          # plot a line going through points at coord (thetaphi[0], thetaphi[1])
           projplot(thetaphi, 'bx')    # idem but with blue 'x'
        
        Parameters
        ----------
        theta, phi : float, array-like
          Coordinates of point to plot. Can be put into one 2-d array, first line is
          then *theta* and second line is *phi*. See *lonlat* parameter for unit.
        fmt : str
          A format string (see :func:`matplotlib.Axes.plot` for details)
        lonlat : bool, optional
          If True, theta and phi are interpreted as longitude and latitude
          in degree, otherwise, as colatitude and longitude in radian
        coord : {'E', 'G', 'C', None}
          The coordinate system of the points, only used if the coordinate
          coordinate system of the Axes has been defined and in this
          case, a rotation is performed
        rot : None or sequence
          rotation to be applied =(lon, lat, psi) : lon, lat will be position of the
          new Z axis, and psi is rotation around this axis, all in degree.
          if None, no rotation is performed
        direct : bool
          if True, the rotation to center the projection is not
          taken into account

        Notes
        -----
        Other keywords are passed to :func:`matplotlib.Axes.plot`.

        See Also
        --------
        projscatter, projtext
        """
        fmt = None
        if len(args) < 1:
            raise ValueError("No argument given")
        if len(args) == 1:
            theta,phi = np.asarray(args[0])
        elif len(args) == 2:
            if type(args[1]) is str:
                fmt=args[1]
                theta,phi = np.asarray(args[0])
            else:
                theta,phi = np.asarray(args[0]),np.asarray(args[1])
        elif len(args) == 3:
            if type(args[2]) is not str:
                raise TypeError("Third argument must be a string")
            else:
                theta,phi = np.asarray(args[0]),np.asarray(args[1])
                fmt = args[2]
        else:
            raise TypeError("Three args maximum")
        rot=kwds.pop('rot',None)
        if rot is not None:
            rot = np.array(np.atleast_1d(rot),copy=1)
            rot.resize(3)
            rot[1] = rot[1]-90.
        coord=self.proj.mkcoord(kwds.pop('coord',None))[::-1]
        lonlat=kwds.pop('lonlat',False)
        vec = R.dir2vec(theta,phi,lonlat=lonlat)
        vec = (R.Rotator(rot=rot,coord=coord,eulertype='Y')).I(vec)
        x,y = self.proj.vec2xy(vec,direct=kwds.pop('direct',False))
        x,y = self._make_segment(x,y,threshold=kwds.pop('threshold',
                                                        self._segment_threshold))
        thelines = []
        for xx,yy in zip(x,y):
            if fmt is not None:
                linestyle, marker, color = axes._process_plot_format(fmt)
                kwds.setdefault('linestyle',linestyle)
                kwds.setdefault('marker',marker)
                if color is not None: kwds.setdefault('color',color)
            l = lines.Line2D(xx,yy,**kwds)
            self.add_line(l)
            thelines.append(l)
        return thelines

    def projscatter(self,theta, phi=None,*args,**kwds):
        """Projscatter is a wrapper around :func:`matplotlib.Axes.scatter` to take into account the
        spherical projection.
        
        You can call this function as::
        
           projscatter(theta, phi)     # plot points at coord (theta, phi)
           projplot(thetaphi)          # plot points at coord (thetaphi[0], thetaphi[1])

        Parameters
        ----------
        theta, phi : float, array-like
          Coordinates of point to plot. Can be put into one 2-d array, first line is
          then *theta* and second line is *phi*. See *lonlat* parameter for unit.
        lonlat : bool, optional
          If True, theta and phi are interpreted as longitude and latitude
          in degree, otherwise, as colatitude and longitude in radian
        coord : {'E', 'G', 'C', None}, optional
          The coordinate system of the points, only used if the coordinate
          coordinate system of the axes has been defined and in this
          case, a rotation is performed
        rot : None or sequence, optional
          rotation to be applied =(lon, lat, psi) : lon, lat will be position of the
          new Z axis, and psi is rotation around this axis, all in degree.
          if None, no rotation is performed
        direct : bool, optional
          if True, the rotation to center the projection is not
          taken into account

        Notes
        -----
        Other keywords are passed to :func:`matplotlib.Axes.plot`.

