/usr/lib/python3/dist-packages/healpy/zoomtool.py is in python3-healpy 1.8.1-1.1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 | #
# This file is part of Healpy.
#
# Healpy is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# Healpy is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with Healpy; if not, write to the Free Software
# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
#
# For more information about Healpy, see http://code.google.com/p/healpy
#
from . import projaxes as PA
from . import rotator as R
import numpy as np
import matplotlib
from ._healpy_pixel_lib import UNSEEN
from . import pixelfunc
pi = np.pi
dtor = pi/180.
def mollzoom(map=None,fig=None,rot=None,coord=None,unit='',
xsize=800,title='Mollweide view',nest=False,
min=None,max=None,flip='astro',
remove_dip=False,remove_mono=False,
gal_cut=0,
format='%g',cmap=None,
norm=None,hold=False,margins=None,sub=None):
"""Interactive mollweide plot with zoomed gnomview.
Parameters:
-----------
map : float, array-like shape (Npix,)
An array containing the map,
supports masked maps, see the `ma` function.
if None, use map with inf value (white map), useful for
overplotting
fig : a figure number.
Default: create a new figure
rot : scalar or sequence, optional
Describe the rotation to apply.
In the form (lon, lat, psi) (unit: degrees) : the point at
longitude *lon* and latitude *lat* will be at the center. An additional rotation
of angle *psi* around this direction is applied.
coord : sequence of character, optional
Either one of 'G', 'E' or 'C' to describe the coordinate
system of the map, or a sequence of 2 of these to rotate
the map from the first to the second coordinate system.
unit : str, optional
A text describing the unit of the data. Default: ''
xsize : int, optional
The size of the image. Default: 800
title : str, optional
The title of the plot. Default: 'Mollweide view'
nest : bool, optional
If True, ordering scheme is NESTED. Default: False (RING)
min : float, optional
The minimum range value
max : float, optional
The maximum range value
flip : {'astro', 'geo'}, optional
Defines the convention of projection : 'astro' (default, east towards left, west towards right)
or 'geo' (east towards roght, west towards left)
remove_dip : bool, optional
If :const:`True`, remove the dipole+monopole
remove_mono : bool, optional
If :const:`True`, remove the monopole
gal_cut : float, scalar, optional
Symmetric galactic cut for the dipole/monopole fit.
Removes points in latitude range [-gal_cut, +gal_cut]
format : str, optional
The format of the scale label. Default: '%g'
"""
import pylab
# create the figure (if interactive, it will open the window now)
f=pylab.figure(fig,figsize=(10.5,5.4))
extent = (0.02,0.25,0.56,0.72)
# Starting to draw : turn interactive off
wasinteractive = pylab.isinteractive()
pylab.ioff()
try:
if map is None:
map = np.zeros(12)+np.inf
map = pixelfunc.ma_to_array(map)
ax=PA.HpxMollweideAxes(f,extent,coord=coord,rot=rot,
format=format,flipconv=flip)
f.add_axes(ax)
if remove_dip:
map=pixelfunc.remove_dipole(map,gal_cut=gal_cut,
nest=nest,copy=True,
verbose=True)
elif remove_mono:
map=pixelfunc.remove_monopole(map,gal_cut=gal_cut,nest=nest,
copy=True,verbose=True)
ax.projmap(map,nest=nest,xsize=xsize,coord=coord,vmin=min,vmax=max,
cmap=cmap,norm=norm)
im = ax.get_images()[0]
b = im.norm.inverse(np.linspace(0,1,im.cmap.N+1))
v = np.linspace(im.norm.vmin,im.norm.vmax,im.cmap.N)
if matplotlib.__version__ >= '0.91.0':
cb=f.colorbar(ax.get_images()[0],ax=ax,
orientation='horizontal',
shrink=0.5,aspect=25,ticks=PA.BoundaryLocator(),
pad=0.05,fraction=0.1,boundaries=b,values=v)
else:
# for older matplotlib versions, no ax kwarg
cb=f.colorbar(ax.get_images()[0],orientation='horizontal',
shrink=0.5,aspect=25,ticks=PA.BoundaryLocator(),
pad=0.05,fraction=0.1,boundaries=b,values=v)
ax.set_title(title)
ax.text(0.86,0.05,ax.proj.coordsysstr,fontsize=14,
fontweight='bold',transform=ax.transAxes)
cb.ax.text(1.05,0.30,unit,fontsize=14,fontweight='bold',
transform=cb.ax.transAxes,ha='left',va='center')
f.sca(ax)
## Gnomonic axes
#extent = (0.02,0.25,0.56,0.72)
g_xsize=600
g_reso = 1.
