This file is indexed.

/usr/lib/python3/dist-packages/matplotlib/dates.py is in python3-matplotlib 1.5.1-1ubuntu1.

This file is owned by root:root, with mode 0o755.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
#!/usr/bin/env python
"""
Matplotlib provides sophisticated date plotting capabilities, standing on the
shoulders of python :mod:`datetime`, the add-on modules :mod:`pytz` and
:mod:`dateutil`.  :class:`datetime` objects are converted to floating point
numbers which represent time in days since 0001-01-01 UTC, plus 1.  For
example, 0001-01-01, 06:00 is 1.25, not 0.25.  The helper functions
:func:`date2num`, :func:`num2date` and :func:`drange` are used to facilitate
easy conversion to and from :mod:`datetime` and numeric ranges.

.. note::

   Like Python's datetime, mpl uses the Gregorian calendar for all
   conversions between dates and floating point numbers. This practice
   is not universal, and calendar differences can cause confusing
   differences between what Python and mpl give as the number of days
   since 0001-01-01 and what other software and databases yield.  For
   example, the US Naval Observatory uses a calendar that switches
   from Julian to Gregorian in October, 1582.  Hence, using their
   calculator, the number of days between 0001-01-01 and 2006-04-01 is
   732403, whereas using the Gregorian calendar via the datetime
   module we find::

     In [31]:date(2006,4,1).toordinal() - date(1,1,1).toordinal()
     Out[31]:732401


A wide range of specific and general purpose date tick locators and
formatters are provided in this module.  See
:mod:`matplotlib.ticker` for general information on tick locators
and formatters.  These are described below.

All the matplotlib date converters, tickers and formatters are
timezone aware, and the default timezone is given by the timezone
parameter in your :file:`matplotlibrc` file.  If you leave out a
:class:`tz` timezone instance, the default from your rc file will be
assumed.  If you want to use a custom time zone, pass a
:class:`pytz.timezone` instance with the tz keyword argument to
:func:`num2date`, :func:`plot_date`, and any custom date tickers or
locators you create.  See `pytz <http://pythonhosted.org/pytz/>`_ for
information on :mod:`pytz` and timezone handling.

The `dateutil module <https://dateutil.readthedocs.org>`_ provides
additional code to handle date ticking, making it easy to place ticks
on any kinds of dates.  See examples below.

Date tickers
------------

Most of the date tickers can locate single or multiple values.  For
example::

    # import constants for the days of the week
    from matplotlib.dates import MO, TU, WE, TH, FR, SA, SU

    # tick on mondays every week
    loc = WeekdayLocator(byweekday=MO, tz=tz)

    # tick on mondays and saturdays
    loc = WeekdayLocator(byweekday=(MO, SA))

In addition, most of the constructors take an interval argument::

    # tick on mondays every second week
    loc = WeekdayLocator(byweekday=MO, interval=2)

The rrule locator allows completely general date ticking::

    # tick every 5th easter
    rule = rrulewrapper(YEARLY, byeaster=1, interval=5)
    loc = RRuleLocator(rule)

Here are all the date tickers:

    * :class:`MinuteLocator`: locate minutes

    * :class:`HourLocator`: locate hours

    * :class:`DayLocator`: locate specifed days of the month

    * :class:`WeekdayLocator`: Locate days of the week, e.g., MO, TU

    * :class:`MonthLocator`: locate months, e.g., 7 for july

    * :class:`YearLocator`: locate years that are multiples of base

    * :class:`RRuleLocator`: locate using a
      :class:`matplotlib.dates.rrulewrapper`.  The
      :class:`rrulewrapper` is a simple wrapper around a
      :class:`dateutil.rrule` (`dateutil
      <https://dateutil.readthedocs.org>`_) which allow almost
      arbitrary date tick specifications.  See `rrule example
      <../examples/pylab_examples/date_demo_rrule.html>`_.

    * :class:`AutoDateLocator`: On autoscale, this class picks the best
      :class:`MultipleDateLocator` to set the view limits and the tick
      locations.

Date formatters
---------------

Here all all the date formatters:

    * :class:`AutoDateFormatter`: attempts to figure out the best format
      to use.  This is most useful when used with the :class:`AutoDateLocator`.

    * :class:`DateFormatter`: use :func:`strftime` format strings

    * :class:`IndexDateFormatter`: date plots with implicit *x*
      indexing.
"""
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

from matplotlib.externals import six
from matplotlib.externals.six.moves import xrange, zip

import re
import time
import math
import datetime

import warnings


from dateutil.rrule import (rrule, MO, TU, WE, TH, FR, SA, SU, YEARLY,
                            MONTHLY, WEEKLY, DAILY, HOURLY, MINUTELY,
                            SECONDLY)
from dateutil.relativedelta import relativedelta
import dateutil.parser
import numpy as np


import matplotlib
import matplotlib.units as units
import matplotlib.cbook as cbook
import matplotlib.ticker as ticker


__all__ = ('date2num', 'num2date', 'drange', 'epoch2num',
           'num2epoch', 'mx2num', 'DateFormatter',
           'IndexDateFormatter', 'AutoDateFormatter', 'DateLocator',
           'RRuleLocator', 'AutoDateLocator', 'YearLocator',
           'MonthLocator', 'WeekdayLocator',
           'DayLocator', 'HourLocator', 'MinuteLocator',
           'SecondLocator', 'MicrosecondLocator',
           'rrule', 'MO', 'TU', 'WE', 'TH', 'FR', 'SA', 'SU',
           'YEARLY', 'MONTHLY', 'WEEKLY', 'DAILY',
           'HOURLY', 'MINUTELY', 'SECONDLY', 'MICROSECONDLY', 'relativedelta',
           'seconds', 'minutes', 'hours', 'weeks')


# Make a simple UTC instance so we don't always have to import
# pytz.  From the python datetime library docs:

class _UTC(datetime.tzinfo):
    """UTC"""

    def utcoffset(self, dt):
        return datetime.timedelta(0)

    def tzname(self, dt):
        return "UTC"

    def dst(self, dt):
        return datetime.timedelta(0)

UTC = _UTC()


def _get_rc_timezone():
    """
    Retrieve the preferred timeszone from the rcParams dictionary.
    """
    s = matplotlib.rcParams['timezone']
    if s == 'UTC':
        return UTC
    import pytz
    return pytz.timezone(s)

"""
Time-related constants.
"""
EPOCH_OFFSET = float(datetime.datetime(1970, 1, 1).toordinal())
JULIAN_OFFSET = 1721424.5                         # Julian date at 0001-01-01
MICROSECONDLY = SECONDLY + 1
HOURS_PER_DAY = 24.
MIN_PER_HOUR = 60.
SEC_PER_MIN = 60.
MONTHS_PER_YEAR = 12.