        See Also
        --------
        projplot, projtext
        """
        save_input_data = hasattr(self.figure, 'zoomtool')
        if save_input_data:
            input_data = (theta, phi, args, kwds.copy())
        if phi is None:
            theta,phi = np.asarray(theta)
        else:
            theta, phi = np.asarray(theta), np.asarray(phi)
        rot=kwds.pop('rot',None)
        if rot is not None:
            rot = np.array(np.atleast_1d(rot),copy=1)
            rot.resize(3)
            rot[1] = rot[1]-90.
        coord=self.proj.mkcoord(kwds.pop('coord',None))[::-1]
        lonlat=kwds.pop('lonlat',False)
        vec = R.dir2vec(theta,phi,lonlat=lonlat)
        vec = (R.Rotator(rot=rot,coord=coord,eulertype='Y')).I(vec)
        x,y = self.proj.vec2xy(vec,direct=kwds.pop('direct',False))
        s = self.scatter(x, y, *args, **kwds)
        if save_input_data:
            if not hasattr(self, '_scatter_data'):
                self._scatter_data = []
            self._scatter_data.append((s, input_data))
        return s

    def projtext(self, theta, phi, s, **kwds):
        """Projtext is a wrapper around :func:`matplotlib.Axes.text` to take into account the
        spherical projection.

        Parameters
        ----------
        theta, phi : float, array-like
          Coordinates of point to plot. Can be put into one 2-d array, first line is
          then *theta* and second line is *phi*. See *lonlat* parameter for unit.
        text : str
          The text to be displayed.
        lonlat : bool, optional
          If True, theta and phi are interpreted as longitude and latitude
          in degree, otherwise, as colatitude and longitude in radian
        coord : {'E', 'G', 'C', None}, optional
          The coordinate system of the points, only used if the coordinate
          coordinate system of the axes has been defined and in this
          case, a rotation is performed
        rot : None or sequence, optional
          rotation to be applied =(lon, lat, psi) : lon, lat will be position of the
          new Z axis, and psi is rotation around this axis, all in degree.
          if None, no rotation is performed
        direct : bool, optional
          if True, the rotation to center the projection is not
          taken into account

        Notes
        -----
        Other keywords are passed to :func:`matplotlib.Axes.text`.

        See Also
        --------
        projplot, projscatter
        """
        if phi is None:
            theta,phi = np.asarray(theta)
        else:
            theta, phi = np.asarray(theta), np.asarray(phi)
        rot=kwds.pop('rot',None)
        if rot is not None:
            rot = np.array(np.atleast_1d(rot),copy=1)
            rot.resize(3)
            rot[1] = rot[1]-90.
        coord=self.proj.mkcoord(kwds.pop('coord',None))[::-1]
        lonlat=kwds.pop('lonlat',False)
        vec = R.dir2vec(theta,phi,lonlat=lonlat)
        vec = (R.Rotator(rot=rot,coord=coord,eulertype='Y')).I(vec)
        x,y = self.proj.vec2xy(vec,direct=kwds.pop('direct',False))
        return self.text(x,y,s,**kwds)

    def _make_segment(self,x,y,threshold=None):
        if threshold is None:
            threshold = self._segment_threshold
        x,y=np.atleast_1d(x),np.atleast_1d(y)
        d2 = np.sqrt((np.roll(x,1)-x)**2+(np.roll(y,1)-y)**2)
        w=np.where(d2 > threshold)[0]
        #w=w[w!=0]
        xx=[]
        yy=[]
        if len(w) == 1:
            x=np.roll(x,-w[0])
            y=np.roll(y,-w[0])
            xx.append(x)
            yy.append(y)
        elif len(w) >= 2:
            xx.append(x[0:w[0]])
            yy.append(y[0:w[0]])
            for i in xrange(len(w)-1):
                xx.append(x[w[i]:w[i+1]])
                yy.append(y[w[i]:w[i+1]])
            xx.append(x[w[-1]:])
            yy.append(y[w[-1]:])
        else:
            xx.append(x)
            yy.append(y)
        return xx,yy

    def get_parallel_interval(self,vx,vy=None,vz=None):
        """Get the min and max value of theta of the parallel to cover the
        field of view.