extent = (0.60,0.04,0.38,0.94)
g_ax=PA.HpxGnomonicAxes(f,extent,coord=coord,rot=rot,
format=format,flipconv=flip)
f.add_axes(g_ax)
if remove_dip:
map=pixelfunc.remove_dipole(map,gal_cut=gal_cut,nest=nest,copy=True)
elif remove_mono:
map=pixelfunc.remove_monopole(map,gal_cut=gal_cut,nest=nest,copy=True)
g_ax.projmap(map,nest=nest,coord=coord,vmin=min,vmax=max,
xsize=g_xsize,ysize=g_xsize,reso=g_reso,cmap=cmap,norm=norm)
im = g_ax.get_images()[0]
b = im.norm.inverse(np.linspace(0,1,im.cmap.N+1))
v = np.linspace(im.norm.vmin,im.norm.vmax,im.cmap.N)
if matplotlib.__version__ >= '0.91.0':
cb=f.colorbar(g_ax.get_images()[0],ax=g_ax,
orientation='horizontal',
shrink=0.5,aspect=25,ticks=PA.BoundaryLocator(),
pad=0.08,fraction=0.1,boundaries=b,values=v)
else:
cb=f.colorbar(g_ax.get_images()[0],orientation='horizontal',
shrink=0.5,aspect=25,ticks=PA.BoundaryLocator(),
pad=0.08,fraction=0.1,boundaries=b,values=v)
g_ax.set_title(title)
g_ax.text(-0.07,0.02,
"%g '/pix, %dx%d pix"%(g_ax.proj.arrayinfo['reso'],
g_ax.proj.arrayinfo['xsize'],
g_ax.proj.arrayinfo['ysize']),
fontsize=12,verticalalignment='bottom',
transform=g_ax.transAxes,rotation=90)
g_ax.text(-0.07,0.8,g_ax.proj.coordsysstr,fontsize=14,
fontweight='bold',rotation=90,transform=g_ax.transAxes)
lon,lat = np.around(g_ax.proj.get_center(lonlat=True),g_ax._coordprec)
g_ax.text(0.5,-0.03,'on (%g,%g)'%(lon,lat),
verticalalignment='center', horizontalalignment='center',
transform=g_ax.transAxes)
cb.ax.text(1.05,0.30,unit,fontsize=14,fontweight='bold',
transform=cb.ax.transAxes,ha='left',va='center')
# Add graticule info axes
grat_ax = pylab.axes([0.25, 0.02, 0.22,0.25])
grat_ax.axis('off')
# Add help text
help_ax = pylab.axes([0.02,0.02,0.22,0.25])
help_ax.axis('off')
t = help_ax.transAxes
help_ax.text(0.1, 0.8, 'r/t .... zoom out/in',transform=t,va='baseline')
help_ax.text(0.1, 0.65,'p/v .... print coord/val',transform=t,va='baseline')
help_ax.text(0.1, 0.5, 'c ...... go to center',transform=t,va='baseline')
help_ax.text(0.1, 0.35,'f ...... next color scale',transform=t,va='baseline')
help_ax.text(0.1, 0.2, 'k ...... save current scale',transform=t,
va='baseline')
help_ax.text(0.1, 0.05,'g ...... toggle graticule',transform=t,va='baseline')
f.sca(g_ax)
# Set up the zoom capability
zt=ZoomTool(map,fig=f.number,nest=nest,cmap=cmap,norm=norm,coord=coord)
finally:
pylab.draw()
if wasinteractive:
pylab.ion()
def set_g_clim(vmin,vmax):
"""Set min/max value of the gnomview part of a mollzoom.
"""
import pylab
f=pylab.gcf()
if not hasattr(f,'zoomtool'):
raise TypeError('The current figure has no zoomtool')
f.zoomtool.save_min = vmin
f.zoomtool.save_max = vmax
f.zoomtool._range_status = 2
f.zoomtool.draw_gnom()
class ZoomTool(object):
"""A class providing zoom capability to a figure containing a Mollweide
and a Gnomonic axis.