DAYS_PER_WEEK = 7.
DAYS_PER_MONTH = 30.
DAYS_PER_YEAR = 365.0

MINUTES_PER_DAY = MIN_PER_HOUR * HOURS_PER_DAY

SEC_PER_HOUR = SEC_PER_MIN * MIN_PER_HOUR
SEC_PER_DAY = SEC_PER_HOUR * HOURS_PER_DAY
SEC_PER_WEEK = SEC_PER_DAY * DAYS_PER_WEEK

MUSECONDS_PER_DAY = 1e6 * SEC_PER_DAY

MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY = (
    MO, TU, WE, TH, FR, SA, SU)
WEEKDAYS = (MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY)


def _to_ordinalf(dt):
    """
    Convert :mod:`datetime` or :mod:`date` to the Gregorian date as UTC float
    days, preserving hours, minutes, seconds and microseconds.  Return value
    is a :func:`float`.
    """

    if hasattr(dt, 'tzinfo') and dt.tzinfo is not None:
        delta = dt.tzinfo.utcoffset(dt)
        if delta is not None:
            dt -= delta

    base = float(dt.toordinal())
    if isinstance(dt, datetime.datetime):
        # Get a datetime object at midnight in the same time zone as dt.
        cdate = dt.date()
        midnight_time = datetime.time(0, 0, 0, tzinfo=dt.tzinfo)

        rdt = datetime.datetime.combine(cdate, midnight_time)
        td_remainder = _total_seconds(dt - rdt)

        if td_remainder > 0:
            base += td_remainder / SEC_PER_DAY

    return base


# a version of _to_ordinalf that can operate on numpy arrays
_to_ordinalf_np_vectorized = np.vectorize(_to_ordinalf)

try:
    # Available as a native method in Python >= 2.7.
    _total_seconds = datetime.timedelta.total_seconds
except AttributeError:
    def _total_seconds(tdelta):
        """
        Alias providing support for datetime.timedelta.total_seconds() function
        calls even in Python < 2.7.

        The input `tdelta` is a datetime.timedelta object, and returns a float
        containing the total number of seconds representing the `tdelta`
        duration. For large durations (> 270 on most platforms), this loses
        microsecond accuracy.
        """
        return (tdelta.microseconds +
                (tdelta.seconds + tdelta.days * SEC_PER_DAY) * 1e6) * 1e-6


def _from_ordinalf(x, tz=None):
    """
    Convert Gregorian float of the date, preserving hours, minutes,
    seconds and microseconds.  Return value is a :class:`datetime`.

    The input date `x` is a float in ordinal days at UTC, and the output will
    be the specified :class:`datetime` object corresponding to that time in
    timezone `tz`, or if `tz` is `None`, in the timezone specified in
    `rcParams['timezone']`.
    """
    if tz is None:
        tz = _get_rc_timezone()

    ix = int(x)
    dt = datetime.datetime.fromordinal(ix).replace(tzinfo=UTC)

    remainder = float(x) - ix

    # Round down to the nearest microsecond.
    dt += datetime.timedelta(microseconds=int(remainder * MUSECONDS_PER_DAY))

    # Compensate for rounding errors
    if dt.microsecond < 10:
        dt = dt.replace(microsecond=0)
    elif dt.microsecond > 999990:
        dt += datetime.timedelta(microseconds=1e6 - dt.microsecond)

    return dt.astimezone(tz)


# a version of _from_ordinalf that can operate on numpy arrays
_from_ordinalf_np_vectorized = np.vectorize(_from_ordinalf)


class strpdate2num(object):
    """
    Use this class to parse date strings to matplotlib datenums when
    you know the date format string of the date you are parsing.  See
    :file:`examples/load_demo.py`.
    """
    def __init__(self, fmt):
        """ fmt: any valid strptime format is supported """
        self.fmt = fmt

    def __call__(self, s):
        """s : string to be converted
           return value: a date2num float
        """
        return date2num(datetime.datetime(*time.strptime(s, self.fmt)[:6]))


class bytespdate2num(strpdate2num):
    """
    Use this class to parse date strings to matplotlib datenums when
    you know the date format string of the date you are parsing.  See
    :file:`examples/load_demo.py`.
    """
    def __init__(self, fmt, encoding='utf-8'):
        """
        Args:
            fmt: any valid strptime format is supported
            encoding: encoding to use on byte input (default: 'utf-8')
        """
        super(bytespdate2num, self).__init__(fmt)
        self.encoding = encoding

    def __call__(self, b):
        """
        Args:
            b: byte input to be converted
        Returns:
            A date2num float
        """
        s = b.decode(self.encoding)
        return super(bytespdate2num, self).__call__(s)


# a version of dateutil.parser.parse that can operate on nump0y arrays
_dateutil_parser_parse_np_vectorized = np.vectorize(dateutil.parser.parse)


def datestr2num(d, default=None):
    """
    Convert a date string to a datenum using
    :func:`dateutil.parser.parse`.

    Parameters
    ----------
    d : string or sequence of strings
        The dates to convert.

    default : datetime instance
        The default date to use when fields are missing in `d`.
    """
    if cbook.is_string_like(d):
        dt = dateutil.parser.parse(d, default=default)
        return date2num(dt)
    else:
        if default is not None:
            d = [dateutil.parser.parse(s, default=default) for s in d]
        d = np.asarray(d)
        if not d.size:
            return d
        return date2num(_dateutil_parser_parse_np_vectorized(d))


def date2num(d):
    """
    *d* is either a :class:`datetime` instance or a sequence of datetimes.