        Input:
          - the normalized vector of the direction of the center of the
            projection, in the reference frame of the graticule.
        Return:
          - vmin,vmax : between 0 and pi, vmin<vmax, the interval of theta
                        for the parallels crossing the field of view
        """
        if vy is None and vz is None:
            vx,vy,vz = vx
        elif vy is None or vz is None:
            raise ValueError("Both vy and vz must be given or both not given")
        a = np.arccos(vz)
        fov = self.proj.get_fov()
        vmin = max(0., a-fov/2.)
        vmax = min(pi, a+fov/2.)
        return vmin,vmax

    def get_meridian_interval(self, vx, vy=None, vz=None):
        """Get the min and max value of phi of the meridians to cover the field
        of view.

        Input:
          - the normalized vector of the direction of the center of the
            projection, in the reference frame of the graticule.
        Return:
          - vmin,vmax : the interval of phi for the
                        meridians crossing the field of view.
        """
        if vy is None and vz is None:
            vx,vy,vz = vx
        elif vy is None or vz is None:
            raise ValueError("Both vy and vz must be given or both not given")
        fov = self.proj.get_fov()
        th = np.arccos(vz)
        if th <= fov/2.: # test whether north pole is visible
            return -np.pi,np.pi
        if abs(th-pi) <= fov/2.: # test whether south pole is visible
            return -np.pi,np.pi
        sth = np.sin(th)
        phi0 = np.arctan2(vy,vx)
        return phi0 - fov/sth/2., phi0 + fov/sth/2.

    def graticule(self,dpar=None,dmer=None,coord=None,local=None,verbose=True,**kwds):
        """Draw a graticule.
        