"""
def __init__(self,m,fig=None,nest=False,cmap=None,norm=None,
coord=None):
"""m: the map to be zoomed (already plotted in Mollweide view)
fig: the figure to instrument (None->gcf())
"""
import pylab
self.reso_list = [0.05,0.1,0.2,0.3,0.5,0.75,1.,1.5,3.,5.,10.,15.,
30.,45.,60.]
self._map = m
self._nest = nest
self._cmap = cmap
self._norm = norm
self._coord = coord
self._range_status = 0 #0:normal, 1:global map min,max, 2: saved
self.save_min = self.save_max = None
self._graton = False
# find min, max of map
if isinstance(m, dict):
if len(m) == 0:
self._mapmin, self._mapmax = -1., 1.
else:
self._mapmin,self._mapmax = min(m.values()), max(m.values())
else:
mgood = m[m!=UNSEEN]
if mgood.size == 0:
self._mapmin, self._mapmax = -1., 1.
else:
self._mapmin,self._mapmax = mgood.min(),mgood.max()
del mgood
if fig is None: f=pylab.gcf()
else: f=pylab.figure(fig)
self.f = f
f.zoomtool = self
(self._moll_ax, self._moll_cb_ax,
self._gnom_ax, self._gnom_cb_ax) = f.get_axes()[:4]
self._grat_ax = f.get_axes()[4]
self._text_reso, self._text_coord, self._text_loc = self._gnom_ax.texts
self._xsize = self._gnom_ax.proj.arrayinfo['xsize']
self._ysize = self._gnom_ax.proj.arrayinfo['ysize']
try:
self._reso_idx = self.reso_list.index(self._gnom_ax.proj._arrayinfo['reso'])
except ValueError as e:
raise ValueError('Resolution not in %s'%self.reso_list)
self.zoomcenter, = self._moll_ax.plot([0],[0],'ok',
mew=1,ms=15,alpha=0.1)
self.zoomcenter2, = self._moll_ax.plot([0], [0], 'xr',
ms=15, alpha=0.5, mew=3)
self._text_range = self._gnom_ax.text(-0.4, -0.2, 'scale mode: loc',
transform=
self._gnom_ax.transAxes,
va='baseline',
ha='left')
self.draw_gnom(0,0)
self._connected = False
self.connect_callbacks()
def _zoom_on_click(self, ev):
import pylab
try:
ax = ev.inaxes
lon,lat = ax.get_lonlat(ev.xdata,ev.ydata)
if np.isnan(lon) or np.isnan(lat):
raise ValueError('invalid position')
val = ax.get_value(ev.xdata,ev.ydata)
self.lastval = val
self._move_zoom_center(lon,lat)
self.draw_gnom(lon,lat)
except Exception as s:
self._move_zoom_center(0,0,False)
pylab.draw_if_interactive()
#print s
return
def _reso_on_key(self, ev):
if ev.key == 'r':
self._decrease_reso()
elif ev.key == 't':
self._increase_reso()
elif ev.key == 'p':
print('lon,lat = %.17g,%.17g'%(self.lon,self.lat))
elif ev.key == 'c':
self._move_zoom_center(0,0)
self.draw_gnom(0,0)
elif ev.key == 'v':
print('val = %.17g'%(self.lastval))
elif ev.key == 'f':
self._range_status += 1
self._range_status %= 3
self.draw_gnom()
elif ev.key == 'k':
self.save_min = self._gnom_ax.images[0].norm.vmin
self.save_max = self._gnom_ax.images[0].norm.vmax
elif ev.key == 'g':
if hasattr(self,'_graton') and self._graton == True:
self._gnom_ax.delgraticules()
self._moll_ax.delgraticules()
self._graton = False
else:
(self._g_dpar,
self._g_dmer) = self._gnom_ax.graticule(local=False,
verbose=False)
(self._m_dpar,
self._m_dmer) = self._moll_ax.graticule(verbose=False)
self._graton = True
self.draw_gnom()
def _update_grat_info(self):
self._grat_ax.cla()
self._grat_ax.axis('off')
if self._graton:
a = self._grat_ax
t = a.transAxes
a.text(0.1, 0.8, 'moll. grat.:',transform=t,weight='bold')
vdeg = np.floor(np.around(self._m_dpar/dtor,10))
varcmin = (self._m_dpar/dtor-vdeg)*60.
a.text(0.1, 0.65, " -par: %d d %.2f '"%(vdeg,varcmin),
transform=t)
vdeg = np.floor(np.around(self._m_dmer/dtor,10))
varcmin = (self._m_dmer/dtor-vdeg)*60.
a.text(0.1, 0.5, " -mer: %d d %.2f '"%(vdeg,varcmin),
transform=t)
a.text(0.1, 0.35, 'gnom. grat.:',transform=t,weight='bold')
vdeg = np.floor(np.around(self._g_dpar/dtor,10))
varcmin = (self._g_dpar/dtor-vdeg)*60.
a.text(0.1, 0.2, " -par: %d d %.2f '"%(vdeg,varcmin),
transform=t)
vdeg = np.floor(np.around(self._g_dmer/dtor,10))
varcmin = (self._g_dmer/dtor-vdeg)*60.