    Return value is a floating point number (or sequence of floats)
    which gives the number of days (fraction part represents hours,
    minutes, seconds) since 0001-01-01 00:00:00 UTC, *plus* *one*.
    The addition of one here is a historical artifact.  Also, note
    that the Gregorian calendar is assumed; this is not universal
    practice.  For details, see the module docstring.
    """
    if not cbook.iterable(d):
        return _to_ordinalf(d)
    else:
        d = np.asarray(d)
        if not d.size:
            return d
        return _to_ordinalf_np_vectorized(d)


def julian2num(j):
    """
    Convert a Julian date (or sequence) to a matplotlib date (or sequence).
    """
    if cbook.iterable(j):
        j = np.asarray(j)
    return j - JULIAN_OFFSET


def num2julian(n):
    """
    Convert a matplotlib date (or sequence) to a Julian date (or sequence).
    """
    if cbook.iterable(n):
        n = np.asarray(n)
    return n + JULIAN_OFFSET


def num2date(x, tz=None):
    """
    *x* is a float value which gives the number of days
    (fraction part represents hours, minutes, seconds) since
    0001-01-01 00:00:00 UTC *plus* *one*.
    The addition of one here is a historical artifact.  Also, note
    that the Gregorian calendar is assumed; this is not universal
    practice.  For details, see the module docstring.

    Return value is a :class:`datetime` instance in timezone *tz* (default to
    rcparams TZ value).

    If *x* is a sequence, a sequence of :class:`datetime` objects will
    be returned.
    """
    if tz is None:
        tz = _get_rc_timezone()
    if not cbook.iterable(x):
        return _from_ordinalf(x, tz)
    else:
        x = np.asarray(x)
        if not x.size:
            return x
        return _from_ordinalf_np_vectorized(x, tz).tolist()


def drange(dstart, dend, delta):
    """
    Return a date range as float Gregorian ordinals.  *dstart* and
    *dend* are :class:`datetime` instances.  *delta* is a
    :class:`datetime.timedelta` instance.
    """
    f1 = _to_ordinalf(dstart)
    f2 = _to_ordinalf(dend)
    step = _total_seconds(delta) / SEC_PER_DAY

    # calculate the difference between dend and dstart in times of delta
    num = int(np.ceil((f2 - f1) / step))

    # calculate end of the interval which will be generated
    dinterval_end = dstart + num * delta

    # ensure, that an half open interval will be generated [dstart, dend)
    if dinterval_end >= dend:
        # if the endpoint is greated than dend, just subtract one delta
        dinterval_end -= delta
        num -= 1

    f2 = _to_ordinalf(dinterval_end)  # new float-endpoint
    return np.linspace(f1, f2, num + 1)

### date tickers and formatters ###


class DateFormatter(ticker.Formatter):
    """
    Tick location is seconds since the epoch.  Use a :func:`strftime`
    format string.

    Python only supports :mod:`datetime` :func:`strftime` formatting
    for years greater than 1900.  Thanks to Andrew Dalke, Dalke
    Scientific Software who contributed the :func:`strftime` code
    below to include dates earlier than this year.
    """

    illegal_s = re.compile(r"((^|[^%])(%%)*%s)")

    def __init__(self, fmt, tz=None):
        """
        *fmt* is a :func:`strftime` format string; *tz* is the
         :class:`tzinfo` instance.
        """
        if tz is None:
            tz = _get_rc_timezone()
        self.fmt = fmt
        self.tz = tz

    def __call__(self, x, pos=0):
        if x == 0:
            raise ValueError('DateFormatter found a value of x=0, which is '
                             'an illegal date.  This usually occurs because '
                             'you have not informed the axis that it is '
                             'plotting dates, e.g., with ax.xaxis_date()')
        dt = num2date(x, self.tz)
        return self.strftime(dt, self.fmt)

    def set_tzinfo(self, tz):
        self.tz = tz

    def _replace_common_substr(self, s1, s2, sub1, sub2, replacement):
        """Helper function for replacing substrings sub1 and sub2
        located at the same indexes in strings s1 and s2 respectively,
        with the string replacement.  It is expected that sub1 and sub2
        have the same length.  Returns the pair s1, s2 after the
        substitutions.
        """
        # Find common indexes of substrings sub1 in s1 and sub2 in s2
        # and make substitutions inplace. Because this is inplace,
        # it is okay if len(replacement) != len(sub1), len(sub2).
        i = 0
        while True:
            j = s1.find(sub1, i)
            if j == -1:
                break

            i = j + 1
            if s2[j:j + len(sub2)] != sub2:
                continue

            s1 = s1[:j] + replacement + s1[j + len(sub1):]
            s2 = s2[:j] + replacement + s2[j + len(sub2):]

        return s1, s2

    def strftime_pre_1900(self, dt, fmt=None):
        """Call time.strftime for years before 1900 by rolling
        forward a multiple of 28 years.

        *fmt* is a :func:`strftime` format string.

        Dalke: I hope I did this math right.  Every 28 years the
        calendar repeats, except through century leap years excepting
        the 400 year leap years.  But only if you're using the Gregorian
        calendar.
        """
        if fmt is None:
            fmt = self.fmt

        # Since python's time module's strftime implementation does not
        # support %f microsecond (but the datetime module does), use a
        # regular expression substitution to replace instances of %f.
        # Note that this can be useful since python's floating-point
        # precision representation for datetime causes precision to be
        # more accurate closer to year 0 (around the year 2000, precision
        # can be at 10s of microseconds).
        fmt = re.sub(r'((^|[^%])(%%)*)%f',
                     r'\g<1>{0:06d}'.format(dt.microsecond), fmt)

        year = dt.year
        # For every non-leap year century, advance by
        # 6 years to get into the 28-year repeat cycle
        delta = 2000 - year
        off = 6 * (delta // 100 + delta // 400)
        year = year + off

        # Move to between the years 1973 and 2000
        year1 = year + ((2000 - year) // 28) * 28
        year2 = year1 + 28
        timetuple = dt.timetuple()
        # Generate timestamp string for year and year+28
        s1 = time.strftime(fmt, (year1,) + timetuple[1:])
        s2 = time.strftime(fmt, (year2,) + timetuple[1:])

        # Replace instances of respective years (both 2-digit and 4-digit)
        # that are located at the same indexes of s1, s2 with dt's year.
        # Note that C++'s strftime implementation does not use padded
        # zeros or padded whitespace for %y or %Y for years before 100, but
        # uses padded zeros for %x. (For example, try the runnable examples
        # with .tm_year in the interval [-1900, -1800] on
        # http://en.cppreference.com/w/c/chrono/strftime.) For ease of
        # implementation, we always use padded zeros for %y, %Y, and %x.
        s1, s2 = self._replace_common_substr(s1, s2,
                                             "{0:04d}".format(year1),
                                             "{0:04d}".format(year2),
                                             "{0:04d}".format(dt.year))
        s1, s2 = self._replace_common_substr(s1, s2,
                                             "{0:02d}".format(year1 % 100),
                                             "{0:02d}".format(year2 % 100),
                                             "{0:02d}".format(dt.year % 100))
        return cbook.unicode_safe(s1)

    def strftime(self, dt, fmt=None):
        """Refer to documentation for datetime.strftime.