        Input:
         - dpar: angular separation between parallels in degree
         - dmer: angular separation between meridians in degree
         - coord: coordinate system of the graticule ('G', 'E' or 'C')
         - local: if True, no rotation performed at all
        """
        gratargs = (dpar,dmer,coord,local)
        gratkwds = kwds
        if dpar is None: dpar=self._gratdef['dpar']
        if local is None: local=self._gratdef['local']
        if dmer is None: dmer = dpar
        dpar = abs(dpar)*dtor
        dmer = abs(dmer)*dtor
        if not local:
            vec = R.dir2vec(self.proj.get_center())
            vec0 = R.Rotator(coord=self.proj.mkcoord(coord=coord)).I(vec)
        else:
            vec = (1,0,0)
            vec0 = (1,0,0)
        u_pmin,u_pmax = kwds.pop('pmax',None),kwds.pop('pmin',None)
        u_mmin,u_mmax = kwds.pop('mmin',None),kwds.pop('mmax',None)
        if u_pmin: u_pmin = (pi/2.-u_pmin*dtor)%pi
        if u_pmax: u_pmax = (pi/2.-u_pmax*dtor)%pi
        if u_mmin: u_mmin = ( ((u_mmin+180.)%360)-180)*dtor
        if u_mmax: u_mmax = ( ((u_mmax+180.)%360)-180)*dtor
        pmin,pmax = self.get_parallel_interval(vec0)
        mmin,mmax = self.get_meridian_interval(vec0)
        if u_pmin: pmin = u_pmin
        if u_pmax: pmax = u_pmax
        if u_mmin: mmin = u_mmin
        if u_mmax: mmax = u_pmax
        if verbose:
            print('{0} {1} {2} {3}'.format(
                pmin/dtor, pmax/dtor, mmin/dtor, mmax/dtor))
        if not kwds.pop('force',False):
            dpar,dmer = self._get_interv_graticule(pmin,pmax,dpar,
                                                   mmin,mmax,dmer,
                                                   verbose=verbose)
        theta_list = np.around(np.arange(pmin,pmax+0.5*dpar,dpar)/dpar)*dpar
        phi_list = np.around(np.arange(mmin,mmax+0.5*dmer,dmer)/dmer)*dmer
        theta = np.arange(pmin,pmax,min((pmax-pmin)/100.,
                                         self._segment_step_rad))
        phi = np.arange(mmin,mmax,min((mmax-mmin)/100.,
                                       self._segment_step_rad))
        equator = False
        gratlines = []
        kwds.setdefault('lw',1)
        kwds.setdefault('color','k')
        for t in theta_list:
            if abs(t-pi/2.)<1.e-10:
                fmt = '-'
                equator=True
            elif abs(t) < 1.e-10: # special case: north pole
                t = 1.e-10 
                fmt = '-'
            elif abs(t-pi) < 1.e-10: # special case: south pole
                t = pi-1.e-10 
                fmt = '-'
            else:
                fmt =':'
            gratlines.append(self.projplot(phi*0.+t, phi,fmt,
                                           coord=coord,
                                           direct=local,**kwds))
        if not equator and pmin <= pi/2. and pi/2 <= pmax:
            gratlines.append(self.projplot(phi*0.+pi/2., phi,'-',
                                           coord=coord,
                                           direct=local,**kwds))
        for p in phi_list:
            if abs(p)<1.e-10: fmt = '-'
            else: fmt =':'
            gratlines.append(self.projplot(theta, theta*0.+p,fmt,
                                           coord=coord,
                                           direct=local,**kwds))
        # Now the borders (only useful for full sky projection)
        if hasattr(self,'_do_border') and self._do_border:
            theta = np.arange(0,181)*dtor
            gratlines.append(self.projplot(theta, theta*0-pi,'-k',
                                           lw=1,direct=True))
            gratlines.append(self.projplot(theta, theta*0+0.9999*pi,'-k',
                                           lw=1,direct=True))
            phi = np.arange(-180,180)*dtor
            gratlines.append(self.projplot(phi*0+1.e-10, phi,'-k',
                                           lw=1,direct=True))
            gratlines.append(self.projplot(phi*0+pi-1.e-10, phi,'-k',
                                           lw=1,direct=True))
        if hasattr(self,'_graticules'):
            self._graticules.append((gratargs,gratkwds,gratlines))
        else:
            self._graticules = [(gratargs,gratkwds,gratlines)]
        return dpar,dmer
    
    def delgraticules(self):
        """Delete all graticules previously created on the Axes.
        """
        if hasattr(self,'_graticules'):
            for dum1,dum2,g in self._graticules:
                for gl in g:
                    for l in gl: 
                        if l in self.lines:
                            self.lines.remove(l)
                        else:
                            print('line not in lines')
            del self._graticules

    def _get_interv_graticule(self,pmin,pmax,dpar,mmin,mmax,dmer,verbose=True):
        def set_prec(d,n,nn=2):
            arcmin=False
            if d/n < 1.:
                d *= 60
                arcmin = True
                nn = 1
            x = d/n
            y = nn*x
            ex = np.floor(np.log10(y))
            z = np.around(y/10**ex)*10**ex/nn
            if arcmin:
                z = 1./np.around(60./z)
            return z
        max_n_par = 18
        max_n_mer = 36
        n_par = (pmax-pmin)/dpar
        n_mer = (mmax-mmin)/dmer
        if n_par > max_n_par:
            dpar = set_prec((pmax-pmin)/dtor,max_n_par/2)*dtor
        if n_mer > max_n_mer:
            dmer = set_prec((mmax-mmin)/dtor,max_n_mer/2,nn=1)*dtor
        if dmer/dpar < 0.2 or dmer/dpar > 5.:
            dmer = dpar = max(dmer,dpar)
        vdeg = np.floor(np.around(dpar/dtor,10))
        varcmin = (dpar/dtor-vdeg)*60.
        if verbose: print("The interval between parallels is {0:d} deg {1:.2f}'.".format(vdeg,varcmin))
        vdeg = np.floor(np.around(dmer/dtor,10))
        varcmin = (dmer/dtor-vdeg)*60.
        if verbose: print("The interval between meridians is {0:d} deg {1:.2f}'.".format(vdeg,varcmin))
        return dpar,dmer
        
class GnomonicAxes(SphericalProjAxes):
    """Define a gnomonic Axes to handle gnomonic projection.