a.text(0.1, 0.05, " -mer: %d d %.2f '"%(vdeg,varcmin),
transform=t)
def _increase_reso(self):
if self._reso_idx > 0:
self._reso_idx -= 1
self.draw_gnom(self.lon,self.lat)
def _decrease_reso(self):
if self._reso_idx < len(self.reso_list)-1:
self._reso_idx += 1
self.draw_gnom(self.lon,self.lat)
def get_reso(self):
return self.reso_list[self._reso_idx]
def connect_callbacks(self):
if not self._connected:
self._callbacks_id = []
cid = self.f.canvas.mpl_connect('button_press_event',
self._zoom_on_click)
self._callbacks_id.append(cid)
cid = self.f.canvas.mpl_connect('key_press_event',
self._reso_on_key)
self._callbacks_id.append(cid)
self._connected = True
def disconnect_callbacks(self):
if self._connected:
for cid in self._callbacks_id:
self.figure.canvas.mpl_disconnect(cid)
def _move_zoom_center(self, lon, lat, visible=True):
# Move the zoom center marker.
if self.zoomcenter:
x,y = self._moll_ax.proj.ang2xy(lon,lat,lonlat=True)
self.zoomcenter.set_xdata([x])
self.zoomcenter.set_ydata([y])
self.zoomcenter.set_visible(visible)
if self.zoomcenter2:
x,y = self._moll_ax.proj.ang2xy(lon,lat,lonlat=True)
self.zoomcenter2.set_xdata([x])
self.zoomcenter2.set_ydata([y])
self.zoomcenter2.set_visible(visible)
def draw_gnom(self,lon=None,lat=None):
import pylab
wasinteractive = pylab.isinteractive()
pylab.ioff()
try:
# modify rot of the gnom_ax
if lon is None:
lon = self._lon
else:
self._lon = lon
if lat is None:
lat = self._lat
else:
self._lat = lat
self._gnom_ax.proj.rotator._rots.pop()
self._gnom_ax.proj.rotator._rots.append(R.normalise_rot((lon,lat),deg=True))
self._gnom_ax.proj.rotator._update_matrix()
if self._range_status == 0:
vmin=vmax = None
elif self._range_status == 1:
vmin,vmax = self._mapmin,self._mapmax
elif self._range_status == 2:
vmin,vmax = self.save_min, self.save_max
self._gnom_ax.images.pop()
self._gnom_ax.projmap(self._map,nest=self._nest,coord=self._coord,
vmin=vmin,vmax=vmax,
xsize=self._xsize,ysize=self._ysize,
reso=self.get_reso(),
cmap=self._cmap,
norm=self._norm)
if hasattr(self._gnom_ax, '_scatter_data'):
l = [x for x in self._gnom_ax._scatter_data]
#print l
for sd in l:
s, input_data = sd
#print input_data
self._gnom_ax.collections.remove(s)
self._gnom_ax._scatter_data.remove(sd)
theta, phi, args, kwds = input_data
self._gnom_ax.projscatter(theta, phi = phi, *args, **kwds)
del l
if self._graton:
self._gnom_ax.delgraticules()
(self._g_dpar,
self._g_dmer) = self._gnom_ax.graticule(local=False,
verbose=False)
self._gnom_cb_ax.cla()
im = self._gnom_ax.images[0]
if matplotlib.__version__ >= '0.91.0':
cb=self.f.colorbar(im,ax=self._gnom_ax,
cax=self._gnom_cb_ax,orientation='horizontal',
ticks=PA.BoundaryLocator())
else:
cb=self.f.colorbar(im,cax=self._gnom_cb_ax,
orientation='horizontal',ticks=PA.BoundaryLocator())
lon,lat = np.around(self._gnom_ax.proj.get_center(lonlat=True),
self._gnom_ax._coordprec)
self._text_loc.set_text('on (%g,%g)'%(lon,lat))
reso = self._gnom_ax.proj.arrayinfo['reso']
xsize = self._gnom_ax.proj.arrayinfo['xsize']
ysize = self._gnom_ax.proj.arrayinfo['ysize']
self._text_reso.set_text("%g '/pix, %dx%d pix"%
(reso, xsize, ysize))
mode = ['loc','map','sav'][self._range_status]
self._text_range.set_text('scale mode: %s'%mode)
self.lon,self.lat = lon,lat
self._update_grat_info()
except Exception as e:
pass #print e
finally:
if wasinteractive:
pylab.ion()
pylab.draw()
pylab.show()
|