        *fmt* is a :func:`strftime` format string.

        Warning: For years before 1900, depending upon the current
        locale it is possible that the year displayed with %x might
        be incorrect. For years before 100, %y and %Y will yield
        zero-padded strings.
        """
        if fmt is None:
            fmt = self.fmt
        fmt = self.illegal_s.sub(r"\1", fmt)
        fmt = fmt.replace("%s", "s")
        if dt.year >= 1900:
            # Note: in python 3.3 this is okay for years >= 1000,
            # refer to http://bugs.python.org/issue177742
            return cbook.unicode_safe(dt.strftime(fmt))

        return self.strftime_pre_1900(dt, fmt)


class IndexDateFormatter(ticker.Formatter):
    """
    Use with :class:`~matplotlib.ticker.IndexLocator` to cycle format
    strings by index.
    """
    def __init__(self, t, fmt, tz=None):
        """
        *t* is a sequence of dates (floating point days).  *fmt* is a
        :func:`strftime` format string.
        """
        if tz is None:
            tz = _get_rc_timezone()
        self.t = t
        self.fmt = fmt
        self.tz = tz

    def __call__(self, x, pos=0):
        'Return the label for time *x* at position *pos*'
        ind = int(round(x))
        if ind >= len(self.t) or ind <= 0:
            return ''

        dt = num2date(self.t[ind], self.tz)

        return cbook.unicode_safe(dt.strftime(self.fmt))


class AutoDateFormatter(ticker.Formatter):
    """
    This class attempts to figure out the best format to use.  This is
    most useful when used with the :class:`AutoDateLocator`.


    The AutoDateFormatter has a scale dictionary that maps the scale
    of the tick (the distance in days between one major tick) and a
    format string.  The default looks like this::

        self.scaled = {
           365.0  : '%Y',
           30.    : '%b %Y',
           1.0    : '%b %d %Y',
           1./24. : '%H:%M:%S',
           1. / (24. * 60.): '%H:%M:%S.%f',
           }


    The algorithm picks the key in the dictionary that is >= the
    current scale and uses that format string.  You can customize this
    dictionary by doing::


    >>> formatter = AutoDateFormatter()
    >>> formatter.scaled[1/(24.*60.)] = '%M:%S' # only show min and sec

    A custom :class:`~matplotlib.ticker.FuncFormatter` can also be used.
    The following example shows how to use a custom format function to strip
    trailing zeros from decimal seconds and adds the date to the first
    ticklabel::

        >>> def my_format_function(x, pos=None):
        ...     x = matplotlib.dates.num2date(x)
        ...     if pos == 0:
        ...         fmt = '%D %H:%M:%S.%f'
        ...     else:
        ...         fmt = '%H:%M:%S.%f'
        ...     label = x.strftime(fmt)
        ...     label = label.rstrip("0")
        ...     label = label.rstrip(".")
        ...     return label
        >>> from matplotlib.ticker import FuncFormatter
        >>> formatter.scaled[1/(24.*60.)] = FuncFormatter(my_format_function)
    """

    # This can be improved by providing some user-level direction on
    # how to choose the best format (precedence, etc...)

    # Perhaps a 'struct' that has a field for each time-type where a
    # zero would indicate "don't show" and a number would indicate
    # "show" with some sort of priority.  Same priorities could mean
    # show all with the same priority.

    # Or more simply, perhaps just a format string for each
    # possibility...

    def __init__(self, locator, tz=None, defaultfmt='%Y-%m-%d'):
        """
        Autoformat the date labels.  The default format is the one to use
        if none of the values in ``self.scaled`` are greater than the unit
        returned by ``locator._get_unit()``.
        """
        self._locator = locator
        self._tz = tz
        self.defaultfmt = defaultfmt
        self._formatter = DateFormatter(self.defaultfmt, tz)
        self.scaled = {DAYS_PER_YEAR: '%Y',
                       DAYS_PER_MONTH: '%b %Y',
                       1.0: '%b %d %Y',
                       1. / HOURS_PER_DAY: '%H:%M:%S',
                       1. / (MINUTES_PER_DAY): '%H:%M:%S.%f'}

    def __call__(self, x, pos=None):
        locator_unit_scale = float(self._locator._get_unit())
        fmt = self.defaultfmt

        # Pick the first scale which is greater than the locator unit.
        for possible_scale in sorted(self.scaled):
            if possible_scale >= locator_unit_scale:
                fmt = self.scaled[possible_scale]
                break

        if isinstance(fmt, six.string_types):
            self._formatter = DateFormatter(fmt, self._tz)
            result = self._formatter(x, pos)
        elif six.callable(fmt):
            result = fmt(x, pos)
        else:
            raise TypeError('Unexpected type passed to {0!r}.'.format(self))

        return result


class rrulewrapper(object):

    def __init__(self, freq, **kwargs):
        self._construct = kwargs.copy()
        self._construct["freq"] = freq
        self._rrule = rrule(**self._construct)

    def set(self, **kwargs):
        self._construct.update(kwargs)
        self._rrule = rrule(**self._construct)

    def __getattr__(self, name):
        if name in self.__dict__:
            return self.__dict__[name]
        return getattr(self._rrule, name)


class DateLocator(ticker.Locator):
    """
    Determines the tick locations when plotting dates.
    """
    hms0d = {'byhour': 0, 'byminute': 0, 'bysecond': 0}

    def __init__(self, tz=None):
        """
        *tz* is a :class:`tzinfo` instance.
        """
        if tz is None:
            tz = _get_rc_timezone()
        self.tz = tz

    def set_tzinfo(self, tz):
        """
        Set time zone info.
        """
        self.tz = tz

    def datalim_to_dt(self):
        """
        Convert axis data interval to datetime objects.
        """
        dmin, dmax = self.axis.get_data_interval()
        if dmin > dmax:
            dmin, dmax = dmax, dmin

        return num2date(dmin, self.tz), num2date(dmax, self.tz)

    def viewlim_to_dt(self):
        """
        Converts the view interval to datetime objects.
        """
        vmin, vmax = self.axis.get_view_interval()
        if vmin > vmax:
            vmin, vmax = vmax, vmin

        return num2date(vmin, self.tz), num2date(vmax, self.tz)

    def _get_unit(self):
        """
        Return how many days a unit of the locator is; used for
        intelligent autoscaling.
        """
        return 1

    def _get_interval(self):
        """
        Return the number of units for each tick.
        """
        return 1

    def nonsingular(self, vmin, vmax):
        """
        Given the proposed upper and lower extent, adjust the range
        if it is too close to being singular (i.e. a range of ~0).