    Input:
      - rot=, coord= : define rotation and coordinate system. See rotator.
      - coordprec= : number of digit after floating point for coordinates display.
      - format= : format string for value display.
      
      Other keywords from Axes (see Axes).
    """
    def __init__(self,*args,**kwds):
        kwds.setdefault('coordprec',3)
        super(GnomonicAxes,self).__init__(P.GnomonicProj, *args,**kwds)
        self._do_border = False
        self._gratdef['local'] = True
        self._gratdef['dpar'] = 1.

    def projmap(self,map,vec2pix_func,xsize=200,ysize=None,reso=1.5,**kwds):
        self.proj.set_proj_plane_info(xsize=xsize,ysize=ysize,reso=reso)
        return super(GnomonicAxes,self).projmap(map,vec2pix_func,**kwds)
        
class HpxGnomonicAxes(GnomonicAxes):
    def projmap(self,map,nest=False,**kwds):
        nside = pixelfunc.npix2nside(pixelfunc.get_map_size(map))
        f = lambda x,y,z: pixelfunc.vec2pix(nside,x,y,z,nest=nest)
        xsize = kwds.pop('xsize',200)
        ysize = kwds.pop('ysize',None)
        reso = kwds.pop('reso',1.5)
        return super(HpxGnomonicAxes,self).projmap(map,f,xsize=xsize,
                                            ysize=ysize,reso=reso,**kwds)


class MollweideAxes(SphericalProjAxes):
    """Define a mollweide Axes to handle mollweide projection.

    Input:
      - rot=, coord= : define rotation and coordinate system. See rotator.
      - coordprec= : number of digit after floating point for coordinates display.
      - format= : format string for value display.
      
      Other keywords from Axes (see Axes).
    """
    def __init__(self,*args,**kwds):
        kwds.setdefault('coordprec',2)
        super(MollweideAxes,self).__init__(P.MollweideProj, *args,**kwds)
        self.set_xlim(-2.01,2.01)
        self.set_ylim(-1.01,1.01)

    def projmap(self,map,vec2pix_func,xsize=800,**kwds):
        self.proj.set_proj_plane_info(xsize=xsize)
        img = super(MollweideAxes,self).projmap(map,vec2pix_func,**kwds)
        self.set_xlim(-2.01,2.01)
        self.set_ylim(-1.01,1.01)
        return img
        
class HpxMollweideAxes(MollweideAxes):
    def projmap(self,map,nest=False,**kwds):
        nside = pixelfunc.npix2nside(pixelfunc.get_map_size(map))
        f = lambda x,y,z: pixelfunc.vec2pix(nside,x,y,z,nest=nest)
        return super(HpxMollweideAxes,self).projmap(map,f,**kwds)

class CartesianAxes(SphericalProjAxes):
    """Define a cylindrical Axes to handle cylindrical projection.
    """
    def __init__(self,*args,**kwds):
        kwds.setdefault('coordprec',2)
        super(CartesianAxes,self).__init__(P.CartesianProj, *args, **kwds)
        self._segment_threshold = 180
        self._segment_step_rad = 0.1*pi/180
        self._do_border = True
        
    def projmap(self,map,vec2pix_func,xsize=800,ysize=None,lonra=None,latra=None,**kwds):
        self.proj.set_proj_plane_info(xsize=xsize,ysize=ysize,lonra=lonra,latra=latra)
        return super(CartesianAxes,self).projmap(map,vec2pix_func,**kwds)
        
class HpxCartesianAxes(CartesianAxes):
    def projmap(self,map,nest=False,**kwds):
        nside = pixelfunc.npix2nside(pixelfunc.get_map_size(map))
        f = lambda x,y,z: pixelfunc.vec2pix(nside,x,y,z,nest=nest)
        return super(HpxCartesianAxes,self).projmap(map,f,**kwds)

        
class OrthographicAxes(SphericalProjAxes):
    """Define an orthographic Axes to handle orthographic projection.
    
    Input:
    - rot=, coord= : define rotation and coordinate system. See rotator.
    - coordprec= : num of digits after floating point for coordinates display.
    - format= : format string for value display.
    
    Other keywords from Axes (see Axes).
    """
    def __init__(self,*args,**kwds):
        kwds.setdefault('coordprec',2)
        super(OrthographicAxes,self).__init__(P.OrthographicProj, *args,**kwds)
        self._segment_threshold = 0.01
        self._do_border = False
        
    def projmap(self,map,vec2pix_func,xsize=800,half_sky=False,**kwds):
        self.proj.set_proj_plane_info(xsize=xsize,half_sky=half_sky)
        img = super(OrthographicAxes,self).projmap(map,vec2pix_func,**kwds)
        if half_sky: ratio = 1.01
        else: ratio = 2.01
        self.set_xlim(-ratio,ratio)
        self.set_ylim(-1.01,1.01)
        return img
        
class HpxOrthographicAxes(OrthographicAxes):
    def projmap(self,map,nest=False,**kwds):
        nside = pixelfunc.npix2nside(len(map))
        f = lambda x,y,z: pixelfunc.vec2pix(nside,x,y,z,nest=nest)
        return super(HpxOrthographicAxes,self).projmap(map,f,**kwds)


###################################################################
#
#   Table color for mollview and gnomview, ...

def get_color_table(vmin,vmax,val,cmap=None,norm=None):
    # Create color table
    newjet = create_colormap(cmap)
    if type(norm) is str:
        if norm.lower().startswith('log'):
            norm = LogNorm2(clip=False)
        elif norm.lower().startswith('hist'):
            norm = HistEqNorm(clip=False)
        else:
            norm = None
    if norm is None:
        norm = LinNorm2(clip=False)

    norm.vmin = vmin
    norm.vmax = vmax
    norm.autoscale_None(val)
    
    return newjet,norm

def create_colormap(cmap):
    if cmap is not None:
        return cmap 
    cmap0 = cm.jet
    newcm = colors.LinearSegmentedColormap('newcm',cmap0._segmentdata,
                                               cmap0.N)
    newcm.set_over(newcm(1.0))
    newcm.set_under('w')
    newcm.set_bad('gray')
    return newcm

##################################################################
#
#   A Locator that gives the bounds of the interval
#
class BoundaryLocator(ticker.Locator):
    def __init__(self,N=2):
        if N < 2:
            raise ValueError("Number of locs must be greater than 1")
        self.Nlocs=N

    def __call__(self):
        if matplotlib.__version__ < '0.98':
            vmin,vmax = self.viewInterval.get_bounds()
        else:
            vmin, vmax = self.axis.get_view_interval()
        locs = vmin + np.arange(self.Nlocs)*(vmax-vmin)/(self.Nlocs-1.)
        return locs

    def autoscale(self):
        self.verify_intervals()
        vmin,vmax = self.dataInterval.get_bounds()
        if vmax<vmin:
            vmin,vmax = vmax,vmin
        if vmin==vmax:
            vmin -= 1
            vmax += 1
        return vmin,vmax