        """
        unit = self._get_unit()
        interval = self._get_interval()
        if abs(vmax - vmin) < 1e-6:
            vmin -= 2 * unit * interval
            vmax += 2 * unit * interval
        return vmin, vmax


class RRuleLocator(DateLocator):
    # use the dateutil rrule instance

    def __init__(self, o, tz=None):
        DateLocator.__init__(self, tz)
        self.rule = o

    def __call__(self):
        # if no data have been set, this will tank with a ValueError
        try:
            dmin, dmax = self.viewlim_to_dt()
        except ValueError:
            return []

        return self.tick_values(dmin, dmax)

    def tick_values(self, vmin, vmax):
        delta = relativedelta(vmax, vmin)

        # We need to cap at the endpoints of valid datetime
        try:
            start = vmin - delta
        except ValueError:
            start = _from_ordinalf(1.0)

        try:
            stop = vmax + delta
        except ValueError:
            # The magic number!
            stop = _from_ordinalf(3652059.9999999)

        self.rule.set(dtstart=start, until=stop, count=self.MAXTICKS + 1)

        # estimate the number of ticks very approximately so we don't
        # have to do a very expensive (and potentially near infinite)
        # 'between' calculation, only to find out it will fail.
        nmax, nmin = date2num((vmax, vmin))
        estimate = (nmax - nmin) / (self._get_unit() * self._get_interval())
        # This estimate is only an estimate, so be really conservative
        # about bailing...
        if estimate > self.MAXTICKS * 2:
            raise RuntimeError(
                'RRuleLocator estimated to generate %d ticks from %s to %s: '
                'exceeds Locator.MAXTICKS * 2 (%d) ' % (estimate, vmin, vmax,
                                                        self.MAXTICKS * 2))

        dates = self.rule.between(vmin, vmax, True)
        if len(dates) == 0:
            return date2num([vmin, vmax])
        return self.raise_if_exceeds(date2num(dates))

    def _get_unit(self):
        """
        Return how many days a unit of the locator is; used for
        intelligent autoscaling.
        """
        freq = self.rule._rrule._freq
        return self.get_unit_generic(freq)

    @staticmethod
    def get_unit_generic(freq):
        if freq == YEARLY:
            return DAYS_PER_YEAR
        elif freq == MONTHLY:
            return DAYS_PER_MONTH
        elif freq == WEEKLY:
            return DAYS_PER_WEEK
        elif freq == DAILY:
            return 1.0
        elif freq == HOURLY:
            return 1.0 / HOURS_PER_DAY
        elif freq == MINUTELY:
            return 1.0 / MINUTES_PER_DAY
        elif freq == SECONDLY:
            return 1.0 / SEC_PER_DAY
        else:
            # error
            return -1   # or should this just return '1'?

    def _get_interval(self):
        return self.rule._rrule._interval

    def autoscale(self):
        """
        Set the view limits to include the data range.
        """
        dmin, dmax = self.datalim_to_dt()
        delta = relativedelta(dmax, dmin)

        # We need to cap at the endpoints of valid datetime
        try:
            start = dmin - delta
        except ValueError:
            start = _from_ordinalf(1.0)

        try:
            stop = dmax + delta
        except ValueError:
            # The magic number!
            stop = _from_ordinalf(3652059.9999999)

        self.rule.set(dtstart=start, until=stop)
        dmin, dmax = self.datalim_to_dt()

        vmin = self.rule.before(dmin, True)
        if not vmin:
            vmin = dmin

        vmax = self.rule.after(dmax, True)
        if not vmax:
            vmax = dmax

        vmin = date2num(vmin)
        vmax = date2num(vmax)

        return self.nonsingular(vmin, vmax)


class AutoDateLocator(DateLocator):
    """
    On autoscale, this class picks the best
    :class:`DateLocator` to set the view limits and the tick
    locations.
    """
    def __init__(self, tz=None, minticks=5, maxticks=None,
                 interval_multiples=False):
        """
        *minticks* is the minimum number of ticks desired, which is used to
        select the type of ticking (yearly, monthly, etc.).

        *maxticks* is the maximum number of ticks desired, which controls
        any interval between ticks (ticking every other, every 3, etc.).
        For really fine-grained control, this can be a dictionary mapping
        individual rrule frequency constants (YEARLY, MONTHLY, etc.)
        to their own maximum number of ticks.  This can be used to keep
        the number of ticks appropriate to the format chosen in
        :class:`AutoDateFormatter`. Any frequency not specified in this
        dictionary is given a default value.

        *tz* is a :class:`tzinfo` instance.

        *interval_multiples* is a boolean that indicates whether ticks
        should be chosen to be multiple of the interval. This will lock
        ticks to 'nicer' locations. For example, this will force the
        ticks to be at hours 0,6,12,18 when hourly ticking is done at
        6 hour intervals.

        The AutoDateLocator has an interval dictionary that maps the
        frequency of the tick (a constant from dateutil.rrule) and a
        multiple allowed for that ticking.  The default looks like this::

          self.intervald = {
            YEARLY  : [1, 2, 4, 5, 10, 20, 40, 50, 100, 200, 400, 500,
                      1000, 2000, 4000, 5000, 10000],
            MONTHLY : [1, 2, 3, 4, 6],
            DAILY   : [1, 2, 3, 7, 14],
            HOURLY  : [1, 2, 3, 4, 6, 12],
            MINUTELY: [1, 5, 10, 15, 30],
            SECONDLY: [1, 5, 10, 15, 30],
            MICROSECONDLY: [1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000,
                           5000, 10000, 20000, 50000, 100000, 200000, 500000,
                           1000000],
            }