##################################################################
#
#   A normalization class to get color table equalised by
#   the histogram of data
#

class HistEqNorm(colors.Normalize):
    def __init__(self, vmin=None, vmax=None, clip=False):
        colors.Normalize.__init__(self,vmin,vmax,clip)
        self.xval = None
        self.yval = None

    def __call__(self, value, clip=None):
        if clip is None:
            clip = self.clip

        if cbook.iterable(value):
            vtype = 'array'
            val = np.ma.asarray(value).astype(np.float)
        else:
            vtype = 'scalar'
            val = np.ma.array([value]).astype(np.float)

        self.autoscale_None(val)

        vmin, vmax = float(self.vmin), float(self.vmax)
        if vmin > vmax:
            raise ValueError("minvalue must be less than or equal to maxvalue")
        elif vmin==vmax:
            return 0.0 * val
        else:
            if clip:
                mask = np.ma.getmask(val)
                val = np.ma.array(np.clip(val.filled(vmax), vmin, vmax),
                                   mask=mask)
            result = np.ma.array(np.interp(val, self.xval, self.yval),
                                  mask=np.ma.getmask(val))
            result[np.isinf(val.data)] = -np.inf
        if vtype == 'scalar':
            result = result[0]
        return result

    def inverse(self, value):
        if not self.scaled():
            raise ValueError("Not invertible until scaled")

        if cbook.iterable(value):
            vtype='array'
            val = np.ma.array(value)
        else:
            vtype='scalar'
            val = np.ma.array([value])
        result = np.ma.array(self._lininterp(val, self.yval, self.xval),
                              mask=np.ma.getmask(val))
        result[np.isinf(val.data)] = -np.inf
        if vtype == 'scalar':
            result = result[0]
        return result
        
    def autoscale_None(self, val):
        changed = False
        if self.vmin is None:
            self.vmin = val.min()
            changed = True
        if self.vmax is None:
            self.vmax = val.max()
            changed = True
        if changed or self.xval is None or self.yval is None:
            self._set_xyvals(val)
            
    def autoscale(self, val):
        self.vmin = val.min()
        self.vmax = val.max()
        self._set_xyvals(val)

    def _set_xyvals(self,val):
        data = np.ma.asarray(val).ravel()
        w=np.isinf(data.data)
        if data.mask is not np.ma.nomask:
            w = w|data.mask
        data2 = data.data[~w]
        bins = long(min(data2.size/20, 5000))
        if bins < 3: bins=data2.size
        try:
            # for numpy 1.1, use new bins format (left and right edges)
            hist, bins = np.histogram(data2,bins=bins,
                                       range=(self.vmin,self.vmax),
                                       new=True)
        except TypeError:
            # for numpy <= 1.0 or numpy >= 1.2, no new keyword
            hist, bins = np.histogram(data2,bins=bins,
                                       range=(self.vmin,self.vmax))
        if bins.size == hist.size+1:
            # new bins format, remove last point
            bins = bins[:-1]
        hist = hist.astype(np.float)/np.float(hist.sum())
        self.yval = np.concatenate([[0.], hist.cumsum(), [1.]])
        self.xval = np.concatenate([[self.vmin], bins + 0.5*(bins[1]-bins[0]),
                                    [self.vmax]])

    def _lininterp(self,x,X,Y):
        if hasattr(x,'__len__'):
            xtype = 'array'
            xx=np.asarray(x).astype(np.float)
        else:
            xtype = 'scalar'
            xx=np.asarray([x]).astype(np.float)
        idx = X.searchsorted(xx)
        yy = xx*0
        yy[idx>len(X)-1] = Y[-1]  # over
        yy[idx<=0] = Y[0]          # under
        wok = np.where((idx>0) & (idx<len(X)))  # the good ones
        iok=idx[wok]
        yywok = Y[iok-1] + ( (Y[iok]-Y[iok-1])/(X[iok]-X[iok-1])
                             * (xx[wok]-X[iok-1]) )
        w = np.where( ((X[iok]-X[iok-1]) == 0) )   # where are the nan ?
        yywok[w] = Y[iok[w]-1]    # replace by previous value
        wl = np.where(xx[wok] == X[0])
        yywok[wl] = Y[0]
        wh = np.where(xx[wok] == X[-1])
        yywok[wh] = Y[-1]
        yy[wok] = yywok
        if xtype == 'scalar':
            yy = yy[0]
        return yy


##################################################################
#
#   A normalization class to get logarithmic color table
#

class LogNorm2(colors.Normalize):
    """
    Normalize a given value to the 0-1 range on a log scale
    """
    def __call__(self, value, clip=None):
        if clip is None:
            clip = self.clip

        if cbook.iterable(value):
            vtype = 'array'
            val = np.ma.asarray(value).astype(np.float)
        else:
            vtype = 'scalar'
            val = np.ma.array([value]).astype(np.float)

        val = np.ma.masked_where(np.isinf(val.data),val)

        self.autoscale_None(val)
        vmin, vmax = float(self.vmin), float(self.vmax)
        if vmin > vmax:
            raise ValueError("minvalue must be less than or equal to maxvalue")
        elif vmin<=0:
            raise ValueError("values must all be positive")
        elif vmin==vmax:
            return type(value)(0.0 * np.asarray(value))
        else:
            if clip:
                mask = np.ma.getmask(val)
                val = np.ma.array(np.clip(val.filled(vmax), vmin, vmax),
                                   mask=mask)
            result = (np.ma.log(val)-np.log(vmin))/(np.log(vmax)-np.log(vmin))
            result.data[result.data<0]=0.0
            result.data[result.data>1]=1.0
            result[np.isinf(val.data)] = -np.inf
            if result.mask is not np.ma.nomask:
                result.mask[np.isinf(val.data)] = False
        if vtype == 'scalar':
            result = result[0]
        return result

    def autoscale_None(self, A):
        ' autoscale only None-valued vmin or vmax'
        if self.vmin is None or self.vmax is None:
            val = np.ma.masked_where(np.isinf(A.data),A)
            colors.Normalize.autoscale_None(self,val)

    def inverse(self, value):
        if not self.scaled():
            raise ValueError("Not invertible until scaled")
        vmin, vmax = float(self.vmin), float(self.vmax)

        if cbook.iterable(value):
            val = np.ma.asarray(value)
            return vmin * np.ma.power((vmax/vmin), val)
        else:
            return vmin * np.pow((vmax/vmin), value)



        
##################################################################
#
#   A normalization class to get linear color table
#

class LinNorm2(colors.Normalize):
    """
    Normalize a given value to the 0-1 range on a lin scale
    """
    def __call__(self, value, clip=None):
        if clip is None:
            clip = self.clip

        if cbook.iterable(value):
            vtype = 'array'
            val = np.ma.asarray(value).astype(np.float)
        else:
            vtype = 'scalar'
            val = np.ma.array([value]).astype(np.float)

        winf = np.isinf(val.data)
        val = np.ma.masked_where(winf,val)

        self.autoscale_None(val)
        vmin, vmax = float(self.vmin), float(self.vmax)
        if vmin > vmax:
            raise ValueError("minvalue must be less than or equal to maxvalue")
        elif vmin==vmax:
            return type(value)(0.0 * np.asarray(value))
        else:
            if clip:
                mask = np.ma.getmask(val)
                val = np.ma.array(np.clip(val.filled(vmax), vmin, vmax),
                                   mask=mask)
            result = (val-vmin) * (1./(vmax-vmin))
            result.data[result.data<0]=0.0
            result.data[result.data>1]=1.0
            result[winf] = -np.inf
            if result.mask is not np.ma.nomask:
                result.mask[winf] = False
        if vtype == 'scalar':
            result = result[0]
        return result

    def autoscale_None(self, A):
        ' autoscale only None-valued vmin or vmax'
        if self.vmin is None or self.vmax is None:
            val = np.ma.masked_where(np.isinf(A.data),A)
            colors.Normalize.autoscale_None(self,val)

    def inverse(self, value):
        if not self.scaled():
            raise ValueError("Not invertible until scaled")
        vmin, vmax = float(self.vmin), float(self.vmax)

        if cbook.iterable(value):
            val = np.ma.asarray(value)
            return vmin + (vmax-vmin) * val
        else:
            return vmin + (vmax-vmin) * value