        The interval is used to specify multiples that are appropriate for
        the frequency of ticking. For instance, every 7 days is sensible
        for daily ticks, but for minutes/seconds, 15 or 30 make sense.
        You can customize this dictionary by doing::

          locator = AutoDateLocator()
          locator.intervald[HOURLY] = [3] # only show every 3 hours
        """
        DateLocator.__init__(self, tz)
        self._locator = YearLocator()
        self._freq = YEARLY
        self._freqs = [YEARLY, MONTHLY, DAILY, HOURLY, MINUTELY,
                       SECONDLY, MICROSECONDLY]
        self.minticks = minticks

        self.maxticks = {YEARLY: 11, MONTHLY: 12, DAILY: 11, HOURLY: 12,
                         MINUTELY: 11, SECONDLY: 11, MICROSECONDLY: 8}
        if maxticks is not None:
            try:
                self.maxticks.update(maxticks)
            except TypeError:
                # Assume we were given an integer. Use this as the maximum
                # number of ticks for every frequency and create a
                # dictionary for this
                self.maxticks = dict(zip(self._freqs,
                                         [maxticks] * len(self._freqs)))
        self.interval_multiples = interval_multiples
        self.intervald = {
            YEARLY:   [1, 2, 4, 5, 10, 20, 40, 50, 100, 200, 400, 500,
                       1000, 2000, 4000, 5000, 10000],
            MONTHLY:  [1, 2, 3, 4, 6],
            DAILY:    [1, 2, 3, 7, 14, 21],
            HOURLY:   [1, 2, 3, 4, 6, 12],
            MINUTELY: [1, 5, 10, 15, 30],
            SECONDLY: [1, 5, 10, 15, 30],
            MICROSECONDLY: [1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000,
                            5000, 10000, 20000, 50000, 100000, 200000, 500000,
                            1000000]}
        self._byranges = [None, range(1, 13), range(1, 32),
                          range(0, 24), range(0, 60), range(0, 60), None]

    def __call__(self):
        'Return the locations of the ticks'
        self.refresh()
        return self._locator()

    def tick_values(self, vmin, vmax):
        return self.get_locator(vmin, vmax).tick_values(vmin, vmax)

    def nonsingular(self, vmin, vmax):
        # whatever is thrown at us, we can scale the unit.
        # But default nonsingular date plots at an ~4 year period.
        if vmin == vmax:
            vmin = vmin - DAYS_PER_YEAR * 2
            vmax = vmax + DAYS_PER_YEAR * 2
        return vmin, vmax

    def set_axis(self, axis):
        DateLocator.set_axis(self, axis)
        self._locator.set_axis(axis)

    def refresh(self):
        'Refresh internal information based on current limits.'
        dmin, dmax = self.viewlim_to_dt()
        self._locator = self.get_locator(dmin, dmax)

    def _get_unit(self):
        if self._freq in [MICROSECONDLY]:
            return 1. / MUSECONDS_PER_DAY
        else:
            return RRuleLocator.get_unit_generic(self._freq)

    def autoscale(self):
        'Try to choose the view limits intelligently.'
        dmin, dmax = self.datalim_to_dt()
        self._locator = self.get_locator(dmin, dmax)
        return self._locator.autoscale()

    def get_locator(self, dmin, dmax):
        'Pick the best locator based on a distance.'
        delta = relativedelta(dmax, dmin)
        tdelta = dmax - dmin

        # take absolute difference
        if dmin > dmax:
            delta = -delta
            tdelta = -tdelta

        # The following uses a mix of calls to relativedelta and timedelta
        # methods because there is incomplete overlap in the functionality of
        # these similar functions, and it's best to avoid doing our own math
        # whenever possible.
        numYears = float(delta.years)
        numMonths = (numYears * MONTHS_PER_YEAR) + delta.months
        numDays = tdelta.days   # Avoids estimates of days/month, days/year
        numHours = (numDays * HOURS_PER_DAY) + delta.hours
        numMinutes = (numHours * MIN_PER_HOUR) + delta.minutes
        numSeconds = np.floor(_total_seconds(tdelta))
        numMicroseconds = np.floor(_total_seconds(tdelta) * 1e6)

        nums = [numYears, numMonths, numDays, numHours, numMinutes,
                numSeconds, numMicroseconds]

        use_rrule_locator = [True] * 6 + [False]

        # Default setting of bymonth, etc. to pass to rrule
        # [unused (for year), bymonth, bymonthday, byhour, byminute,
        #  bysecond, unused (for microseconds)]
        byranges = [None, 1, 1, 0, 0, 0, None]

        # Loop over all the frequencies and try to find one that gives at
        # least a minticks tick positions.  Once this is found, look for
        # an interval from an list specific to that frequency that gives no
        # more than maxticks tick positions. Also, set up some ranges
        # (bymonth, etc.) as appropriate to be passed to rrulewrapper.
        for i, (freq, num) in enumerate(zip(self._freqs, nums)):
            # If this particular frequency doesn't give enough ticks, continue
            if num < self.minticks:
                # Since we're not using this particular frequency, set
                # the corresponding by_ to None so the rrule can act as
                # appropriate
                byranges[i] = None
                continue

            # Find the first available interval that doesn't give too many
            # ticks
            for interval in self.intervald[freq]:
                if num <= interval * (self.maxticks[freq] - 1):
                    break
            else:
                # We went through the whole loop without breaking, default to
                # the last interval in the list and raise a warning
                warnings.warn('AutoDateLocator was unable to pick an '
                              'appropriate interval for this date range. '
                              'It may be necessary to add an interval value '
                              "to the AutoDateLocator's intervald dictionary."
                              ' Defaulting to {0}.'.format(interval))

            # Set some parameters as appropriate
            self._freq = freq

            if self._byranges[i] and self.interval_multiples:
                byranges[i] = self._byranges[i][::interval]
                interval = 1
            else:
                byranges[i] = self._byranges[i]

            # We found what frequency to use
            break
        else:
            raise ValueError('No sensible date limit could be found in the '
                             'AutoDateLocator.')

        if use_rrule_locator[i]:
            _, bymonth, bymonthday, byhour, byminute, bysecond, _ = byranges

            rrule = rrulewrapper(self._freq, interval=interval,
                                 dtstart=dmin, until=dmax,
                                 bymonth=bymonth, bymonthday=bymonthday,
                                 byhour=byhour, byminute=byminute,
                                 bysecond=bysecond)

            locator = RRuleLocator(rrule, self.tz)
        else:
            locator = MicrosecondLocator(interval, tz=self.tz)

        locator.set_axis(self.axis)

        locator.set_view_interval(*self.axis.get_view_interval())
        locator.set_data_interval(*self.axis.get_data_interval())
        return locator


class YearLocator(DateLocator):
    """
    Make ticks on a given day of each year that is a multiple of base.

    Examples::

      # Tick every year on Jan 1st
      locator = YearLocator()

      # Tick every 5 years on July 4th
      locator = YearLocator(5, month=7, day=4)
    """
    def __init__(self, base=1, month=1, day=1, tz=None):
        """
        Mark years that are multiple of base on a given month and day
        (default jan 1).
        """
        DateLocator.__init__(self, tz)
        self.base = ticker.Base(base)
        self.replaced = {'month':  month,
                         'day':    day,
                         'hour':   0,
                         'minute': 0,
                         'second': 0,
                         'tzinfo': tz
                         }

    def __call__(self):
        # if no data have been set, this will tank with a ValueError
        try:
            dmin, dmax = self.viewlim_to_dt()
        except ValueError:
            return []

        return self.tick_values(dmin, dmax)

    def tick_values(self, vmin, vmax):
        ymin = self.base.le(vmin.year)
        ymax = self.base.ge(vmax.year)

        ticks = [vmin.replace(year=ymin, **self.replaced)]
        while 1:
            dt = ticks[-1]
            if dt.year >= ymax:
                return date2num(ticks)
            year = dt.year + self.base.get_base()
            ticks.append(dt.replace(year=year, **self.replaced))

    def autoscale(self):
        """
        Set the view limits to include the data range.
        """
        dmin, dmax = self.datalim_to_dt()

        ymin = self.base.le(dmin.year)
        ymax = self.base.ge(dmax.year)
        vmin = dmin.replace(year=ymin, **self.replaced)
        vmax = dmax.replace(year=ymax, **self.replaced)

        vmin = date2num(vmin)
        vmax = date2num(vmax)
        return self.nonsingular(vmin, vmax)


class MonthLocator(RRuleLocator):
    """
    Make ticks on occurances of each month month, e.g., 1, 3, 12.
    """
    def __init__(self, bymonth=None, bymonthday=1, interval=1, tz=None):
        """
        Mark every month in *bymonth*; *bymonth* can be an int or
        sequence.  Default is ``range(1,13)``, i.e. every month.

        *interval* is the interval between each iteration.  For
        example, if ``interval=2``, mark every second occurance.
        """
        if bymonth is None:
            bymonth = range(1, 13)
        elif isinstance(bymonth, np.ndarray):
            # This fixes a bug in dateutil <= 2.3 which prevents the use of
            # numpy arrays in (among other things) the bymonthday, byweekday
            # and bymonth parameters.
            bymonth = [x.item() for x in bymonth.astype(int)]

        rule = rrulewrapper(MONTHLY, bymonth=bymonth, bymonthday=bymonthday,
                         interval=interval, **self.hms0d)
        RRuleLocator.__init__(self, rule, tz)


class WeekdayLocator(RRuleLocator):
    """
    Make ticks on occurances of each weekday.
    """

    def __init__(self, byweekday=1, interval=1, tz=None):
        """
        Mark every weekday in *byweekday*; *byweekday* can be a number or
        sequence.

        Elements of *byweekday* must be one of MO, TU, WE, TH, FR, SA,
        SU, the constants from :mod:`dateutil.rrule`, which have been
        imported into the :mod:`matplotlib.dates` namespace.

        *interval* specifies the number of weeks to skip.  For example,
        ``interval=2`` plots every second week.
        """
        if isinstance(byweekday, np.ndarray):
            # This fixes a bug in dateutil <= 2.3 which prevents the use of
            # numpy arrays in (among other things) the bymonthday, byweekday
            # and bymonth parameters.
            [x.item() for x in byweekday.astype(int)]

        rule = rrulewrapper(DAILY, byweekday=byweekday,
                            interval=interval, **self.hms0d)
        RRuleLocator.__init__(self, rule, tz)


class DayLocator(RRuleLocator):
    """
    Make ticks on occurances of each day of the month.  For example,
    1, 15, 30.
    """
    def __init__(self, bymonthday=None, interval=1, tz=None):
        """
        Mark every day in *bymonthday*; *bymonthday* can be an int or
        sequence.

        Default is to tick every day of the month: ``bymonthday=range(1,32)``
        """
        if bymonthday is None:
            bymonthday = range(1, 32)
        elif isinstance(bymonthday, np.ndarray):
            # This fixes a bug in dateutil <= 2.3 which prevents the use of
            # numpy arrays in (among other things) the bymonthday, byweekday
            # and bymonth parameters.
            bymonthday = [x.item() for x in bymonthday.astype(int)]

        rule = rrulewrapper(DAILY, bymonthday=bymonthday,
                            interval=interval, **self.hms0d)
        RRuleLocator.__init__(self, rule, tz)


class HourLocator(RRuleLocator):
    """
    Make ticks on occurances of each hour.
    """
    def __init__(self, byhour=None, interval=1, tz=None):
        """
        Mark every hour in *byhour*; *byhour* can be an int or sequence.
        Default is to tick every hour: ``byhour=range(24)``

        *interval* is the interval between each iteration.  For
        example, if ``interval=2``, mark every second occurrence.
        """
        if byhour is None:
            byhour = range(24)

        rule = rrulewrapper(HOURLY, byhour=byhour, interval=interval,
                            byminute=0, bysecond=0)
        RRuleLocator.__init__(self, rule, tz)


class MinuteLocator(RRuleLocator):
    """
    Make ticks on occurances of each minute.
    """
    def __init__(self, byminute=None, interval=1, tz=None):
        """
        Mark every minute in *byminute*; *byminute* can be an int or
        sequence.  Default is to tick every minute: ``byminute=range(60)``

        *interval* is the interval between each iteration.  For
        example, if ``interval=2``, mark every second occurrence.
        """
        if byminute is None:
            byminute = range(60)

        rule = rrulewrapper(MINUTELY, byminute=byminute, interval=interval,
                            bysecond=0)
        RRuleLocator.__init__(self, rule, tz)


class SecondLocator(RRuleLocator):
    """
    Make ticks on occurances of each second.
    """
    def __init__(self, bysecond=None, interval=1, tz=None):
        """
        Mark every second in *bysecond*; *bysecond* can be an int or
        sequence.  Default is to tick every second: ``bysecond = range(60)``

        *interval* is the interval between each iteration.  For
        example, if ``interval=2``, mark every second occurrence.

        """
        if bysecond is None:
            bysecond = range(60)

        rule = rrulewrapper(SECONDLY, bysecond=bysecond, interval=interval)
        RRuleLocator.__init__(self, rule, tz)


class MicrosecondLocator(DateLocator):
    """
    Make ticks on occurances of each microsecond.

    """
    def __init__(self, interval=1, tz=None):
        """
        *interval* is the interval between each iteration.  For
        example, if ``interval=2``, mark every second microsecond.

        """
        self._interval = interval
        self._wrapped_locator = ticker.MultipleLocator(interval)
        self.tz = tz

    def set_axis(self, axis):
        self._wrapped_locator.set_axis(axis)
        return DateLocator.set_axis(self, axis)

    def set_view_interval(self, vmin, vmax):
        self._wrapped_locator.set_view_interval(vmin, vmax)
        return DateLocator.set_view_interval(self, vmin, vmax)

    def set_data_interval(self, vmin, vmax):
        self._wrapped_locator.set_data_interval(vmin, vmax)
        return DateLocator.set_data_interval(self, vmin, vmax)

    def __call__(self):
        # if no data have been set, this will tank with a ValueError
        try:
            dmin, dmax = self.viewlim_to_dt()
        except ValueError:
            return []

        return self.tick_values(dmin, dmax)

    def tick_values(self, vmin, vmax):
        nmin, nmax = date2num((vmin, vmax))
        nmin *= MUSECONDS_PER_DAY
        nmax *= MUSECONDS_PER_DAY
        ticks = self._wrapped_locator.tick_values(nmin, nmax)
        ticks = [tick / MUSECONDS_PER_DAY for tick in ticks]
        return ticks

    def _get_unit(self):
        """
        Return how many days a unit of the locator is; used for
        intelligent autoscaling.
        """
        return 1. / MUSECONDS_PER_DAY

    def _get_interval(self):
        """
        Return the number of units for each tick.
        """
        return self._interval


def _close_to_dt(d1, d2, epsilon=5):
    """
    Assert that datetimes *d1* and *d2* are within *epsilon* microseconds.
    """
    delta = d2 - d1
    mus = abs(_total_seconds(delta) * 1e6)
    assert mus < epsilon


def _close_to_num(o1, o2, epsilon=5):
    """
    Assert that float ordinals *o1* and *o2* are within *epsilon*
    microseconds.
    """
    delta = abs((o2 - o1) * MUSECONDS_PER_DAY)
    assert delta < epsilon


def epoch2num(e):
    """
    Convert an epoch or sequence of epochs to the new date format,
    that is days since 0001.
    """
    return EPOCH_OFFSET + np.asarray(e) / SEC_PER_DAY


def num2epoch(d):
    """
    Convert days since 0001 to epoch.  *d* can be a number or sequence.
    """
    return (np.asarray(d) - EPOCH_OFFSET) * SEC_PER_DAY


def mx2num(mxdates):
    """
    Convert mx :class:`datetime` instance (or sequence of mx
    instances) to the new date format.
    """
    scalar = False
    if not cbook.iterable(mxdates):
        scalar = True
        mxdates = [mxdates]
    ret = epoch2num([m.ticks() for m in mxdates])
    if scalar:
        return ret[0]
    else:
        return ret


def date_ticker_factory(span, tz=None, numticks=5):
    """
    Create a date locator with *numticks* (approx) and a date formatter
    for *span* in days.  Return value is (locator, formatter).
    """

    if span == 0:
        span = 1 / HOURS_PER_DAY

    mins = span * MINUTES_PER_DAY
    hrs = span * HOURS_PER_DAY
    days = span
    wks = span / DAYS_PER_WEEK
    months = span / DAYS_PER_MONTH      # Approx
    years = span / DAYS_PER_YEAR        # Approx

    if years > numticks:
        locator = YearLocator(int(years / numticks), tz=tz)  # define
        fmt = '%Y'
    elif months > numticks:
        locator = MonthLocator(tz=tz)
        fmt = '%b %Y'
    elif wks > numticks:
        locator = WeekdayLocator(tz=tz)
        fmt = '%a, %b %d'
    elif days > numticks:
        locator = DayLocator(interval=int(math.ceil(days / numticks)), tz=tz)
        fmt = '%b %d'
    elif hrs > numticks:
        locator = HourLocator(interval=int(math.ceil(hrs / numticks)), tz=tz)
        fmt = '%H:%M\n%b %d'
    elif mins > numticks:
        locator = MinuteLocator(interval=int(math.ceil(mins / numticks)),
                                tz=tz)
        fmt = '%H:%M:%S'
    else:
        locator = MinuteLocator(tz=tz)
        fmt = '%H:%M:%S'

    formatter = DateFormatter(fmt, tz=tz)
    return locator, formatter


def seconds(s):
    """
    Return seconds as days.
    """
    return float(s) / SEC_PER_DAY


def minutes(m):
    """
    Return minutes as days.
    """
    return float(m) / MINUTES_PER_DAY


def hours(h):
    """
    Return hours as days.
    """
    return h / HOURS_PER_DAY


def weeks(w):
    """
    Return weeks as days.
    """
    return w * DAYS_PER_WEEK


class DateConverter(units.ConversionInterface):
    """
    Converter for datetime.date and datetime.datetime data,
    or for date/time data represented as it would be converted
    by :func:`date2num`.

    The 'unit' tag for such data is None or a tzinfo instance.
    """

    @staticmethod
    def axisinfo(unit, axis):
        """
        Return the :class:`~matplotlib.units.AxisInfo` for *unit*.

        *unit* is a tzinfo instance or None.
        The *axis* argument is required but not used.
        """
        tz = unit

        majloc = AutoDateLocator(tz=tz)
        majfmt = AutoDateFormatter(majloc, tz=tz)
        datemin = datetime.date(2000, 1, 1)
        datemax = datetime.date(2010, 1, 1)

        return units.AxisInfo(majloc=majloc, majfmt=majfmt, label='',
                              default_limits=(datemin, datemax))

    @staticmethod
    def convert(value, unit, axis):
        """
        If *value* is not already a number or sequence of numbers,
        convert it with :func:`date2num`.

        The *unit* and *axis* arguments are not used.
        """
        if units.ConversionInterface.is_numlike(value):
            return value
        return date2num(value)

    @staticmethod
    def default_units(x, axis):
        """
        Return the tzinfo instance of *x* or of its first element, or None
        """
        if isinstance(x, np.ndarray):
            x = x.ravel()

        try:
            x = cbook.safe_first_element(x)
        except (TypeError, StopIteration):
            pass

        try:
            return x.tzinfo
        except AttributeError:
            pass
        return None


units.registry[datetime.date] = DateConverter()
units.registry[datetime.datetime] = DateConverter()